Notebooks for GPT evaluation
Browse files
__pycache__/rag_metadata.cpython-311.pyc
ADDED
|
Binary file (3.73 kB). View file
|
|
|
chat_gpt_3.5.ipynb
ADDED
|
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "cf4403ec",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# Notebook to evaluate ChatGPT Peformance"
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "code",
|
| 13 |
+
"execution_count": null,
|
| 14 |
+
"id": "7f708eaa",
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [],
|
| 17 |
+
"source": [
|
| 18 |
+
"import pandas as pd\n",
|
| 19 |
+
"import warnings\n",
|
| 20 |
+
"import sqlite3 as sql\n",
|
| 21 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
|
| 22 |
+
"from huggingface_hub import snapshot_download\n",
|
| 23 |
+
"import sys\n"
|
| 24 |
+
]
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"cell_type": "code",
|
| 28 |
+
"execution_count": null,
|
| 29 |
+
"id": "83a1bd00",
|
| 30 |
+
"metadata": {},
|
| 31 |
+
"outputs": [],
|
| 32 |
+
"source": [
|
| 33 |
+
"import os\n",
|
| 34 |
+
"os.environ[\"OPENAI_API_KEY\"] = \"<key>\""
|
| 35 |
+
]
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"cell_type": "markdown",
|
| 39 |
+
"id": "b3a647bf",
|
| 40 |
+
"metadata": {},
|
| 41 |
+
"source": [
|
| 42 |
+
"## Set up path"
|
| 43 |
+
]
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"cell_type": "code",
|
| 47 |
+
"execution_count": 17,
|
| 48 |
+
"id": "996e282d",
|
| 49 |
+
"metadata": {},
|
| 50 |
+
"outputs": [],
|
| 51 |
+
"source": [
|
| 52 |
+
"is_google_colab=False"
|
| 53 |
+
]
|
| 54 |
+
},
|
| 55 |
+
{
|
| 56 |
+
"cell_type": "code",
|
| 57 |
+
"execution_count": 18,
|
| 58 |
+
"id": "5d96087b",
|
| 59 |
+
"metadata": {},
|
| 60 |
+
"outputs": [],
|
| 61 |
+
"source": [
|
| 62 |
+
"current_path = \"./\"\n",
|
| 63 |
+
"\n",
|
| 64 |
+
"def get_path(rel_path):\n",
|
| 65 |
+
" return os.path.join(current_path, rel_path)\n",
|
| 66 |
+
"\n",
|
| 67 |
+
"if is_google_colab:\n",
|
| 68 |
+
" hugging_face_path = snapshot_download(\n",
|
| 69 |
+
" repo_id=\"USC-Applied-NLP-Group/SQL-Generation\",\n",
|
| 70 |
+
" repo_type=\"model\", \n",
|
| 71 |
+
" allow_patterns=[\"src/*\", \"train-data/*\", \"deepseek-coder-1.3b-instruct/*\", \"nba-data/*\"], \n",
|
| 72 |
+
" )\n",
|
| 73 |
+
" sys.path.append(hugging_face_path)\n",
|
| 74 |
+
" current_path = hugging_face_path"
|
| 75 |
+
]
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"cell_type": "code",
|
| 79 |
+
"execution_count": 19,
|
| 80 |
+
"id": "483da9f0",
|
| 81 |
+
"metadata": {},
|
| 82 |
+
"outputs": [
|
| 83 |
+
{
|
| 84 |
+
"data": {
|
| 85 |
+
"text/plain": [
|
| 86 |
+
"'./nba-data/nba.sqlite'"
|
| 87 |
+
]
|
| 88 |
+
},
|
| 89 |
+
"execution_count": 19,
|
| 90 |
+
"metadata": {},
|
| 91 |
+
"output_type": "execute_result"
|
| 92 |
+
}
|
| 93 |
+
],
|
| 94 |
+
"source": [
|
| 95 |
+
"get_path('nba-data/nba.sqlite')"
|
| 96 |
+
]
|
| 97 |
+
},
|
| 98 |
+
{
|
| 99 |
+
"cell_type": "code",
|
| 100 |
+
"execution_count": 20,
|
| 101 |
+
"id": "5cc9f19f",
|
| 102 |
+
"metadata": {},
|
| 103 |
+
"outputs": [
|
| 104 |
+
{
|
| 105 |
+
"name": "stdout",
|
| 106 |
+
"output_type": "stream",
|
| 107 |
+
"text": [
|
| 108 |
+
"Total dataset examples: 1044\n",
|
| 109 |
+
"\n",
|
| 110 |
+
"\n"
|
| 111 |
+
]
|
| 112 |
+
}
|
| 113 |
+
],
|
| 114 |
+
"source": [
|
| 115 |
+
"\n",
|
| 116 |
+
"\n",
|
| 117 |
+
"warnings.filterwarnings(\"ignore\")\n",
|
| 118 |
+
"# Establish a database connection once (adjust the DB path as needed)\n",
|
| 119 |
+
"connection = sql.connect(get_path('nba-data/nba.sqlite'))\n",
|
| 120 |
+
"cursor = connection.cursor()\n",
|
| 121 |
+
"\n",
|
| 122 |
+
"# ------------------------------\n",
|
| 123 |
+
"# Load dataset and print summary\n",
|
| 124 |
+
"# ------------------------------\n",
|
| 125 |
+
"df = pd.read_csv(get_path(\"train-data/expanded_sql_train.tsv\"), sep='\\t')\n",
|
| 126 |
+
"print(\"Total dataset examples: \" + str(len(df)))\n",
|
| 127 |
+
"print(\"\\n\")\n",
|
| 128 |
+
"\n",
|
| 129 |
+
"# ------------------------------\n",
|
| 130 |
+
"# Load tokenizer and model\n",
|
| 131 |
+
"# ------------------------------\n",
|
| 132 |
+
"\n"
|
| 133 |
+
]
|
| 134 |
+
},
|
| 135 |
+
{
|
| 136 |
+
"cell_type": "markdown",
|
| 137 |
+
"id": "f2d859d8",
|
| 138 |
+
"metadata": {},
|
| 139 |
+
"source": [
|
| 140 |
+
"## Define compare result function for evaluation process"
|
| 141 |
+
]
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"cell_type": "code",
|
| 145 |
+
"execution_count": 21,
|
| 146 |
+
"id": "a5295234",
|
| 147 |
+
"metadata": {},
|
| 148 |
+
"outputs": [],
|
| 149 |
+
"source": [
|
| 150 |
+
"from src.evaluation.compare_result import compare_result\n",
|
| 151 |
+
"from src.rag.table_retriever import retrieve_doc"
|
| 152 |
+
]
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"cell_type": "markdown",
|
| 156 |
+
"id": "0a89a468",
|
| 157 |
+
"metadata": {},
|
| 158 |
+
"source": [
|
| 159 |
+
"## Create evaluation loop for ChatGPT"
|
| 160 |
+
]
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"cell_type": "code",
|
| 164 |
+
"execution_count": 23,
|
| 165 |
+
"id": "e580dda8",
|
| 166 |
+
"metadata": {},
|
| 167 |
+
"outputs": [],
|
| 168 |
+
"source": [
|
| 169 |
+
"from openai import OpenAI\n",
|
| 170 |
+
"client = OpenAI()"
|
| 171 |
+
]
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"cell_type": "code",
|
| 175 |
+
"execution_count": 24,
|
| 176 |
+
"id": "69707ee7",
|
| 177 |
+
"metadata": {},
|
| 178 |
+
"outputs": [],
|
| 179 |
+
"source": [
|
| 180 |
+
"# ------------------------------\n",
|
| 181 |
+
"# Function to evaluate the model on a given dataset\n",
|
| 182 |
+
"# ------------------------------\n",
|
| 183 |
+
"\n",
|
| 184 |
+
"from src.prompts.prompt import input_text\n",
|
| 185 |
+
"def run_evaluation(nba_df, title):\n",
|
| 186 |
+
" counter = 0\n",
|
| 187 |
+
" num_valid = 0\n",
|
| 188 |
+
" num_sql_matched = 0\n",
|
| 189 |
+
" num_result_matched = 0\n",
|
| 190 |
+
" for index, row in nba_df.iterrows():\n",
|
| 191 |
+
" # Retrieve relevant schema chunks via RAG\n",
|
| 192 |
+
"\n",
|
| 193 |
+
" response = client.chat.completions.create(\n",
|
| 194 |
+
" model=\"gpt-3.5-turbo\",\n",
|
| 195 |
+
" messages=[\n",
|
| 196 |
+
" {\"role\": \"user\", \"content\": input_text + row[\"natural_query\"]}\n",
|
| 197 |
+
" ]\n",
|
| 198 |
+
" )\n",
|
| 199 |
+
" \n",
|
| 200 |
+
" # Decode the model output.\n",
|
| 201 |
+
" generated_query = response.choices[0].message.content\n",
|
| 202 |
+
" \n",
|
| 203 |
+
" # Clean generated query: remove any prefix and truncate after first semicolon.\n",
|
| 204 |
+
" if generated_query.startswith(\"SQLite:\"):\n",
|
| 205 |
+
" clean_query = generated_query[len(\"SQLite:\"):].strip()\n",
|
| 206 |
+
" elif generated_query.startswith(\"SQL:\"):\n",
|
| 207 |
+
" clean_query = generated_query[len(\"SQL:\"):].strip()\n",
|
| 208 |
+
" else:\n",
|
| 209 |
+
" clean_query = generated_query.strip()\n",
|
| 210 |
+
" \n",
|
| 211 |
+
" semicolon_idx = clean_query.find(\";\")\n",
|
| 212 |
+
" if semicolon_idx != -1:\n",
|
| 213 |
+
" clean_query = clean_query[:semicolon_idx+1]\n",
|
| 214 |
+
" \n",
|
| 215 |
+
" # Execute the cleaned query on the SQLite DB to obtain the actual result.\n",
|
| 216 |
+
" \"\"\"\n",
|
| 217 |
+
" try:\n",
|
| 218 |
+
" cursor.execute(clean_query)\n",
|
| 219 |
+
" rows = cursor.fetchall()\n",
|
| 220 |
+
" if rows and isinstance(rows[0], (tuple, list)) and len(rows[0]) > 0:\n",
|
| 221 |
+
" actual_result = rows[0][0]\n",
|
| 222 |
+
" elif rows:\n",
|
| 223 |
+
" actual_result = rows[0]\n",
|
| 224 |
+
" else:\n",
|
| 225 |
+
" actual_result = \"\"\n",
|
| 226 |
+
" except Exception as e:\n",
|
| 227 |
+
" actual_result = \"Error executing query: \" + str(e)\n",
|
| 228 |
+
" \"\"\"\n",
|
| 229 |
+
" \n",
|
| 230 |
+
" # Compare the ground truth query and expected result to the generated query and actual result.\n",
|
| 231 |
+
" valid, sql_matched, result_matched = compare_result(cursor, row[\"sql_query\"], row[\"result\"], generated_query)\n",
|
| 232 |
+
" \"\"\"\n",
|
| 233 |
+
" print(\"=============================================\")\n",
|
| 234 |
+
" print(f\"Overall Valid: {valid}\")\n",
|
| 235 |
+
" print(f\"SQL Query Matched: {sql_matched}\")\n",
|
| 236 |
+
" print(f\"Result Matched: {result_matched}\")\n",
|
| 237 |
+
" print(\"=============================================\\n\")\n",
|
| 238 |
+
" \n",
|
| 239 |
+
" # Print debug output.\n",
|
| 240 |
+
" print(\"----- Ground Truth SQL Query -----\")\n",
|
| 241 |
+
" print(row[\"sql_query\"])\n",
|
| 242 |
+
" print(\"------------------------------------\\n\")\n",
|
| 243 |
+
" print(\"----- Model Generated SQL Query -----\")\n",
|
| 244 |
+
" print(generated_query)\n",
|
| 245 |
+
" print(\"---------------------------------------\\n\")\n",
|
| 246 |
+
" \n",
|
| 247 |
+
" print(\"----- Expected Result -----\")\n",
|
| 248 |
+
" print(row[\"result\"])\n",
|
| 249 |
+
" print(\"----- Actual DB Result -----\")\n",
|
| 250 |
+
" print(actual_result)\n",
|
| 251 |
+
" print(\"-------------------------------------------------\\n\")\n",
|
| 252 |
+
" \"\"\"\n",
|
| 253 |
+
" if valid:\n",
|
| 254 |
+
" num_valid += 1\n",
|
| 255 |
+
" if sql_matched:\n",
|
| 256 |
+
" num_sql_matched += 1\n",
|
| 257 |
+
" if result_matched:\n",
|
| 258 |
+
" num_result_matched += 1\n",
|
| 259 |
+
" \n",
|
| 260 |
+
" counter += 1\n",
|
| 261 |
+
"\n",
|
| 262 |
+
" # CONTROL ITERS\n",
|
| 263 |
+
" # if counter == 2:\n",
|
| 264 |
+
" # break\n",
|
| 265 |
+
" \n",
|
| 266 |
+
" if counter % 50 == 0:\n",
|
| 267 |
+
" print(\"Completed \" + str(counter))\n",
|
| 268 |
+
" \n",
|
| 269 |
+
" print(\"\\n\" + title + \" results:\")\n",
|
| 270 |
+
" print(\"Percent valid: \" + str(num_valid / len(nba_df)))\n",
|
| 271 |
+
" print(\"Percent SQLite matched: \" + str(num_sql_matched / len(nba_df)))\n",
|
| 272 |
+
" print(\"Percent result matched: \" + str(num_result_matched / len(nba_df)))\n",
|
| 273 |
+
" print(\"Dataset length: \" + str(len(nba_df)))\n",
|
| 274 |
+
" print(\"-------------------\")\n",
|
| 275 |
+
" print(\"Num queries tested: \", counter)\n",
|
| 276 |
+
" print(\"Num correct queries: \", num_result_matched)\n",
|
| 277 |
+
" print(\"Acc: \", (num_result_matched / counter)*100)\n",
|
| 278 |
+
" print(\"-------------------\")\n",
|
| 279 |
+
" "
|
| 280 |
+
]
|
| 281 |
+
},
|
| 282 |
+
{
|
| 283 |
+
"cell_type": "code",
|
| 284 |
+
"execution_count": 17,
|
| 285 |
+
"id": "0c3fdc3f",
|
| 286 |
+
"metadata": {},
|
| 287 |
+
"outputs": [],
|
| 288 |
+
"source": [
|
| 289 |
+
"def run(nba_df, title):\n",
|
| 290 |
+
" counter = 0\n",
|
| 291 |
+
" num_valid = 0\n",
|
| 292 |
+
" num_sql_matched = 0\n",
|
| 293 |
+
" num_result_matched = 0\n",
|
| 294 |
+
" for index, row in nba_df.iterrows():\n",
|
| 295 |
+
" print(row['natural_query'])"
|
| 296 |
+
]
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"cell_type": "markdown",
|
| 300 |
+
"id": "8bff68e0",
|
| 301 |
+
"metadata": {},
|
| 302 |
+
"source": [
|
| 303 |
+
"## Run ChatGPT evaluation"
|
| 304 |
+
]
|
| 305 |
+
},
|
| 306 |
+
{
|
| 307 |
+
"cell_type": "code",
|
| 308 |
+
"execution_count": 26,
|
| 309 |
+
"id": "ce291e30",
|
| 310 |
+
"metadata": {},
|
| 311 |
+
"outputs": [
|
| 312 |
+
{
|
| 313 |
+
"name": "stdout",
|
| 314 |
+
"output_type": "stream",
|
| 315 |
+
"text": [
|
| 316 |
+
"Completed 50\n",
|
| 317 |
+
"Completed 100\n",
|
| 318 |
+
"Completed 150\n",
|
| 319 |
+
"Completed 200\n",
|
| 320 |
+
"Completed 250\n",
|
| 321 |
+
"Completed 300\n",
|
| 322 |
+
"Completed 350\n",
|
| 323 |
+
"Completed 400\n",
|
| 324 |
+
"Completed 450\n",
|
| 325 |
+
"Completed 500\n",
|
| 326 |
+
"Completed 550\n",
|
| 327 |
+
"Completed 600\n",
|
| 328 |
+
"Completed 650\n",
|
| 329 |
+
"Completed 700\n",
|
| 330 |
+
"Completed 750\n",
|
| 331 |
+
"Completed 800\n",
|
| 332 |
+
"Completed 850\n",
|
| 333 |
+
"Completed 900\n",
|
| 334 |
+
"Completed 950\n",
|
| 335 |
+
"Completed 1000\n",
|
| 336 |
+
"\n",
|
| 337 |
+
"All training data results:\n",
|
| 338 |
+
"Percent valid: 0.8630268199233716\n",
|
| 339 |
+
"Percent SQLite matched: 0.20114942528735633\n",
|
| 340 |
+
"Percent result matched: 0.6293103448275862\n",
|
| 341 |
+
"Dataset length: 1044\n",
|
| 342 |
+
"-------------------\n",
|
| 343 |
+
"Num queries tested: 1044\n",
|
| 344 |
+
"Num correct queries: 657\n",
|
| 345 |
+
"Acc: 62.93103448275862\n",
|
| 346 |
+
"-------------------\n",
|
| 347 |
+
"Dataset length: 1044\n"
|
| 348 |
+
]
|
| 349 |
+
}
|
| 350 |
+
],
|
| 351 |
+
"source": [
|
| 352 |
+
"# ------------------------------\n",
|
| 353 |
+
"# Run evaluation on the full training dataset\n",
|
| 354 |
+
"# ------------------------------\n",
|
| 355 |
+
"run_evaluation(df, \"All training data\")\n",
|
| 356 |
+
"print(\"Dataset length: \" + str(len(df)))"
|
| 357 |
+
]
|
| 358 |
+
},
|
| 359 |
+
{
|
| 360 |
+
"cell_type": "markdown",
|
| 361 |
+
"id": "b21994fa",
|
| 362 |
+
"metadata": {},
|
| 363 |
+
"source": [
|
| 364 |
+
"## Run RAG evaluation on small query dataset"
|
| 365 |
+
]
|
| 366 |
+
},
|
| 367 |
+
{
|
| 368 |
+
"cell_type": "code",
|
| 369 |
+
"execution_count": null,
|
| 370 |
+
"id": "c2d12248",
|
| 371 |
+
"metadata": {},
|
| 372 |
+
"outputs": [
|
| 373 |
+
{
|
| 374 |
+
"name": "stdout",
|
| 375 |
+
"output_type": "stream",
|
| 376 |
+
"text": [
|
| 377 |
+
"Completed 50\n",
|
| 378 |
+
"Completed 100\n",
|
| 379 |
+
"Completed 150\n",
|
| 380 |
+
"Completed 200\n",
|
| 381 |
+
"\n",
|
| 382 |
+
"Less than 90 results:\n",
|
| 383 |
+
"Percent valid: 0.8979591836734694\n",
|
| 384 |
+
"Percent SQLite matched: 0.37551020408163266\n",
|
| 385 |
+
"Percent result matched: 0.7061224489795919\n",
|
| 386 |
+
"Dataset length: 245\n",
|
| 387 |
+
"-------------------\n",
|
| 388 |
+
"Num queries tested: 245\n",
|
| 389 |
+
"Num correct queries: 173\n",
|
| 390 |
+
"Acc: 70.61224489795919\n",
|
| 391 |
+
"-------------------\n",
|
| 392 |
+
"Dataset length: 245\n"
|
| 393 |
+
]
|
| 394 |
+
}
|
| 395 |
+
],
|
| 396 |
+
"source": [
|
| 397 |
+
"less_than_90_df = pd.read_csv(get_path(\"train-data/less_than_90.tsv\"), sep='\\t')\n",
|
| 398 |
+
"run_evaluation(less_than_90_df, \"Less than 90\")\n",
|
| 399 |
+
"print(\"Dataset length: \" + str(len(less_than_90_df)))"
|
| 400 |
+
]
|
| 401 |
+
}
|
| 402 |
+
],
|
| 403 |
+
"metadata": {
|
| 404 |
+
"kernelspec": {
|
| 405 |
+
"display_name": "CSCI544",
|
| 406 |
+
"language": "python",
|
| 407 |
+
"name": "python3"
|
| 408 |
+
},
|
| 409 |
+
"language_info": {
|
| 410 |
+
"codemirror_mode": {
|
| 411 |
+
"name": "ipython",
|
| 412 |
+
"version": 3
|
| 413 |
+
},
|
| 414 |
+
"file_extension": ".py",
|
| 415 |
+
"mimetype": "text/x-python",
|
| 416 |
+
"name": "python",
|
| 417 |
+
"nbconvert_exporter": "python",
|
| 418 |
+
"pygments_lexer": "ipython3",
|
| 419 |
+
"version": "3.11.11"
|
| 420 |
+
}
|
| 421 |
+
},
|
| 422 |
+
"nbformat": 4,
|
| 423 |
+
"nbformat_minor": 5
|
| 424 |
+
}
|
chat_gpt_4.ipynb
ADDED
|
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "cf4403ec",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# Notebook to evaluate ChatGPT Peformance"
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "code",
|
| 13 |
+
"execution_count": null,
|
| 14 |
+
"id": "7f708eaa",
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [
|
| 17 |
+
{
|
| 18 |
+
"name": "stderr",
|
| 19 |
+
"output_type": "stream",
|
| 20 |
+
"text": [
|
| 21 |
+
"/opt/anaconda3/envs/CSCI544/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
| 22 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
| 23 |
+
]
|
| 24 |
+
}
|
| 25 |
+
],
|
| 26 |
+
"source": [
|
| 27 |
+
"import pandas as pd\n",
|
| 28 |
+
"import warnings\n",
|
| 29 |
+
"import sqlite3 as sql\n",
|
| 30 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
|
| 31 |
+
"from huggingface_hub import snapshot_download\n",
|
| 32 |
+
"import sys\n",
|
| 33 |
+
"import os\n",
|
| 34 |
+
"import openai\n"
|
| 35 |
+
]
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"cell_type": "code",
|
| 39 |
+
"execution_count": null,
|
| 40 |
+
"id": "83a1bd00",
|
| 41 |
+
"metadata": {},
|
| 42 |
+
"outputs": [],
|
| 43 |
+
"source": [
|
| 44 |
+
"import os\n",
|
| 45 |
+
"os.environ[\"OPENAI_API_KEY\"] = \"<key>\""
|
| 46 |
+
]
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"cell_type": "markdown",
|
| 50 |
+
"id": "b3a647bf",
|
| 51 |
+
"metadata": {},
|
| 52 |
+
"source": [
|
| 53 |
+
"## Set up path"
|
| 54 |
+
]
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"cell_type": "code",
|
| 58 |
+
"execution_count": 2,
|
| 59 |
+
"id": "996e282d",
|
| 60 |
+
"metadata": {},
|
| 61 |
+
"outputs": [],
|
| 62 |
+
"source": [
|
| 63 |
+
"is_google_colab=False"
|
| 64 |
+
]
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"cell_type": "code",
|
| 68 |
+
"execution_count": 3,
|
| 69 |
+
"id": "5d96087b",
|
| 70 |
+
"metadata": {},
|
| 71 |
+
"outputs": [],
|
| 72 |
+
"source": [
|
| 73 |
+
"current_path = \"./\"\n",
|
| 74 |
+
"\n",
|
| 75 |
+
"def get_path(rel_path):\n",
|
| 76 |
+
" return os.path.join(current_path, rel_path)\n",
|
| 77 |
+
"\n",
|
| 78 |
+
"if is_google_colab:\n",
|
| 79 |
+
" hugging_face_path = snapshot_download(\n",
|
| 80 |
+
" repo_id=\"USC-Applied-NLP-Group/SQL-Generation\",\n",
|
| 81 |
+
" repo_type=\"model\", \n",
|
| 82 |
+
" allow_patterns=[\"src/*\", \"train-data/*\", \"deepseek-coder-1.3b-instruct/*\", \"nba-data/*\"], \n",
|
| 83 |
+
" )\n",
|
| 84 |
+
" sys.path.append(hugging_face_path)\n",
|
| 85 |
+
" current_path = hugging_face_path"
|
| 86 |
+
]
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"cell_type": "code",
|
| 90 |
+
"execution_count": 4,
|
| 91 |
+
"id": "483da9f0",
|
| 92 |
+
"metadata": {},
|
| 93 |
+
"outputs": [
|
| 94 |
+
{
|
| 95 |
+
"data": {
|
| 96 |
+
"text/plain": [
|
| 97 |
+
"'./nba-data/nba.sqlite'"
|
| 98 |
+
]
|
| 99 |
+
},
|
| 100 |
+
"execution_count": 4,
|
| 101 |
+
"metadata": {},
|
| 102 |
+
"output_type": "execute_result"
|
| 103 |
+
}
|
| 104 |
+
],
|
| 105 |
+
"source": [
|
| 106 |
+
"get_path('nba-data/nba.sqlite')"
|
| 107 |
+
]
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"cell_type": "code",
|
| 111 |
+
"execution_count": 5,
|
| 112 |
+
"id": "5cc9f19f",
|
| 113 |
+
"metadata": {},
|
| 114 |
+
"outputs": [
|
| 115 |
+
{
|
| 116 |
+
"name": "stdout",
|
| 117 |
+
"output_type": "stream",
|
| 118 |
+
"text": [
|
| 119 |
+
"Total dataset examples: 1044\n",
|
| 120 |
+
"\n",
|
| 121 |
+
"\n"
|
| 122 |
+
]
|
| 123 |
+
}
|
| 124 |
+
],
|
| 125 |
+
"source": [
|
| 126 |
+
"\n",
|
| 127 |
+
"\n",
|
| 128 |
+
"warnings.filterwarnings(\"ignore\")\n",
|
| 129 |
+
"# Establish a database connection once (adjust the DB path as needed)\n",
|
| 130 |
+
"connection = sql.connect(get_path('nba-data/nba.sqlite'))\n",
|
| 131 |
+
"cursor = connection.cursor()\n",
|
| 132 |
+
"\n",
|
| 133 |
+
"# ------------------------------\n",
|
| 134 |
+
"# Load dataset and print summary\n",
|
| 135 |
+
"# ------------------------------\n",
|
| 136 |
+
"df = pd.read_csv(get_path(\"train-data/expanded_sql_train.tsv\"), sep='\\t')\n",
|
| 137 |
+
"print(\"Total dataset examples: \" + str(len(df)))\n",
|
| 138 |
+
"print(\"\\n\")\n",
|
| 139 |
+
"\n",
|
| 140 |
+
"# ------------------------------\n",
|
| 141 |
+
"# Load tokenizer and model\n",
|
| 142 |
+
"# ------------------------------\n",
|
| 143 |
+
"\n"
|
| 144 |
+
]
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"cell_type": "markdown",
|
| 148 |
+
"id": "f2d859d8",
|
| 149 |
+
"metadata": {},
|
| 150 |
+
"source": [
|
| 151 |
+
"## Define compare result function for evaluation process"
|
| 152 |
+
]
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"cell_type": "code",
|
| 156 |
+
"execution_count": 6,
|
| 157 |
+
"id": "a5295234",
|
| 158 |
+
"metadata": {},
|
| 159 |
+
"outputs": [],
|
| 160 |
+
"source": [
|
| 161 |
+
"from src.evaluation.compare_result import compare_result\n",
|
| 162 |
+
"from src.rag.table_retriever import retrieve_doc"
|
| 163 |
+
]
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"cell_type": "markdown",
|
| 167 |
+
"id": "0a89a468",
|
| 168 |
+
"metadata": {},
|
| 169 |
+
"source": [
|
| 170 |
+
"## Create evaluation loop for ChatGPT"
|
| 171 |
+
]
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"cell_type": "code",
|
| 175 |
+
"execution_count": 8,
|
| 176 |
+
"id": "e580dda8",
|
| 177 |
+
"metadata": {},
|
| 178 |
+
"outputs": [],
|
| 179 |
+
"source": [
|
| 180 |
+
"from openai import OpenAI\n",
|
| 181 |
+
"client = OpenAI()"
|
| 182 |
+
]
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"cell_type": "code",
|
| 186 |
+
"execution_count": 9,
|
| 187 |
+
"id": "69707ee7",
|
| 188 |
+
"metadata": {},
|
| 189 |
+
"outputs": [],
|
| 190 |
+
"source": [
|
| 191 |
+
"# ------------------------------\n",
|
| 192 |
+
"# Function to evaluate the model on a given dataset\n",
|
| 193 |
+
"# ------------------------------\n",
|
| 194 |
+
"\n",
|
| 195 |
+
"from src.prompts.prompt import input_text\n",
|
| 196 |
+
"def run_evaluation(nba_df, title):\n",
|
| 197 |
+
" counter = 0\n",
|
| 198 |
+
" num_valid = 0\n",
|
| 199 |
+
" num_sql_matched = 0\n",
|
| 200 |
+
" num_result_matched = 0\n",
|
| 201 |
+
" for index, row in nba_df.iterrows():\n",
|
| 202 |
+
" # Retrieve relevant schema chunks via RAG\n",
|
| 203 |
+
"\n",
|
| 204 |
+
" response = client.chat.completions.create(\n",
|
| 205 |
+
" model=\"gpt-4-turbo\",\n",
|
| 206 |
+
" messages=[\n",
|
| 207 |
+
" {\"role\": \"user\", \"content\": input_text + row[\"natural_query\"]}\n",
|
| 208 |
+
" ]\n",
|
| 209 |
+
" )\n",
|
| 210 |
+
" \n",
|
| 211 |
+
" # Decode the model output.\n",
|
| 212 |
+
" generated_query = response.choices[0].message.content\n",
|
| 213 |
+
" \n",
|
| 214 |
+
" # Clean generated query: remove any prefix and truncate after first semicolon.\n",
|
| 215 |
+
" if generated_query.startswith(\"SQLite:\"):\n",
|
| 216 |
+
" clean_query = generated_query[len(\"SQLite:\"):].strip()\n",
|
| 217 |
+
" elif generated_query.startswith(\"SQL:\"):\n",
|
| 218 |
+
" clean_query = generated_query[len(\"SQL:\"):].strip()\n",
|
| 219 |
+
" else:\n",
|
| 220 |
+
" clean_query = generated_query.strip()\n",
|
| 221 |
+
" \n",
|
| 222 |
+
" semicolon_idx = clean_query.find(\";\")\n",
|
| 223 |
+
" if semicolon_idx != -1:\n",
|
| 224 |
+
" clean_query = clean_query[:semicolon_idx+1]\n",
|
| 225 |
+
" \n",
|
| 226 |
+
" # Execute the cleaned query on the SQLite DB to obtain the actual result.\n",
|
| 227 |
+
" \"\"\"\n",
|
| 228 |
+
" try:\n",
|
| 229 |
+
" cursor.execute(clean_query)\n",
|
| 230 |
+
" rows = cursor.fetchall()\n",
|
| 231 |
+
" if rows and isinstance(rows[0], (tuple, list)) and len(rows[0]) > 0:\n",
|
| 232 |
+
" actual_result = rows[0][0]\n",
|
| 233 |
+
" elif rows:\n",
|
| 234 |
+
" actual_result = rows[0]\n",
|
| 235 |
+
" else:\n",
|
| 236 |
+
" actual_result = \"\"\n",
|
| 237 |
+
" except Exception as e:\n",
|
| 238 |
+
" actual_result = \"Error executing query: \" + str(e)\n",
|
| 239 |
+
" \"\"\"\n",
|
| 240 |
+
" \n",
|
| 241 |
+
" # Compare the ground truth query and expected result to the generated query and actual result.\n",
|
| 242 |
+
" valid, sql_matched, result_matched = compare_result(cursor, row[\"sql_query\"], row[\"result\"], generated_query)\n",
|
| 243 |
+
" \"\"\"\n",
|
| 244 |
+
" print(\"=============================================\")\n",
|
| 245 |
+
" print(f\"Overall Valid: {valid}\")\n",
|
| 246 |
+
" print(f\"SQL Query Matched: {sql_matched}\")\n",
|
| 247 |
+
" print(f\"Result Matched: {result_matched}\")\n",
|
| 248 |
+
" print(\"=============================================\\n\")\n",
|
| 249 |
+
" \n",
|
| 250 |
+
" # Print debug output.\n",
|
| 251 |
+
" print(\"----- Ground Truth SQL Query -----\")\n",
|
| 252 |
+
" print(row[\"sql_query\"])\n",
|
| 253 |
+
" print(\"------------------------------------\\n\")\n",
|
| 254 |
+
" print(\"----- Model Generated SQL Query -----\")\n",
|
| 255 |
+
" print(generated_query)\n",
|
| 256 |
+
" print(\"---------------------------------------\\n\")\n",
|
| 257 |
+
" \n",
|
| 258 |
+
" print(\"----- Expected Result -----\")\n",
|
| 259 |
+
" print(row[\"result\"])\n",
|
| 260 |
+
" print(\"----- Actual DB Result -----\")\n",
|
| 261 |
+
" print(actual_result)\n",
|
| 262 |
+
" print(\"-------------------------------------------------\\n\")\n",
|
| 263 |
+
" \"\"\"\n",
|
| 264 |
+
" if valid:\n",
|
| 265 |
+
" num_valid += 1\n",
|
| 266 |
+
" if sql_matched:\n",
|
| 267 |
+
" num_sql_matched += 1\n",
|
| 268 |
+
" if result_matched:\n",
|
| 269 |
+
" num_result_matched += 1\n",
|
| 270 |
+
" \n",
|
| 271 |
+
" counter += 1\n",
|
| 272 |
+
"\n",
|
| 273 |
+
" # CONTROL ITERS\n",
|
| 274 |
+
" # if counter == 2:\n",
|
| 275 |
+
" # break\n",
|
| 276 |
+
" \n",
|
| 277 |
+
" if counter % 50 == 0:\n",
|
| 278 |
+
" print(\"Completed \" + str(counter))\n",
|
| 279 |
+
" \n",
|
| 280 |
+
" print(\"\\n\" + title + \" results:\")\n",
|
| 281 |
+
" print(\"Percent valid: \" + str(num_valid / len(nba_df)))\n",
|
| 282 |
+
" print(\"Percent SQLite matched: \" + str(num_sql_matched / len(nba_df)))\n",
|
| 283 |
+
" print(\"Percent result matched: \" + str(num_result_matched / len(nba_df)))\n",
|
| 284 |
+
" print(\"Dataset length: \" + str(len(nba_df)))\n",
|
| 285 |
+
" print(\"-------------------\")\n",
|
| 286 |
+
" print(\"Num queries tested: \", counter)\n",
|
| 287 |
+
" print(\"Num correct queries: \", num_result_matched)\n",
|
| 288 |
+
" print(\"Acc: \", (num_result_matched / counter)*100)\n",
|
| 289 |
+
" print(\"-------------------\")\n",
|
| 290 |
+
" "
|
| 291 |
+
]
|
| 292 |
+
},
|
| 293 |
+
{
|
| 294 |
+
"cell_type": "code",
|
| 295 |
+
"execution_count": 17,
|
| 296 |
+
"id": "0c3fdc3f",
|
| 297 |
+
"metadata": {},
|
| 298 |
+
"outputs": [],
|
| 299 |
+
"source": [
|
| 300 |
+
"def run(nba_df, title):\n",
|
| 301 |
+
" counter = 0\n",
|
| 302 |
+
" num_valid = 0\n",
|
| 303 |
+
" num_sql_matched = 0\n",
|
| 304 |
+
" num_result_matched = 0\n",
|
| 305 |
+
" for index, row in nba_df.iterrows():\n",
|
| 306 |
+
" print(row['natural_query'])"
|
| 307 |
+
]
|
| 308 |
+
},
|
| 309 |
+
{
|
| 310 |
+
"cell_type": "markdown",
|
| 311 |
+
"id": "8bff68e0",
|
| 312 |
+
"metadata": {},
|
| 313 |
+
"source": [
|
| 314 |
+
"## Run ChatGPT evaluation"
|
| 315 |
+
]
|
| 316 |
+
},
|
| 317 |
+
{
|
| 318 |
+
"cell_type": "code",
|
| 319 |
+
"execution_count": 10,
|
| 320 |
+
"id": "ce291e30",
|
| 321 |
+
"metadata": {},
|
| 322 |
+
"outputs": [
|
| 323 |
+
{
|
| 324 |
+
"name": "stdout",
|
| 325 |
+
"output_type": "stream",
|
| 326 |
+
"text": [
|
| 327 |
+
"Completed 50\n",
|
| 328 |
+
"Completed 100\n",
|
| 329 |
+
"Completed 150\n",
|
| 330 |
+
"Completed 200\n",
|
| 331 |
+
"Completed 250\n",
|
| 332 |
+
"Completed 300\n",
|
| 333 |
+
"Completed 350\n",
|
| 334 |
+
"Completed 400\n",
|
| 335 |
+
"Completed 450\n",
|
| 336 |
+
"Completed 500\n",
|
| 337 |
+
"Completed 550\n",
|
| 338 |
+
"Completed 600\n",
|
| 339 |
+
"Completed 650\n",
|
| 340 |
+
"Completed 700\n",
|
| 341 |
+
"Completed 750\n",
|
| 342 |
+
"Completed 800\n",
|
| 343 |
+
"Completed 850\n",
|
| 344 |
+
"Completed 900\n",
|
| 345 |
+
"Completed 950\n",
|
| 346 |
+
"Completed 1000\n",
|
| 347 |
+
"\n",
|
| 348 |
+
"All training data results:\n",
|
| 349 |
+
"Percent valid: 0.9521072796934866\n",
|
| 350 |
+
"Percent SQLite matched: 0.2260536398467433\n",
|
| 351 |
+
"Percent result matched: 0.7758620689655172\n",
|
| 352 |
+
"Dataset length: 1044\n",
|
| 353 |
+
"-------------------\n",
|
| 354 |
+
"Num queries tested: 1044\n",
|
| 355 |
+
"Num correct queries: 810\n",
|
| 356 |
+
"Acc: 77.58620689655173\n",
|
| 357 |
+
"-------------------\n",
|
| 358 |
+
"Dataset length: 1044\n"
|
| 359 |
+
]
|
| 360 |
+
}
|
| 361 |
+
],
|
| 362 |
+
"source": [
|
| 363 |
+
"# ------------------------------\n",
|
| 364 |
+
"# Run evaluation on the full training dataset\n",
|
| 365 |
+
"# ------------------------------\n",
|
| 366 |
+
"run_evaluation(df, \"All training data\")\n",
|
| 367 |
+
"print(\"Dataset length: \" + str(len(df)))"
|
| 368 |
+
]
|
| 369 |
+
},
|
| 370 |
+
{
|
| 371 |
+
"cell_type": "markdown",
|
| 372 |
+
"id": "b21994fa",
|
| 373 |
+
"metadata": {},
|
| 374 |
+
"source": [
|
| 375 |
+
"## Run RAG evaluation on small query dataset"
|
| 376 |
+
]
|
| 377 |
+
},
|
| 378 |
+
{
|
| 379 |
+
"cell_type": "code",
|
| 380 |
+
"execution_count": null,
|
| 381 |
+
"id": "c2d12248",
|
| 382 |
+
"metadata": {},
|
| 383 |
+
"outputs": [
|
| 384 |
+
{
|
| 385 |
+
"name": "stdout",
|
| 386 |
+
"output_type": "stream",
|
| 387 |
+
"text": [
|
| 388 |
+
"Completed 50\n",
|
| 389 |
+
"Completed 100\n",
|
| 390 |
+
"Completed 150\n",
|
| 391 |
+
"Completed 200\n",
|
| 392 |
+
"\n",
|
| 393 |
+
"Less than 90 results:\n",
|
| 394 |
+
"Percent valid: 0.8979591836734694\n",
|
| 395 |
+
"Percent SQLite matched: 0.37551020408163266\n",
|
| 396 |
+
"Percent result matched: 0.7061224489795919\n",
|
| 397 |
+
"Dataset length: 245\n",
|
| 398 |
+
"-------------------\n",
|
| 399 |
+
"Num queries tested: 245\n",
|
| 400 |
+
"Num correct queries: 173\n",
|
| 401 |
+
"Acc: 70.61224489795919\n",
|
| 402 |
+
"-------------------\n",
|
| 403 |
+
"Dataset length: 245\n"
|
| 404 |
+
]
|
| 405 |
+
}
|
| 406 |
+
],
|
| 407 |
+
"source": [
|
| 408 |
+
"less_than_90_df = pd.read_csv(get_path(\"train-data/less_than_90.tsv\"), sep='\\t')\n",
|
| 409 |
+
"run_evaluation(less_than_90_df, \"Less than 90\")\n",
|
| 410 |
+
"print(\"Dataset length: \" + str(len(less_than_90_df)))"
|
| 411 |
+
]
|
| 412 |
+
}
|
| 413 |
+
],
|
| 414 |
+
"metadata": {
|
| 415 |
+
"kernelspec": {
|
| 416 |
+
"display_name": "CSCI544",
|
| 417 |
+
"language": "python",
|
| 418 |
+
"name": "python3"
|
| 419 |
+
},
|
| 420 |
+
"language_info": {
|
| 421 |
+
"codemirror_mode": {
|
| 422 |
+
"name": "ipython",
|
| 423 |
+
"version": 3
|
| 424 |
+
},
|
| 425 |
+
"file_extension": ".py",
|
| 426 |
+
"mimetype": "text/x-python",
|
| 427 |
+
"name": "python",
|
| 428 |
+
"nbconvert_exporter": "python",
|
| 429 |
+
"pygments_lexer": "ipython3",
|
| 430 |
+
"version": "3.11.11"
|
| 431 |
+
}
|
| 432 |
+
},
|
| 433 |
+
"nbformat": 4,
|
| 434 |
+
"nbformat_minor": 5
|
| 435 |
+
}
|
src/evaluation/__pycache__/compare_result.cpython-311.pyc
CHANGED
|
Binary files a/src/evaluation/__pycache__/compare_result.cpython-311.pyc and b/src/evaluation/__pycache__/compare_result.cpython-311.pyc differ
|
|
|
src/rag/__pycache__/table_retriever.cpython-311.pyc
ADDED
|
Binary file (8.28 kB). View file
|
|
|