parthiban12 commited on
Commit
c40d23a
·
verified ·
1 Parent(s): 0438fd1

Create script.py

Browse files
Files changed (1) hide show
  1. script.py +79 -0
script.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import os
4
+ from tqdm import tqdm
5
+ from PIL import Image
6
+ import torch
7
+ import torch.nn as nn
8
+ import torchvision.transforms as T
9
+ from torchvision.models import resnet50
10
+
11
+ def is_gpu_available():
12
+ return torch.cuda.is_available()
13
+
14
+ class ResNetClassifier(nn.Module):
15
+ def __init__(self, num_classes, metadata_size):
16
+ super(ResNetClassifier, self).__init__()
17
+ self.resnet = resnet50(pretrained=True)
18
+ self.resnet.fc = nn.Identity() # Remove the fully connected layer
19
+ self.metadata_fc = nn.Linear(metadata_size, 128)
20
+ self.classifier = nn.Linear(2048 + 128, num_classes) # 2048 is the output size of ResNet50
21
+
22
+ def forward(self, x, metadata_features):
23
+ resnet_features = self.resnet(x)
24
+ metadata_features = self.metadata_fc(metadata_features)
25
+ combined_features = torch.cat((resnet_features, metadata_features), dim=1)
26
+ logits = self.classifier(combined_features)
27
+ return logits
28
+
29
+ class PytorchWorker:
30
+ def __init__(self, model_path: str, num_classes: int, metadata_size: int):
31
+ self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
32
+ print(f"Using device: {self.device}")
33
+ self.model = self._load_model(model_path, num_classes, metadata_size)
34
+ self.transforms = T.Compose([T.Resize((224, 224)),
35
+ T.ToTensor(),
36
+ T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
37
+
38
+ def _load_model(self, model_path, num_classes, metadata_size):
39
+ model = ResNetClassifier(num_classes, metadata_size)
40
+ model.load_state_dict(torch.load(model_path, map_location=self.device))
41
+ return model.to(self.device).eval()
42
+
43
+ def predict_image(self, image: Image.Image, metadata_features: np.ndarray) -> list:
44
+ input_tensor = self.transforms(image).unsqueeze(0).to(self.device)
45
+ metadata_tensor = torch.tensor(metadata_features).unsqueeze(0).to(self.device)
46
+ with torch.no_grad():
47
+ logits = self.model(input_tensor, metadata_tensor)
48
+ return logits.tolist()
49
+
50
+ def make_submission(test_metadata, model_path, num_classes, metadata_size, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"):
51
+ model = PytorchWorker(model_path, num_classes, metadata_size)
52
+ predictions = []
53
+ for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)):
54
+ image_path = os.path.join(images_root_path, row['image_path'])
55
+ test_image = Image.open(image_path).convert("RGB")
56
+ metadata_features = row.drop(['image_path', 'class_id']).values.astype(np.float32)
57
+ logits = model.predict_image(test_image, metadata_features)
58
+ predictions.append(np.argmax(logits))
59
+ test_metadata["class_id"] = predictions
60
+ user_pred_df = test_metadata.drop_duplicates("observation_id", keep="first")
61
+ user_pred_df[["observation_id", "class_id"]].to_csv(output_csv_path, index=None)
62
+
63
+ if __name__ == "__main__":
64
+ import zipfile
65
+ with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
66
+ zip_ref.extractall("/tmp/data")
67
+
68
+ MODEL_PATH = "pytorch_model.pth"
69
+ metadata_file_path = "./SnakeCLEF2024-TestMetadata.csv"
70
+ test_metadata = pd.read_csv(metadata_file_path)
71
+ num_classes = 1784
72
+ metadata_size = len(test_metadata.columns) - 2 # Excluding 'image_path' and 'class_id'
73
+
74
+ make_submission(
75
+ test_metadata=test_metadata,
76
+ model_path=MODEL_PATH,
77
+ num_classes=num_classes,
78
+ metadata_size=metadata_size
79
+ )