Testys commited on
Commit
4da1f7c
·
verified ·
1 Parent(s): b795c5c

Job completed: Upload fine-tuned LoRA adapter and artifacts from Space.

Browse files
README.md CHANGED
@@ -1,119 +1,202 @@
1
  ---
2
  base_model: EleutherAI/pythia-70m-deduped
3
- model_name: "Pythia-70M Sarcasm LoRA by hyvve data platform"
4
  library_name: peft
5
- tags:
6
- - text-generation
7
- - lora
8
- - peft
9
- - sarcasm
10
- - pythia
11
- - fine-tuning
12
- - causal-lm
13
- - EleutherAI
14
- license: apache-2.0
15
- pipeline_tag: text-generation
16
  ---
17
 
18
- # Model Card for Pythia-70M Sarcasm LoRA
 
 
 
19
 
20
- This model is a LoRA (Low-Rank Adaptation) fine-tune of the `EleutherAI/pythia-70m-deduped` model, specifically adapted for tasks related to sarcasm.
21
 
22
  ## Model Details
23
 
24
  ### Model Description
25
 
26
- This is a PEFT LoRA adapter for the `EleutherAI/pythia-70m-deduped` model. It has been fine-tuned on a dataset related to sarcasm. As a Causal Language Model (CLM), its primary function is to predict the next token in a sequence. This fine-tuning aims to imbue the model with an understanding or stylistic representation of sarcastic language.
 
27
 
28
- - **Developed by:** hyvve (based on job configurations)
29
- - **Funded by [optional]:** [Information Not Provided]
30
- - **Shared by [optional]:** hyvve
31
- - **Model type:** Causal Language Model (specifically, a LoRA adapter for a GPT-NeoX based model)
32
- - **Language(s) (NLP):** English (derived from the base model and assumed dataset language)
33
- - **License:** Apache-2.0 (inherited from the base model `EleutherAI/pythia-70m-deduped`)
34
- - **Finetuned from model:** `EleutherAI/pythia-70m-deduped`
 
35
 
36
  ### Model Sources [optional]
37
 
38
- - **Repository (LoRA Adapter):** `https://huggingface.co/Testys/pythia-70m-sarcasm-lora` (based on `hf_target_model_repo_id`)
39
- - **Base Model Repository:** `https://huggingface.co/EleutherAI/pythia-70m-deduped`
40
- - **Paper [optional]:** For Pythia suite: [arXiv:2304.01373](https://arxiv.org/abs/2304.01373)
41
- - **Demo [optional]:** [Not Provided]
 
42
 
43
  ## Uses
44
 
 
 
45
  ### Direct Use
46
 
47
- This LoRA adapter is intended to be loaded on top of the `EleutherAI/pythia-70m-deduped` base model. It can be used for:
48
- * Generating text with a sarcastic tone or style.
49
- * Completing prompts in a sarcastic manner.
50
- * Research into modeling nuanced aspects of language like sarcasm with smaller LMs.
51
 
52
- **Note:** Due to the extremely small dataset size used for fine-tuning (14 examples), the model's ability to robustly generate or understand sarcasm will be very limited. It primarily serves as a pipeline and integration test.
53
 
54
  ### Downstream Use [optional]
55
 
56
- * Further fine-tuning on larger, more diverse sarcasm datasets.
57
- * Integration into applications requiring conditional text generation with a sarcastic flavor (e.g., chatbots, creative writing tools), though extensive further tuning would be necessary.
 
58
 
59
  ### Out-of-Scope Use
60
 
61
- * Reliable sarcasm detection or classification without significant further development and evaluation.
62
- * Generating harmful, biased, or offensive content, even if framed as sarcasm.
63
- * Use in critical applications where misinterpretation of sarcasm could have negative consequences.
64
- * Generating fluent, coherent, and factually accurate long-form text beyond the capabilities of the 70M parameter base model.
65
 
66
  ## Bias, Risks, and Limitations
67
 
68
- * **Limited Scope:** Fine-tuned on a very small dataset (14 examples), so its understanding and generation of sarcasm will be superficial and not generalizable.
69
- * **Inherited Biases:** Inherits biases from the `EleutherAI/pythia-70m-deduped` base model, which was trained on The Pile. These can include societal, gender, and racial biases.
70
- * **Misinterpretation of Sarcasm:** Sarcasm is highly context-dependent and subjective. The model may generate text that is inappropriately sarcastic or fail to understand sarcastic prompts correctly.
71
- * **Potential for Harmful Sarcasm:** Sarcasm can be used to convey negativity or veiled aggression. The model might inadvertently generate such content.
72
- * **Numerical Instability:** During the logged training run, an `eval_loss: nan` was observed, indicating potential issues with evaluation on the tiny validation set or numerical instability under the given configuration. The `train_loss: 0.0` also suggests extreme overfitting or issues with the learning process on such limited data.
73
 
74
  ### Recommendations
75
 
76
- * **Thorough Evaluation:** Before any production use, the model (after further fine-tuning on a substantial dataset) would require rigorous evaluation for both sarcasm generation quality and potential biases.
77
- * **Content Moderation:** Downstream applications should implement content moderation and safety filters.
78
- * **Context is Key:** Use with clear context and be aware that its sarcastic capabilities are likely very brittle due to the limited training data.
79
- * **Do Not Use for Critical Decisions:** This model, in its current state, is not suitable for any critical applications.
80
 
81
  ## How to Get Started with the Model
82
 
83
- To use this LoRA adapter, you'll need to load the base model and then apply the adapter using the PEFT library.
84
-
85
- ```python
86
- from transformers import AutoModelForCausalLM, AutoTokenizer
87
- from peft import PeftModel
88
- import torch
89
-
90
- base_model_id = "EleutherAI/pythia-70m-deduped"
91
- adapter_model_id = "Testys/pythia-70m-sarcasm-lora" # Replace with your actual model ID
92
-
93
- # Load the tokenizer
94
- tokenizer = AutoTokenizer.from_pretrained(base_model_id)
95
- if tokenizer.pad_token is None:
96
- tokenizer.pad_token = tokenizer.eos_token
97
-
98
- # Load the base model (e.g., in 4-bit if that's how the adapter was trained/intended)
99
- # For QLoRA, BitsAndBytesConfig would be needed here as during training
100
- # For simplicity, this example loads without quantization. Adapt as needed.
101
- base_model = AutoModelForCausalLM.from_pretrained(
102
- base_model_id,
103
- # quantization_config=BitsAndBytesConfig(...) # Add if loading in 4-bit/8-bit
104
- # torch_dtype=torch.float16, # Or torch.bfloat16
105
- device_map="auto"
106
- )
107
-
108
- # Load the PEFT LoRA model (adapter)
109
- model = PeftModel.from_pretrained(base_model, adapter_model_id)
110
- model = model.merge_and_unload() # Optional: merge adapter into base model for faster inference
111
-
112
- # Now you can use the model for generation
113
- prompt = "The weather today is just " # Example prompt
114
- inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
115
-
116
- # Generate text
117
- # Adjust generation parameters as needed
118
- outputs = model.generate(**inputs, max_new_tokens=50, do_sample=True, top_k=50, top_p=0.95, temperature=0.7)
119
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  base_model: EleutherAI/pythia-70m-deduped
 
3
  library_name: peft
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
 
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
  ### Direct Use
41
 
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
43
 
44
+ [More Information Needed]
45
 
46
  ### Downstream Use [optional]
47
 
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
 
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
 
 
63
 
64
  ### Recommendations
65
 
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
69
 
70
  ## How to Get Started with the Model
71
 
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.7.1
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:314588ff4e38055ba4fbb994ba9554292c4122ef2ef40be781616f7155208280
3
  size 788168
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6629cf1c14dee8b2c6f2be2c3cdfd216ea26b7eac44ba87b390bc833c42f653d
3
  size 788168
training_checkpoints/checkpoint-1/adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:314588ff4e38055ba4fbb994ba9554292c4122ef2ef40be781616f7155208280
3
  size 788168
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6629cf1c14dee8b2c6f2be2c3cdfd216ea26b7eac44ba87b390bc833c42f653d
3
  size 788168
training_checkpoints/checkpoint-1/trainer_state.json CHANGED
@@ -11,9 +11,9 @@
11
  {
12
  "epoch": 0.67,
13
  "eval_loss": NaN,
14
- "eval_runtime": 0.0183,
15
- "eval_samples_per_second": 109.095,
16
- "eval_steps_per_second": 54.547,
17
  "step": 1
18
  }
19
  ],
 
11
  {
12
  "epoch": 0.67,
13
  "eval_loss": NaN,
14
+ "eval_runtime": 0.0172,
15
+ "eval_samples_per_second": 116.049,
16
+ "eval_steps_per_second": 58.025,
17
  "step": 1
18
  }
19
  ],
training_logs/events.out.tfevents.1748026433.r-testys-training-space-5e27215a-1f78-4acc-b0de-d4833-672cb-k2v.8.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c8cc59ba354b2b998a3616b6656937f7c00752f2c749c65a1d622bf4e890a6c
3
+ size 5447
training_metrics.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
  "eval_loss": NaN,
3
- "eval_runtime": 0.0183,
4
- "eval_samples_per_second": 109.095,
5
- "eval_steps_per_second": 54.547,
6
  "epoch": 0.67,
7
  "step": 1
8
  }
 
1
  {
2
  "eval_loss": NaN,
3
+ "eval_runtime": 0.0172,
4
+ "eval_samples_per_second": 116.049,
5
+ "eval_steps_per_second": 58.025,
6
  "epoch": 0.67,
7
  "step": 1
8
  }