Create script.py
Browse files
script.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import os
|
4 |
+
from tqdm import tqdm
|
5 |
+
from PIL import Image
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torchvision.transforms as T
|
9 |
+
from torchvision.models import resnet50
|
10 |
+
|
11 |
+
def is_gpu_available():
|
12 |
+
return torch.cuda.is_available()
|
13 |
+
|
14 |
+
class ResNetClassifier(nn.Module):
|
15 |
+
def __init__(self, num_classes, metadata_size):
|
16 |
+
super(ResNetClassifier, self).__init__()
|
17 |
+
self.resnet = resnet50(pretrained=True)
|
18 |
+
self.resnet.fc = nn.Identity() # Remove the fully connected layer
|
19 |
+
self.metadata_fc = nn.Linear(metadata_size, 128)
|
20 |
+
self.classifier = nn.Linear(2048 + 128, num_classes) # 2048 is the output size of ResNet50
|
21 |
+
|
22 |
+
def forward(self, x, metadata_features):
|
23 |
+
resnet_features = self.resnet(x)
|
24 |
+
metadata_features = self.metadata_fc(metadata_features)
|
25 |
+
combined_features = torch.cat((resnet_features, metadata_features), dim=1)
|
26 |
+
logits = self.classifier(combined_features)
|
27 |
+
return logits
|
28 |
+
|
29 |
+
class PytorchWorker:
|
30 |
+
def __init__(self, model_path: str, num_classes: int, metadata_size: int):
|
31 |
+
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
32 |
+
print(f"Using device: {self.device}")
|
33 |
+
self.model = self._load_model(model_path, num_classes, metadata_size)
|
34 |
+
self.transforms = T.Compose([T.Resize((224, 224)),
|
35 |
+
T.ToTensor(),
|
36 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
37 |
+
|
38 |
+
def _load_model(self, model_path, num_classes, metadata_size):
|
39 |
+
model = ResNetClassifier(num_classes, metadata_size)
|
40 |
+
model.load_state_dict(torch.load(model_path, map_location=self.device))
|
41 |
+
return model.to(self.device).eval()
|
42 |
+
|
43 |
+
def predict_image(self, image: Image.Image, metadata_features: np.ndarray) -> list:
|
44 |
+
input_tensor = self.transforms(image).unsqueeze(0).to(self.device)
|
45 |
+
metadata_tensor = torch.tensor(metadata_features).unsqueeze(0).to(self.device)
|
46 |
+
with torch.no_grad():
|
47 |
+
logits = self.model(input_tensor, metadata_tensor)
|
48 |
+
return logits.tolist()
|
49 |
+
|
50 |
+
def make_submission(test_metadata, model_path, num_classes, metadata_size, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"):
|
51 |
+
model = PytorchWorker(model_path, num_classes, metadata_size)
|
52 |
+
predictions = []
|
53 |
+
for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)):
|
54 |
+
image_path = os.path.join(images_root_path, row['image_path'])
|
55 |
+
test_image = Image.open(image_path).convert("RGB")
|
56 |
+
metadata_features = row.drop(['image_path', 'class_id']).values.astype(np.float32)
|
57 |
+
logits = model.predict_image(test_image, metadata_features)
|
58 |
+
predictions.append(np.argmax(logits))
|
59 |
+
test_metadata["class_id"] = predictions
|
60 |
+
user_pred_df = test_metadata.drop_duplicates("observation_id", keep="first")
|
61 |
+
user_pred_df[["observation_id", "class_id"]].to_csv(output_csv_path, index=None)
|
62 |
+
|
63 |
+
if __name__ == "__main__":
|
64 |
+
import zipfile
|
65 |
+
with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
|
66 |
+
zip_ref.extractall("/tmp/data")
|
67 |
+
|
68 |
+
MODEL_PATH = "pytorch_model.pth"
|
69 |
+
metadata_file_path = "./SnakeCLEF2024-TestMetadata.csv"
|
70 |
+
test_metadata = pd.read_csv(metadata_file_path)
|
71 |
+
num_classes = 1784
|
72 |
+
metadata_size = len(test_metadata.columns) - 2 # Excluding 'image_path' and 'class_id'
|
73 |
+
|
74 |
+
make_submission(
|
75 |
+
test_metadata=test_metadata,
|
76 |
+
model_path=MODEL_PATH,
|
77 |
+
num_classes=num_classes,
|
78 |
+
metadata_size=metadata_size
|
79 |
+
)
|