TheoLvs commited on
Commit
f28c8b2
·
verified ·
1 Parent(s): a233a5f

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: 'Freshwater resource governance models demonstrate divergent outcomes in scarcity
9
+ adaptation across hydroclimatic regions
10
+
11
+ This study evaluates the effectiveness of five distinct freshwater governance
12
+ models across 34 river basins experiencing varying degrees of water stress. Using
13
+ comparative institutional analysis and quantitative metrics from 2005-2022, we
14
+ assessed how governance structures influence water allocation efficiency, ecosystem
15
+ protection, and adaptation capacity under increasing scarcity conditions. Results
16
+ demonstrate that polycentric governance systems outperformed both centralized
17
+ bureaucratic and market-based models in 76% of ecological indicators and 64% of
18
+ adaptation metrics. Basin-level integrated management frameworks reduced inter-sectoral
19
+ water conflicts by 42% compared to fragmented governance approaches. Water pricing
20
+ mechanisms showed mixed effectiveness, with progressive tariff structures achieving
21
+ 38% higher conservation outcomes than flat-rate systems while maintaining equity
22
+ considerations. Importantly, governance systems incorporating traditional ecological
23
+ knowledge alongside scientific monitoring demonstrated 57% better ecological outcomes
24
+ in seasonal flow maintenance. Statistical modeling revealed that institutional
25
+ flexibility and stakeholder participation were stronger predictors of adaptive
26
+ capacity than technical infrastructure or financial resources. These findings
27
+ challenge conventional water governance approaches emphasizing centralized control
28
+ or marketization, suggesting that context-sensitive institutional design addressing
29
+ both biophysical constraints and social dynamics provides more sustainable freshwater
30
+ management under climate uncertainty.'
31
+ - text: Wetland carbon sequestration capacity shows non-linear response to restoration
32
+ technique and hydrological regime This study examines carbon sequestration outcomes
33
+ from 124 wetland restoration projects across North America, Europe, and Asia over
34
+ a 15-year monitoring period. Using standardized carbon flux measurements and sediment
35
+ coring, we quantified how restoration approach and hydrological management influence
36
+ carbon accumulation rates. Results demonstrate that restoration technique explained
37
+ 53% of variance in carbon sequestration outcomes, with significant interaction
38
+ effects between technique and hydroperiod. Projects restoring natural hydrological
39
+ fluctuations achieved 2.7 times higher carbon accumulation rates than those maintaining
40
+ static water levels. Vegetation community composition emerged as a significant
41
+ mediating variable, with diverse native assemblages sequestering 34% more carbon
42
+ than simplified or non-native communities. Our findings indicate that wetland
43
+ restoration prioritizing hydrological dynamism and diverse vegetation delivers
44
+ superior climate mitigation benefits while simultaneously enhancing habitat value
45
+ and water quality functions.
46
+ - text: 'CONSERVATION OF URBAN WETLAND WITH POTENTIAL INTERNATIONAL SIGNIFICANCE:
47
+ A CASE STUDY ON NAJAFGARH JHEEL, DELHI, INDIA
48
+
49
+ Urban lakes, or jheels, are essential ecological elements that help maintain ecosystem
50
+ services such as groundwater, regional climate, and biodiversity. The continuous
51
+ urban sprawl and population growth in urban areas are essential factors in the
52
+ decline of freshwater bodies. However, these ecosystems have functional advantages.
53
+ The National Capital Region of India has a population of 46 million and is situated
54
+ on the Yamuna watershed. The resilience plan for the city requires research on
55
+ hydrological sustainability. The present study focuses on the case study of Najafgarh
56
+ Jheel, a trans-boundary lake that has recently received the status of a water
57
+ body under the wetland rules of 2017 of India by the National Green Tribunal after
58
+ 215 years of existence and deterioration. The primary data collection was through
59
+ field visits of avifauana data, and secondary data from eBird data, research articles,
60
+ government reports, and newspaper articles have been the main tools for analysis.
61
+ The baselines of international significance for Najafgrah Jheel were compared
62
+ to criteria laid out by the Important Bird and Biodiversity Area Programme and
63
+ the Ramsar Convention. The Najafgarh Jheel area could be a prospective wetland
64
+ of international significance for its ornithological significance. The Jheel is
65
+ facing several anthropogenic stressors with an urgent need for protection and
66
+ demarcation under the protected area network. © 2023 Universitatea "Alexandru
67
+ Ioan Cuza" din Iasi. All rights reserved.'
68
+ - text: 'Educational experiences during adolescence predict midlife fulfillment through
69
+ skill development rather than credential attainment This study investigates long-term
70
+ effects of educational experiences on life outcomes beyond economic returns. Using
71
+ data from a 32-year longitudinal study tracking 3,842 individuals from adolescence
72
+ through midlife, we examined how educational characteristics predicted fulfillment
73
+ indicators. Results demonstrate that educational quality metrics (student engagement,
74
+ teacher relationships, skill-building opportunities) predicted midlife flourishing
75
+ more strongly than years of education or credential attainment (β=0.48 vs. β=0.27,
76
+ p<0.001). The relationship was mediated by skill development in three key domains:
77
+ metacognitive skills (critical thinking, learning strategies), social capabilities
78
+ (communication, collaboration), and emotional competencies (self-regulation, resilience).
79
+ Notably, individuals who experienced high-quality secondary education but terminated
80
+ formal education early showed better life outcomes than those completing advanced
81
+ degrees in low-engagement educational environments. Education quality effects
82
+ remained significant after controlling for family background, cognitive ability,
83
+ and subsequent earnings. These findings challenge the credentialist paradigm dominating
84
+ educational policy and suggest greater emphasis on qualitative educational experiences
85
+ rather than simply maximizing credential attainment.'
86
+ - text: Climate adaptation funding reveals systematic biases against most vulnerable
87
+ communities This research examines the distribution of climate adaptation resources
88
+ across 174 implemented projects in 28 countries from 2010-2022. Using spatial
89
+ analysis integrating climate vulnerability indices, adaptation fund disbursement
90
+ data, and field assessments, we evaluated whether resources flow to populations
91
+ with greatest need. Results demonstrate an inverse relationship between community
92
+ climate vulnerability and adaptation funding received, with the most vulnerable
93
+ quintile receiving only 16% of resources while the least vulnerable quintile received
94
+ 31%. This distributional inequity persisted after controlling for project implementation
95
+ capacity, population size, and accessibility. Governance analysis identified key
96
+ mechanisms driving this pattern, including proposal requirements favoring technically
97
+ sophisticated applicants, co-financing mandates, and risk-averse funder behavior.
98
+ Project-level analysis revealed that even within funded regions, resources disproportionately
99
+ benefited less vulnerable sub-populations through elite capture dynamics. These
100
+ findings document systemic distributional injustice in climate adaptation financing
101
+ and suggest specific reforms to funding mechanisms necessary for more equitable
102
+ vulnerability reduction.
103
+ metrics:
104
+ - accuracy
105
+ pipeline_tag: text-classification
106
+ library_name: setfit
107
+ inference: false
108
+ base_model: BAAI/bge-small-en-v1.5
109
+ model-index:
110
+ - name: SetFit with BAAI/bge-small-en-v1.5
111
+ results:
112
+ - task:
113
+ type: text-classification
114
+ name: Text Classification
115
+ dataset:
116
+ name: Unknown
117
+ type: unknown
118
+ split: test
119
+ metrics:
120
+ - type: accuracy
121
+ value: 0.8484848484848485
122
+ name: Accuracy
123
+ ---
124
+
125
+ # SetFit with BAAI/bge-small-en-v1.5
126
+
127
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A MultiOutputClassifier instance is used for classification.
128
+
129
+ The model has been trained using an efficient few-shot learning technique that involves:
130
+
131
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
132
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
133
+
134
+ ## Model Details
135
+
136
+ ### Model Description
137
+ - **Model Type:** SetFit
138
+ - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
139
+ - **Classification head:** a MultiOutputClassifier instance
140
+ - **Maximum Sequence Length:** 512 tokens
141
+ <!-- - **Number of Classes:** Unknown -->
142
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
143
+ <!-- - **Language:** Unknown -->
144
+ <!-- - **License:** Unknown -->
145
+
146
+ ### Model Sources
147
+
148
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
149
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
150
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
151
+
152
+ ## Evaluation
153
+
154
+ ### Metrics
155
+ | Label | Accuracy |
156
+ |:--------|:---------|
157
+ | **all** | 0.8485 |
158
+
159
+ ## Uses
160
+
161
+ ### Direct Use for Inference
162
+
163
+ First install the SetFit library:
164
+
165
+ ```bash
166
+ pip install setfit
167
+ ```
168
+
169
+ Then you can load this model and run inference.
170
+
171
+ ```python
172
+ from setfit import SetFitModel
173
+
174
+ # Download from the 🤗 Hub
175
+ model = SetFitModel.from_pretrained("TheoLvs/wsl-prescreening-multi-v0.0")
176
+ # Run inference
177
+ preds = model("Wetland carbon sequestration capacity shows non-linear response to restoration technique and hydrological regime This study examines carbon sequestration outcomes from 124 wetland restoration projects across North America, Europe, and Asia over a 15-year monitoring period. Using standardized carbon flux measurements and sediment coring, we quantified how restoration approach and hydrological management influence carbon accumulation rates. Results demonstrate that restoration technique explained 53% of variance in carbon sequestration outcomes, with significant interaction effects between technique and hydroperiod. Projects restoring natural hydrological fluctuations achieved 2.7 times higher carbon accumulation rates than those maintaining static water levels. Vegetation community composition emerged as a significant mediating variable, with diverse native assemblages sequestering 34% more carbon than simplified or non-native communities. Our findings indicate that wetland restoration prioritizing hydrological dynamism and diverse vegetation delivers superior climate mitigation benefits while simultaneously enhancing habitat value and water quality functions.")
178
+ ```
179
+
180
+ <!--
181
+ ### Downstream Use
182
+
183
+ *List how someone could finetune this model on their own dataset.*
184
+ -->
185
+
186
+ <!--
187
+ ### Out-of-Scope Use
188
+
189
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
190
+ -->
191
+
192
+ <!--
193
+ ## Bias, Risks and Limitations
194
+
195
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
196
+ -->
197
+
198
+ <!--
199
+ ### Recommendations
200
+
201
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
202
+ -->
203
+
204
+ ## Training Details
205
+
206
+ ### Training Set Metrics
207
+ | Training set | Min | Median | Max |
208
+ |:-------------|:----|:---------|:----|
209
+ | Word count | 90 | 191.8561 | 348 |
210
+
211
+ ### Training Hyperparameters
212
+ - batch_size: (8, 8)
213
+ - num_epochs: (5, 5)
214
+ - max_steps: 5000
215
+ - sampling_strategy: oversampling
216
+ - body_learning_rate: (2e-05, 1e-05)
217
+ - head_learning_rate: 0.01
218
+ - loss: CosineSimilarityLoss
219
+ - distance_metric: cosine_distance
220
+ - margin: 0.25
221
+ - end_to_end: False
222
+ - use_amp: False
223
+ - warmup_proportion: 0.1
224
+ - l2_weight: 0.01
225
+ - seed: 42
226
+ - eval_max_steps: -1
227
+ - load_best_model_at_end: False
228
+
229
+ ### Training Results
230
+ | Epoch | Step | Training Loss | Validation Loss |
231
+ |:------:|:----:|:-------------:|:---------------:|
232
+ | 0.0006 | 1 | 0.158 | - |
233
+ | 0.0288 | 50 | 0.2511 | - |
234
+ | 0.0575 | 100 | 0.215 | - |
235
+ | 0.0863 | 150 | 0.1883 | - |
236
+ | 0.1151 | 200 | 0.165 | - |
237
+ | 0.1438 | 250 | 0.1274 | - |
238
+ | 0.1726 | 300 | 0.0801 | - |
239
+ | 0.2014 | 350 | 0.0635 | - |
240
+ | 0.2301 | 400 | 0.0427 | - |
241
+ | 0.2589 | 450 | 0.0355 | - |
242
+ | 0.2877 | 500 | 0.0337 | - |
243
+ | 0.3165 | 550 | 0.0271 | - |
244
+ | 0.3452 | 600 | 0.0069 | - |
245
+ | 0.3740 | 650 | 0.0032 | - |
246
+ | 0.4028 | 700 | 0.0033 | - |
247
+ | 0.4315 | 750 | 0.0027 | - |
248
+ | 0.4603 | 800 | 0.0022 | - |
249
+ | 0.4891 | 850 | 0.002 | - |
250
+ | 0.5178 | 900 | 0.0019 | - |
251
+ | 0.5466 | 950 | 0.0017 | - |
252
+ | 0.5754 | 1000 | 0.0017 | - |
253
+ | 0.6041 | 1050 | 0.0015 | - |
254
+ | 0.6329 | 1100 | 0.0015 | - |
255
+ | 0.6617 | 1150 | 0.0013 | - |
256
+ | 0.6904 | 1200 | 0.0013 | - |
257
+ | 0.7192 | 1250 | 0.0014 | - |
258
+ | 0.7480 | 1300 | 0.0012 | - |
259
+ | 0.7768 | 1350 | 0.0012 | - |
260
+ | 0.8055 | 1400 | 0.0011 | - |
261
+ | 0.8343 | 1450 | 0.0012 | - |
262
+ | 0.8631 | 1500 | 0.0011 | - |
263
+ | 0.8918 | 1550 | 0.0011 | - |
264
+ | 0.9206 | 1600 | 0.0011 | - |
265
+ | 0.9494 | 1650 | 0.001 | - |
266
+ | 0.9781 | 1700 | 0.001 | - |
267
+ | 1.0069 | 1750 | 0.001 | - |
268
+ | 1.0357 | 1800 | 0.001 | - |
269
+ | 1.0644 | 1850 | 0.0009 | - |
270
+ | 1.0932 | 1900 | 0.0009 | - |
271
+ | 1.1220 | 1950 | 0.0009 | - |
272
+ | 1.1507 | 2000 | 0.0009 | - |
273
+ | 1.1795 | 2050 | 0.0009 | - |
274
+ | 1.2083 | 2100 | 0.0009 | - |
275
+ | 1.2371 | 2150 | 0.0008 | - |
276
+ | 1.2658 | 2200 | 0.0009 | - |
277
+ | 1.2946 | 2250 | 0.0008 | - |
278
+ | 1.3234 | 2300 | 0.0008 | - |
279
+ | 1.3521 | 2350 | 0.0008 | - |
280
+ | 1.3809 | 2400 | 0.0008 | - |
281
+ | 1.4097 | 2450 | 0.0008 | - |
282
+ | 1.4384 | 2500 | 0.0008 | - |
283
+ | 1.4672 | 2550 | 0.0007 | - |
284
+ | 1.4960 | 2600 | 0.0007 | - |
285
+ | 1.5247 | 2650 | 0.0007 | - |
286
+ | 1.5535 | 2700 | 0.0007 | - |
287
+ | 1.5823 | 2750 | 0.0007 | - |
288
+ | 1.6110 | 2800 | 0.0007 | - |
289
+ | 1.6398 | 2850 | 0.0007 | - |
290
+ | 1.6686 | 2900 | 0.0007 | - |
291
+ | 1.6974 | 2950 | 0.0007 | - |
292
+ | 1.7261 | 3000 | 0.0006 | - |
293
+ | 1.7549 | 3050 | 0.0007 | - |
294
+ | 1.7837 | 3100 | 0.0007 | - |
295
+ | 1.8124 | 3150 | 0.0007 | - |
296
+ | 1.8412 | 3200 | 0.0007 | - |
297
+ | 1.8700 | 3250 | 0.0007 | - |
298
+ | 1.8987 | 3300 | 0.0006 | - |
299
+ | 1.9275 | 3350 | 0.0006 | - |
300
+ | 1.9563 | 3400 | 0.0006 | - |
301
+ | 1.9850 | 3450 | 0.0006 | - |
302
+ | 2.0138 | 3500 | 0.0006 | - |
303
+ | 2.0426 | 3550 | 0.0006 | - |
304
+ | 2.0713 | 3600 | 0.0006 | - |
305
+ | 2.1001 | 3650 | 0.0006 | - |
306
+ | 2.1289 | 3700 | 0.0006 | - |
307
+ | 2.1577 | 3750 | 0.0006 | - |
308
+ | 2.1864 | 3800 | 0.0006 | - |
309
+ | 2.2152 | 3850 | 0.0006 | - |
310
+ | 2.2440 | 3900 | 0.0006 | - |
311
+ | 2.2727 | 3950 | 0.0006 | - |
312
+ | 2.3015 | 4000 | 0.0006 | - |
313
+ | 2.3303 | 4050 | 0.0006 | - |
314
+ | 2.3590 | 4100 | 0.0006 | - |
315
+ | 2.3878 | 4150 | 0.0006 | - |
316
+ | 2.4166 | 4200 | 0.0005 | - |
317
+ | 2.4453 | 4250 | 0.0006 | - |
318
+ | 2.4741 | 4300 | 0.0005 | - |
319
+ | 2.5029 | 4350 | 0.0006 | - |
320
+ | 2.5316 | 4400 | 0.0006 | - |
321
+ | 2.5604 | 4450 | 0.0005 | - |
322
+ | 2.5892 | 4500 | 0.0005 | - |
323
+ | 2.6180 | 4550 | 0.0005 | - |
324
+ | 2.6467 | 4600 | 0.0005 | - |
325
+ | 2.6755 | 4650 | 0.0005 | - |
326
+ | 2.7043 | 4700 | 0.0005 | - |
327
+ | 2.7330 | 4750 | 0.0005 | - |
328
+ | 2.7618 | 4800 | 0.0005 | - |
329
+ | 2.7906 | 4850 | 0.0005 | - |
330
+ | 2.8193 | 4900 | 0.0005 | - |
331
+ | 2.8481 | 4950 | 0.0005 | - |
332
+ | 2.8769 | 5000 | 0.0005 | - |
333
+
334
+ ### Framework Versions
335
+ - Python: 3.11.12
336
+ - SetFit: 1.1.2
337
+ - Sentence Transformers: 4.1.0
338
+ - Transformers: 4.45.2
339
+ - PyTorch: 2.6.0+cu124
340
+ - Datasets: 3.6.0
341
+ - Tokenizers: 0.20.3
342
+
343
+ ## Citation
344
+
345
+ ### BibTeX
346
+ ```bibtex
347
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
348
+ doi = {10.48550/ARXIV.2209.11055},
349
+ url = {https://arxiv.org/abs/2209.11055},
350
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
351
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
352
+ title = {Efficient Few-Shot Learning Without Prompts},
353
+ publisher = {arXiv},
354
+ year = {2022},
355
+ copyright = {Creative Commons Attribution 4.0 International}
356
+ }
357
+ ```
358
+
359
+ <!--
360
+ ## Glossary
361
+
362
+ *Clearly define terms in order to be accessible across audiences.*
363
+ -->
364
+
365
+ <!--
366
+ ## Model Card Authors
367
+
368
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
369
+ -->
370
+
371
+ <!--
372
+ ## Model Card Contact
373
+
374
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
375
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.45.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.45.2",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84b9e486b6543c44d86428485e785b32a5b8c896eb71b4fa8c43930d3b7feb97
3
+ size 133462128
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8052202b186cb060fc576d51bb7a09d718909306e493957989f4b82479442e6a
3
+ size 18017
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff