File size: 5,900 Bytes
354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 2ac6c7b 6a60e1c 354f75d 6a60e1c b578a97 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d 6a60e1c 354f75d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
---
library_name: transformers
tags: [text2sql, sql-generation, t5, natural-language-processing]
---
# Model Card for ThotaBhanu/t5_sql_askdb
## Model Details
### Model Description
This model is a **T5-based Natural Language to SQL** converter, fine-tuned on the **WikiSQL dataset**. It is designed to convert **English natural language queries** into **SQL queries** that can be executed on relational databases.
- **Developed by:** Bhanu Prasad Thota
- **Shared by:** Bhanu Prasad Thota
- **Model type:** T5-based Sequence-to-Sequence Model
- **Language(s):** English
- **License:** MIT
- **Finetuned from model:** `t5-large`
This model is particularly useful for **text-to-SQL applications**, allowing users to **query databases using plain English** instead of writing SQL.
---
## Model Sources
- **Repository:** [https://huggingface.co/ThotaBhanu/t5_sql_askdb](https://huggingface.co/ThotaBhanu/t5_sql_askdb)
- **Paper [optional]:** N/A
- **Demo [optional]:** Coming soon
---
## Uses
### Direct Use
- Convert **natural language questions** into **SQL queries**
- Assist in **database query automation**
- Can be used in **chatbots, data analytics tools, and enterprise database search systems**
### Downstream Use
- Can be **fine-tuned** further on **custom datasets** to improve domain-specific SQL generation
- Can be integrated into **business intelligence tools** for better user interaction
### Out-of-Scope Use
- The model does **not infer database schema** automatically
- May generate incorrect SQL for **complex nested queries or multi-table joins**
- Not suitable for **non-relational (NoSQL) databases**
---
## Bias, Risks, and Limitations
- The model may not **always generate valid SQL** for **custom database schemas**
- Assumes **consistent column naming**, which may not always be the case in enterprise databases
- Performance depends on **how well the input query aligns** with the training data format
### Recommendations
- Always **validate generated SQL** before executing on a live database
- Use **schema-aware** validation methods for production environments
- Consider **fine-tuning the model** on domain-specific SQL queries
---
## How to Get Started with the Model
Use the code below to generate SQL queries from natural language:
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
# Load model and tokenizer
model_name = "ThotaBhanu/t5_sql_askdb"
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
# Function to convert query to SQL
def generate_sql(query):
input_text = f"Convert to SQL: {query}"
inputs = tokenizer(input_text, return_tensors="pt")
output = model.generate(**inputs)
return tokenizer.decode(output[0], skip_special_tokens=True)
# Example usage
query = "Find all employees who joined in 2020"
sql_query = generate_sql(query)
print(f"📝 Query: {query}")
print(f"🛠 Generated SQL: {sql_query}")
## Training Details
### Training Data
Dataset: WikiSQL
Size: 80,654 pairs of natural language questions and SQL queries
Preprocessing: Tokenization using T5Tokenizer, max length 128
### Training Procedure
Training framework: Hugging Face Transformers + PyTorch
Hardware used: NVIDIA V100 GPU
Optimizer: AdamW
Learning rate: 5e-5
Batch size: 8
Epochs: 5
#### Training Hyperparameters
Training precision: Mixed precision (fp16)
Gradient accumulation: Yes (to handle large batch sizes)
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
@misc{t5_sql_askdb,
author = {Bhanu Prasad Thota},
title = {T5-SQL AskDB Model},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/ThotaBhanu/t5_sql_askdb}}
}
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |