File size: 5,900 Bytes
354f75d
 
6a60e1c
354f75d
 
6a60e1c
354f75d
 
 
 
 
6a60e1c
354f75d
6a60e1c
2ac6c7b
6a60e1c
 
 
 
354f75d
6a60e1c
b578a97
6a60e1c
354f75d
6a60e1c
354f75d
6a60e1c
 
 
354f75d
6a60e1c
354f75d
 
 
 
 
6a60e1c
 
 
354f75d
6a60e1c
354f75d
6a60e1c
 
354f75d
 
 
6a60e1c
 
 
354f75d
6a60e1c
354f75d
 
 
6a60e1c
 
 
354f75d
 
 
6a60e1c
 
 
354f75d
6a60e1c
354f75d
 
 
6a60e1c
354f75d
6a60e1c
 
354f75d
6a60e1c
 
 
 
354f75d
6a60e1c
 
 
 
 
 
354f75d
6a60e1c
 
 
354f75d
6a60e1c
 
354f75d
 
6a60e1c
354f75d
6a60e1c
 
 
 
 
354f75d
 
6a60e1c
 
 
 
 
 
 
 
354f75d
 
 
6a60e1c
 
354f75d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a60e1c
 
 
 
 
 
 
 
354f75d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
---
library_name: transformers
tags: [text2sql, sql-generation, t5, natural-language-processing]
---

# Model Card for ThotaBhanu/t5_sql_askdb

## Model Details

### Model Description

This model is a **T5-based Natural Language to SQL** converter, fine-tuned on the **WikiSQL dataset**. It is designed to convert **English natural language queries** into **SQL queries** that can be executed on relational databases.

- **Developed by:** Bhanu Prasad Thota  
- **Shared by:** Bhanu Prasad Thota  
- **Model type:** T5-based Sequence-to-Sequence Model  
- **Language(s):** English  
- **License:** MIT  
- **Finetuned from model:** `t5-large`  

This model is particularly useful for **text-to-SQL applications**, allowing users to **query databases using plain English** instead of writing SQL.

---

## Model Sources

- **Repository:** [https://huggingface.co/ThotaBhanu/t5_sql_askdb](https://huggingface.co/ThotaBhanu/t5_sql_askdb)  
- **Paper [optional]:** N/A  
- **Demo [optional]:** Coming soon  

---

## Uses

### Direct Use

- Convert **natural language questions** into **SQL queries**  
- Assist in **database query automation**  
- Can be used in **chatbots, data analytics tools, and enterprise database search systems**  

### Downstream Use

- Can be **fine-tuned** further on **custom datasets** to improve domain-specific SQL generation  
- Can be integrated into **business intelligence tools** for better user interaction  

### Out-of-Scope Use

- The model does **not infer database schema** automatically  
- May generate incorrect SQL for **complex nested queries or multi-table joins**  
- Not suitable for **non-relational (NoSQL) databases**  

---

## Bias, Risks, and Limitations

- The model may not **always generate valid SQL** for **custom database schemas**  
- Assumes **consistent column naming**, which may not always be the case in enterprise databases  
- Performance depends on **how well the input query aligns** with the training data format  

### Recommendations

- Always **validate generated SQL** before executing on a live database  
- Use **schema-aware** validation methods for production environments  
- Consider **fine-tuning the model** on domain-specific SQL queries  

---

## How to Get Started with the Model

Use the code below to generate SQL queries from natural language:

```python
from transformers import T5Tokenizer, T5ForConditionalGeneration

# Load model and tokenizer
model_name = "ThotaBhanu/t5_sql_askdb"
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)

# Function to convert query to SQL
def generate_sql(query):
    input_text = f"Convert to SQL: {query}"
    inputs = tokenizer(input_text, return_tensors="pt")
    output = model.generate(**inputs)
    return tokenizer.decode(output[0], skip_special_tokens=True)

# Example usage
query = "Find all employees who joined in 2020"
sql_query = generate_sql(query)

print(f"📝 Query: {query}")
print(f"🛠 Generated SQL: {sql_query}")


## Training Details

### Training Data

Dataset: WikiSQL
Size: 80,654 pairs of natural language questions and SQL queries
Preprocessing: Tokenization using T5Tokenizer, max length 128


### Training Procedure

Training framework: Hugging Face Transformers + PyTorch
Hardware used: NVIDIA V100 GPU
Optimizer: AdamW
Learning rate: 5e-5
Batch size: 8
Epochs: 5

#### Training Hyperparameters

Training precision: Mixed precision (fp16)
Gradient accumulation: Yes (to handle large batch sizes)

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

@misc{t5_sql_askdb,
  author = {Bhanu Prasad Thota},
  title = {T5-SQL AskDB Model},
  year = {2025},
  publisher = {Hugging Face},
  howpublished = {\url{https://huggingface.co/ThotaBhanu/t5_sql_askdb}}
}


**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]