File size: 149,317 Bytes
b04de69 9e6844a b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac 9e6844a 83a2cac 9e6844a b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac 9e6844a b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 9e6844a b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 9e6844a b04de69 9e6844a b04de69 83a2cac 9e6844a b04de69 9e6844a b04de69 9e6844a b04de69 83a2cac b04de69 9e6844a b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 9e6844a b04de69 9e6844a b04de69 9e6844a b04de69 83a2cac b04de69 83a2cac b04de69 9e6844a b04de69 9e6844a b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 9e6844a b04de69 9e6844a b04de69 83a2cac b04de69 83a2cac b04de69 9e6844a b04de69 83a2cac b04de69 9e6844a b04de69 9e6844a b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 9e6844a 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac 9e6844a 83a2cac 9e6844a 83a2cac 9e6844a 83a2cac 9e6844a 83a2cac 9e6844a 83a2cac 9e6844a 83a2cac b04de69 9e6844a 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 83a2cac b04de69 9e6844a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "X4cRE8IbIrIV"
},
"source": [
"Downloading PyTorch Vision Reference Scripts for Image Classification. These scripts are official reference implementations from PyTorch Vision that provide training and quantization utilities for image classification models."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "46CgrVgjg3E-",
"outputId": "1fafe6a6-33bb-4339-ac70-ef2d25206c57"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"--2025-08-04 11:06:42-- https://raw.githubusercontent.com/pytorch/vision/main/references/classification/presets.py\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.111.133, 185.199.110.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 3885 (3.8K) [text/plain]\n",
"Saving to: ‘presets.py.3’\n",
"\n",
"presets.py.3 100%[===================>] 3.79K --.-KB/s in 0s \n",
"\n",
"2025-08-04 11:06:42 (17.6 MB/s) - ‘presets.py.3’ saved [3885/3885]\n",
"\n",
"--2025-08-04 11:06:42-- https://raw.githubusercontent.com/pytorch/vision/main/references/classification/sampler.py\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.111.133, 185.199.109.133, 185.199.108.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.111.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 2395 (2.3K) [text/plain]\n",
"Saving to: ‘sampler.py.3’\n",
"\n",
"sampler.py.3 100%[===================>] 2.34K --.-KB/s in 0s \n",
"\n",
"2025-08-04 11:06:42 (23.5 MB/s) - ‘sampler.py.3’ saved [2395/2395]\n",
"\n",
"--2025-08-04 11:06:43-- https://raw.githubusercontent.com/pytorch/vision/main/references/classification/train.py\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, 185.199.109.133, 185.199.111.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.110.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 23324 (23K) [text/plain]\n",
"Saving to: ‘train.py.3’\n",
"\n",
"train.py.3 100%[===================>] 22.78K --.-KB/s in 0s \n",
"\n",
"2025-08-04 11:06:43 (49.3 MB/s) - ‘train.py.3’ saved [23324/23324]\n",
"\n",
"--2025-08-04 11:06:43-- https://raw.githubusercontent.com/pytorch/vision/main/references/classification/train_quantization.py\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 11647 (11K) [text/plain]\n",
"Saving to: ‘train_quantization.py.3’\n",
"\n",
"train_quantization. 100%[===================>] 11.37K --.-KB/s in 0.002s \n",
"\n",
"2025-08-04 11:06:43 (6.37 MB/s) - ‘train_quantization.py.3’ saved [11647/11647]\n",
"\n",
"--2025-08-04 11:06:43-- https://raw.githubusercontent.com/pytorch/vision/main/references/classification/transformers.py\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.111.133, 185.199.109.133, 185.199.110.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.111.133|:443... connected.\n",
"HTTP request sent, awaiting response... 404 Not Found\n",
"2025-08-04 11:06:43 ERROR 404: Not Found.\n",
"\n",
"--2025-08-04 11:06:43-- https://raw.githubusercontent.com/pytorch/vision/main/references/classification/utils.py\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.111.133, 185.199.110.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 15791 (15K) [text/plain]\n",
"Saving to: ‘utils.py.3’\n",
"\n",
"utils.py.3 100%[===================>] 15.42K --.-KB/s in 0.002s \n",
"\n",
"2025-08-04 11:06:43 (7.63 MB/s) - ‘utils.py.3’ saved [15791/15791]\n",
"\n"
]
}
],
"source": [
"! wget https://raw.githubusercontent.com/pytorch/vision/main/references/classification/presets.py\n",
"! wget https://raw.githubusercontent.com/pytorch/vision/main/references/classification/sampler.py\n",
"! wget https://raw.githubusercontent.com/pytorch/vision/main/references/classification/train.py\n",
"! wget https://raw.githubusercontent.com/pytorch/vision/main/references/classification/train_quantization.py\n",
"! wget https://raw.githubusercontent.com/pytorch/vision/main/references/classification/transformers.py\n",
"! wget https://raw.githubusercontent.com/pytorch/vision/main/references/classification/utils.py"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HFASsisvIrIb"
},
"source": [
"In this block, we build a “loss” function for our sequential policy gradient algorithm. When the right data is plugged in, the gradient of this loss is equal to the policy gradient."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "EaBokYCpg3FA"
},
"outputs": [],
"source": [
"import types\n",
"from typing import Optional, List, Union, Callable\n",
"\n",
"import torch\n",
"from torch import nn, Tensor\n",
"from torch.nn import functional as F\n",
"\n",
"from torchvision.models.resnet import ResNet\n",
"\n",
"\n",
"def compute_policy_loss(loss_sequence, mask_sequence, rewards):\n",
" losses = sum(mask * padded_loss for mask, padded_loss in zip(mask_sequence, loss_sequence))\n",
" returns = sum(padded_reward * mask for padded_reward, mask in zip(rewards, mask_sequence))\n",
" loss = torch.mean(losses * returns)\n",
"\n",
" return loss\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_Ig0Jm2w8DPH"
},
"source": [
"In this block, we build a TPBlock for the Task Replica Prediction (TRP) module; This implementation provides the backbone without the shared prediction head."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "wkBlmJT96jZj"
},
"outputs": [],
"source": [
"class TPBlock(nn.Module):\n",
" def __init__(self, depths: int, in_planes: int, out_planes: int = None, rank=1, shape_dims=3, channel_first=True, dtype=torch.float32) -> None:\n",
" super().__init__()\n",
" out_planes = in_planes if out_planes is None else out_planes\n",
" self.layers = torch.nn.ModuleList([self._make_layer(in_planes, out_planes, rank, shape_dims, channel_first, dtype) for _ in range(depths)])\n",
"\n",
" def forward(self, x: Tensor) -> Tensor:\n",
" for layer in self.layers:\n",
" x = x + layer(x)\n",
" return x\n",
"\n",
" def _make_layer(self, in_planes: int, out_planes: int = None, rank=1, shape_dims=3, channel_first=True, dtype=torch.float32) -> nn.Sequential:\n",
"\n",
" class Permute(nn.Module):\n",
" def __init__(self, *dims):\n",
" super().__init__()\n",
" self.dims = dims\n",
" def forward(self, x):\n",
" return x.permute(*self.dims)\n",
"\n",
" class RMSNorm(nn.Module):\n",
" __constants__ = [\"eps\"]\n",
" eps: float\n",
"\n",
" def __init__(self, hidden_size, eps: float = 1e-6, device=None, dtype=None):\n",
" \"\"\"\n",
" LlamaRMSNorm is equivalent to T5LayerNorm.\n",
" \"\"\"\n",
" factory_kwargs = {\"device\": device, \"dtype\": dtype}\n",
" super().__init__()\n",
" self.eps = eps\n",
" self.weight = nn.Parameter(torch.ones(hidden_size, **factory_kwargs))\n",
"\n",
" def forward(self, hidden_states):\n",
" input_dtype = hidden_states.dtype\n",
" hidden_states = hidden_states.to(torch.float32)\n",
" variance = hidden_states.pow(2).mean(dim=1, keepdim=True)\n",
" hidden_states = hidden_states * torch.rsqrt(variance + self.eps)\n",
" weight = self.weight.view(1, -1, *[1] * (hidden_states.ndim - 2))\n",
" return weight * hidden_states.to(input_dtype)\n",
"\n",
" def extra_repr(self):\n",
" return f\"{self.weight.shape[0]}, eps={self.eps}\"\n",
"\n",
" conv_map = {\n",
" 2: (nn.Conv1d, (0, 2, 1), (0, 2, 1)),\n",
" 3: (nn.Conv2d, (0, 3, 1, 2), (0, 2, 3, 1)),\n",
" 4: (nn.Conv3d, (0, 4, 1, 2, 3), (0, 2, 3, 4, 1)),\n",
" }\n",
" Conv, pre_dims, post_dims = conv_map[shape_dims]\n",
" kernel_size, dilation, padding = self.generate_hyperparameters(rank)\n",
"\n",
" pre_permute = nn.Identity() if channel_first else Permute(*pre_dims)\n",
" post_permute = nn.Identity() if channel_first else Permute(*post_dims)\n",
" conv1 = Conv(in_planes, out_planes, kernel_size, padding=padding, dilation=dilation, bias=False, dtype=dtype, device='cuda')\n",
" nn.init.zeros_(conv1.weight)\n",
" bn1 = RMSNorm(out_planes, dtype=dtype, device=\"cuda\")\n",
" relu = nn.ReLU(inplace=True)\n",
" conv2 = Conv(out_planes, in_planes, kernel_size, padding=padding, dilation=dilation, bias=False, dtype=dtype, device='cuda')\n",
" nn.init.zeros_(conv2.weight)\n",
" bn2 = RMSNorm(in_planes, dtype=dtype, device=\"cuda\")\n",
"\n",
" return torch.nn.Sequential(pre_permute, conv1, bn1, relu, conv2, bn2, relu, post_permute)\n",
"\n",
" @staticmethod\n",
" def generate_hyperparameters(rank: int):\n",
" \"\"\"\n",
" Generates kernel size and dilation rate pairs sorted by increasing padded kernel size.\n",
"\n",
" Args:\n",
" rank: Number of (kernel_size, dilation) pairs to generate. Must be positive.\n",
"\n",
" Returns:\n",
" Tuple[int, int]: A (kernel_size, dilation) tuple where:\n",
" - kernel_size: Always odd and >= 1\n",
" - dilation: Computed to maintain consistent padded kernel size growth\n",
"\n",
" Note:\n",
" Padded kernel size is calculated as:\n",
" (kernel_size - 1) * dilation + 1\n",
" Pairs are generated first in order of increasing padded kernel size,\n",
" then by increasing kernel size for equal padded kernel sizes.\n",
" \"\"\"\n",
" pairs = [(1, 1, 0)] # Start with smallest possible\n",
" padded_kernel_size = 3\n",
"\n",
" while len(pairs) < rank:\n",
" for kernel_size in range(3, padded_kernel_size + 1, 2):\n",
" if (padded_kernel_size - 1) % (kernel_size - 1) == 0:\n",
" dilation = (padded_kernel_size - 1) // (kernel_size - 1)\n",
" padding = dilation * (kernel_size - 1) // 2\n",
" pairs.append((kernel_size, dilation, padding))\n",
" if len(pairs) >= rank:\n",
" break\n",
"\n",
" # Move to next odd padded kernel size\n",
" padded_kernel_size += 2\n",
"\n",
" return pairs[-1]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "UGxQdKZaF2NT"
},
"source": [
"This implementation enables ResNet retraining in SPG mode.\n",
"\n",
"Components:\n",
"-------------------------------------------------------------------------------\n",
"1. gen_criterion()\n",
" - Purpose: compute per-sample losses and positional masks\n",
"\n",
"2. gen_shared_head()\n",
" - Purpose: Implements a shared prediction head that processes convolutional feature maps for prediction.\n",
"\n",
"3. gen_forward()\n",
" - Purpose: Extended forward pass supporting both traditional inference and SPG retraining."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "05k1fcibN13b"
},
"source": []
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "kTZWkoLr8cfE"
},
"outputs": [],
"source": [
"class ResNetConfig:\n",
" @staticmethod\n",
" def gen_shared_head(self):\n",
" def func(hidden_states):\n",
" \"\"\"\n",
" Args:\n",
" hidden_states (Tensor): Hidden States tensor of shape [B, C, H, W].\n",
"\n",
" Returns:\n",
" logits (Tensor): Logits tensor of shape [B, C].\n",
" \"\"\"\n",
" x = self.avgpool(hidden_states)\n",
" x = torch.flatten(x, 1)\n",
" logits = self.fc(x)\n",
" return logits\n",
" return func\n",
"\n",
" @staticmethod\n",
" def gen_logits(self, shared_head):\n",
" def func(hidden_states):\n",
" \"\"\"\n",
" Args:\n",
" hidden_states (Tensor): Hidden States tensor of shape [B, L, hidden_units].\n",
"\n",
" Returns:\n",
" logits_seqence (List[Tensor]): List of Logits tensors.\n",
" \"\"\"\n",
" logits_sequence = [shared_head(hidden_states)]\n",
" for layer in self.trp_blocks:\n",
" logits_sequence.append(shared_head(layer(hidden_states)))\n",
" return logits_sequence\n",
" return func\n",
"\n",
" @staticmethod\n",
" def gen_mask(label_smoothing=0.0, top_k=1):\n",
" def func(logits_sequence, labels):\n",
" \"\"\"\n",
" Args:\n",
" logits_sequence (List[Tensor]): List of Logits tensors.\n",
" labels (Tensor): Target labels of shape [B] or [B, C].\n",
"\n",
" Returns:\n",
" mask_sequence (List[Tensor]): List of Mask tensor.\n",
" returns (Tensor): Boolean mask tensor of shape [B*(L-1)].\n",
" \"\"\"\n",
" labels = torch.argmax(labels, dim=1) if label_smoothing > 0.0 else labels\n",
"\n",
" mask_sequence = [torch.ones_like(labels, dtype=torch.float32, device=labels.device)]\n",
" for logits in logits_sequence:\n",
" with torch.no_grad():\n",
" topk_values, topk_indices = torch.topk(logits, top_k, dim=-1)\n",
" mask = torch.eq(topk_indices, labels[:, None]).any(dim=-1).to(torch.float32)\n",
" mask_sequence.append(mask_sequence[-1] * mask)\n",
" return mask_sequence\n",
" return func\n",
"\n",
" @staticmethod\n",
" def gen_criterion(label_smoothing=0.0):\n",
" def func(logits_sequence, labels):\n",
" \"\"\"\n",
" Args:\n",
" logits_sequence (List[Tensor]): List of Logits tensor.\n",
" labels (Tensor): labels labels of shape [B] or [B, C].\n",
"\n",
" Returns:\n",
" loss (Tensor): Scalar tensor representing the loss.\n",
" mask (Tensor): Boolean mask tensor of shape [B].\n",
" \"\"\"\n",
" labels = torch.argmax(labels, dim=1) if label_smoothing > 0.0 else labels\n",
"\n",
" loss_sequence = []\n",
" for logits in logits_sequence:\n",
" loss_sequence.append(F.cross_entropy(logits, labels, reduction=\"none\", label_smoothing=label_smoothing))\n",
"\n",
" return loss_sequence\n",
" return func\n",
"\n",
" @staticmethod\n",
" def gen_forward(rewards, label_smoothing=0.0, top_k=1):\n",
" def func(self, x: Tensor, targets=None) -> Tensor:\n",
" x = self.conv1(x)\n",
" x = self.bn1(x)\n",
" x = self.relu(x)\n",
" x = self.maxpool(x)\n",
"\n",
" x = self.layer1(x)\n",
" x = self.layer2(x)\n",
" x = self.layer3(x)\n",
" hidden_states = self.layer4(x)\n",
" x = self.avgpool(hidden_states)\n",
" x = torch.flatten(x, 1)\n",
" logits = self.fc(x)\n",
"\n",
" if self.training:\n",
" shared_head = ResNetConfig.gen_shared_head(self)\n",
" compute_logits = ResNetConfig.gen_logits(self, shared_head)\n",
" compute_mask = ResNetConfig.gen_mask(label_smoothing, top_k)\n",
" compute_loss = ResNetConfig.gen_criterion(label_smoothing)\n",
"\n",
" logits_sequence = compute_logits(hidden_states)\n",
" mask_sequence = compute_mask(logits_sequence, targets)\n",
" loss_sequence = compute_loss(logits_sequence, targets)\n",
" loss = compute_policy_loss(loss_sequence, mask_sequence, rewards)\n",
"\n",
" return logits, loss\n",
"\n",
" return logits\n",
"\n",
" return func"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "cCn6vwItH1CW"
},
"source": [
"Applies TRP modules to the base ResNet (main backbone). The k-th TRP module corresponding to a deeper ResNet variant with an additional depth of 3 * sum(depths[:k+1])."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"id": "wXQF0oISH5Yp"
},
"outputs": [],
"source": [
"def apply_trp(model, depths: List[int], in_planes: int, out_planes: int, rewards, **kwargs):\n",
" print(\"✅ Applying TRP to ResNet for Image Classification...\")\n",
" model.trp_blocks = torch.nn.ModuleList([TPBlock(depths=d, in_planes=in_planes, out_planes=out_planes, rank=k) for k, d in enumerate(depths)])\n",
" model.forward = types.MethodType(ResNetConfig.gen_forward(rewards, label_smoothing=kwargs[\"label_smoothing\"], top_k=1), model)\n",
" return model"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "kDjSAv3PJr7P"
},
"source": [
"The following is a training script for classification models, primarily based on the official TorchVision `train.py` reference implementation. We have made two modifications:\n",
"\n",
"Adding TRP Modules: We integrate TRP modules into the base model architecture before training begins:\n",
"\n",
"```python\n",
"if args.apply_trp:\n",
" model = apply_trp(model, args.trp_depths, args.in_planes, args.out_planes, args.trp_rewards, label_smoothing=args.label_smoothing)\n",
"```\n",
"Removing TRP Modules: We remove the TRP components from the base model before saving the base model:\n",
"```python\n",
"if args.output_dir:\n",
" checkpoint = {\n",
" \"model\": model_without_ddp.state_dict() if not args.apply_trp else {k: v for k, v in model_without_ddp.state_dict().items() if not \"trp_blocks\" in k},\n",
" \"optimizer\": optimizer.state_dict(),\n",
" \"lr_scheduler\": lr_scheduler.state_dict(),\n",
" \"epoch\": epoch,\n",
" \"args\": args,\n",
" }\n",
" if model_ema:\n",
" checkpoint[\"model_ema\"] = model_ema.state_dict() if not args.apply_trp else {k: v for k, v in model_ema.state_dict().items() if not \"trp_blocks\" in k}\n",
" if scaler:\n",
" checkpoint[\"scaler\"] = scaler.state_dict()\n",
" utils.save_on_master(checkpoint, os.path.join(args.output_dir, f\"model_{epoch}.pth\"))\n",
" utils.save_on_master(checkpoint, os.path.join(args.output_dir, \"checkpoint.pth\"))\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "hK4Y7Sqv4xUa"
},
"outputs": [],
"source": [
"import datetime\n",
"import os\n",
"import time\n",
"import warnings\n",
"\n",
"import presets\n",
"import torch\n",
"import torch.utils.data\n",
"import torchvision\n",
"import utils\n",
"from torch import nn\n",
"from torchvision.transforms.functional import InterpolationMode\n",
"\n",
"\n",
"def load_data(traindir, valdir):\n",
" # Data loading code\n",
" print(\"Loading data\")\n",
" interpolation = InterpolationMode(\"bilinear\")\n",
"\n",
" print(\"Loading training data\")\n",
" st = time.time()\n",
" dataset = torchvision.datasets.ImageFolder(\n",
" traindir,\n",
" presets.ClassificationPresetTrain(crop_size=224, interpolation=interpolation, auto_augment_policy=None, random_erase_prob=0.0, ra_magnitude=9, augmix_severity=3),\n",
" )\n",
" print(\"Took\", time.time() - st)\n",
"\n",
" print(\"Loading validation data\")\n",
" dataset_test = torchvision.datasets.ImageFolder(\n",
" valdir,\n",
" presets.ClassificationPresetEval(crop_size=224, resize_size=256, interpolation=interpolation)\n",
" )\n",
"\n",
" print(\"Creating data loaders\")\n",
" train_sampler = torch.utils.data.RandomSampler(dataset)\n",
" test_sampler = torch.utils.data.SequentialSampler(dataset_test)\n",
"\n",
" return dataset, dataset_test, train_sampler, test_sampler\n",
"\n",
"\n",
"\n",
"def train_one_epoch(model, optimizer, data_loader, device, epoch, args):\n",
" model.train()\n",
" metric_logger = utils.MetricLogger(delimiter=\" \")\n",
" metric_logger.add_meter(\"lr\", utils.SmoothedValue(window_size=1, fmt=\"{value}\"))\n",
" metric_logger.add_meter(\"img/s\", utils.SmoothedValue(window_size=10, fmt=\"{value}\"))\n",
"\n",
" header = f\"Epoch: [{epoch}]\"\n",
" for i, (image, target) in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)):\n",
" start_time = time.time()\n",
" image, target = image.to(device), target.to(device)\n",
" with torch.amp.autocast(\"cuda\", enabled=False):\n",
" output, loss = model(image, target)\n",
"\n",
" optimizer.zero_grad()\n",
" loss.backward()\n",
" optimizer.step()\n",
"\n",
" acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))\n",
" batch_size = image.shape[0]\n",
" metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0][\"lr\"])\n",
" metric_logger.meters[\"acc1\"].update(acc1.item(), n=batch_size)\n",
" metric_logger.meters[\"acc5\"].update(acc5.item(), n=batch_size)\n",
" metric_logger.meters[\"img/s\"].update(batch_size / (time.time() - start_time))\n",
"\n",
"\n",
"def evaluate(model, criterion, data_loader, device, print_freq=100, log_suffix=\"\"):\n",
" model.eval()\n",
" metric_logger = utils.MetricLogger(delimiter=\" \")\n",
" header = f\"Test: {log_suffix}\"\n",
"\n",
" num_processed_samples = 0\n",
" with torch.inference_mode():\n",
" for image, target in metric_logger.log_every(data_loader, print_freq, header):\n",
" image = image.to(device, non_blocking=True)\n",
" target = target.to(device, non_blocking=True)\n",
" output = model(image)\n",
" loss = criterion(output, target)\n",
"\n",
" acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))\n",
" # FIXME need to take into account that the datasets\n",
" # could have been padded in distributed setup\n",
" batch_size = image.shape[0]\n",
" metric_logger.update(loss=loss.item())\n",
" metric_logger.meters[\"acc1\"].update(acc1.item(), n=batch_size)\n",
" metric_logger.meters[\"acc5\"].update(acc5.item(), n=batch_size)\n",
" num_processed_samples += batch_size\n",
" # gather the stats from all processes\n",
"\n",
" num_processed_samples = utils.reduce_across_processes(num_processed_samples)\n",
" if (\n",
" hasattr(data_loader.dataset, \"__len__\")\n",
" and len(data_loader.dataset) != num_processed_samples\n",
" and torch.distributed.get_rank() == 0\n",
" ):\n",
" # See FIXME above\n",
" warnings.warn(\n",
" f\"It looks like the dataset has {len(data_loader.dataset)} samples, but {num_processed_samples} \"\n",
" \"samples were used for the validation, which might bias the results. \"\n",
" \"Try adjusting the batch size and / or the world size. \"\n",
" \"Setting the world size to 1 is always a safe bet.\"\n",
" )\n",
"\n",
" metric_logger.synchronize_between_processes()\n",
"\n",
" print(f\"{header} Acc@1 {metric_logger.acc1.global_avg:.3f} Acc@5 {metric_logger.acc5.global_avg:.3f}\")\n",
" return metric_logger.acc1.global_avg\n",
"\n",
"\n",
"def main(args):\n",
" if args.output_dir:\n",
" utils.mkdir(args.output_dir)\n",
" print(args)\n",
"\n",
" device = torch.device(args.device)\n",
"\n",
" if args.use_deterministic_algorithms:\n",
" torch.backends.cudnn.benchmark = False\n",
" torch.use_deterministic_algorithms(True)\n",
" else:\n",
" torch.backends.cudnn.benchmark = True\n",
"\n",
" train_dir = os.path.join(args.data_path, \"train\")\n",
" val_dir = os.path.join(args.data_path, \"val\")\n",
" dataset, dataset_test, train_sampler, test_sampler = load_data(train_dir, val_dir)\n",
"\n",
" num_classes = len(dataset.classes)\n",
" data_loader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, num_workers=16, pin_memory=True, collate_fn=None)\n",
" data_loader_test = torch.utils.data.DataLoader(dataset_test, batch_size=64, sampler=test_sampler, num_workers=16, pin_memory=True)\n",
"\n",
" print(\"Creating model\")\n",
" model = torchvision.models.get_model(args.model, weights=args.weights, num_classes=num_classes)\n",
" if args.apply_trp:\n",
" model = apply_trp(model, args.trp_depths, args.in_planes, args.out_planes, args.trp_rewards, label_smoothing=args.label_smoothing)\n",
" model.to(device)\n",
"\n",
" parameters = utils.set_weight_decay(model, args.weight_decay, norm_weight_decay=None, custom_keys_weight_decay=None)\n",
" optimizer = torch.optim.SGD(parameters, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=False)\n",
"\n",
" main_lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)\n",
" warmup_lr_scheduler = torch.optim.lr_scheduler.ConstantLR(optimizer, factor=args.lr_warmup_decay, total_iters=args.lr_warmup_epochs)\n",
" lr_scheduler = torch.optim.lr_scheduler.SequentialLR(optimizer, schedulers=[warmup_lr_scheduler, main_lr_scheduler], milestones=[args.lr_warmup_epochs])\n",
"\n",
"\n",
" print(\"Start training\")\n",
" start_time = time.time()\n",
" for epoch in range(args.epochs):\n",
" train_one_epoch(model, optimizer, data_loader, device, epoch, args)\n",
" lr_scheduler.step()\n",
" evaluate(model, nn.CrossEntropyLoss(), data_loader_test, device=device)\n",
" if args.output_dir:\n",
" checkpoint = {\n",
" \"model\": model.state_dict() if not args.apply_trp else {k: v for k, v in model.state_dict().items() if not \"trp_blocks\" in k},\n",
" \"optimizer\": optimizer.state_dict(),\n",
" \"lr_scheduler\": lr_scheduler.state_dict(),\n",
" \"epoch\": epoch,\n",
" \"args\": args,\n",
" }\n",
" utils.save_on_master(checkpoint, os.path.join(args.output_dir, f\"model_{epoch}.pth\"))\n",
" utils.save_on_master(checkpoint, os.path.join(args.output_dir, \"checkpoint.pth\"))\n",
"\n",
" total_time = time.time() - start_time\n",
" total_time_str = str(datetime.timedelta(seconds=int(total_time)))\n",
" print(f\"Training time {total_time_str}\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "SV8s5k49KwgS"
},
"source": [
"Prepare the [ImageNet](http://image-net.org/) dataset manually and place it in `/path/to/imagenet`. For image classification examples, pass the argument `--data-path=/path/to/imagenet` to the training script. The extracted dataset directory should follow this structure:\n",
"```setup\n",
"/path/to/imagenet/:\n",
" train/:\n",
" n01440764:\n",
" n01440764_18.JPEG ...\n",
" n01443537:\n",
" n01443537_2.JPEG ...\n",
" val/:\n",
" n01440764:\n",
" ILSVRC2012_val_00000293.JPEG ...\n",
" n01443537:\n",
" ILSVRC2012_val_00000236.JPEG ...\n",
"```\n",
"\n",
"Now you can apply the SPG algorithm in model retraining.\n",
"\n",
"**Implementation Note:**\n",
"\n",
"- This demonstration runs on Google Colab using a single GPU configuration\n",
"- Performance Improvement: Enhances ResNet18 validation accuracy (ACC@1) from 69.758% to 70.554%\n",
"- For optimal results:\n",
" - Refer to our README.md for complete setup instructions\n",
" - Recommended hardware: 4× RTX A6000 GPUs"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 393
},
"id": "UDZxDNfT4xUb",
"outputId": "9c266547-5118-49a0-aed8-1eb5aa7ef12f"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"namespace(data_path='/home/cs/Documents/datasets/imagenet', model='resnet18', device='cuda', batch_size=512, epochs=16, lr=0.002, momentum=0.9, weight_decay=0.0001, label_smoothing=0.0, lr_warmup_epochs=1, lr_warmup_decay=0.0, lr_step_size=2, lr_gamma=0.5, print_freq=100, output_dir='resnet18', use_deterministic_algorithms=False, weights='ResNet18_Weights.IMAGENET1K_V1', apply_trp=True, trp_depths=[4, 4, 4], in_planes=512, out_planes=8, trp_rewards=[1.0, 0.4, 0.2, 0.1])\n",
"Loading data\n",
"Loading training data\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Took 1.663217306137085\n",
"Loading validation data\n",
"Creating data loaders\n",
"Creating model\n",
"✅ Applying TRP to ResNet for Image Classification...\n",
"Start training\n",
"Epoch: [0] [ 0/2503] eta: 10:08:27 lr: 0.0 img/s: 50.42287085194474 loss: 2.4802 (2.4802) acc1: 68.1641 (68.1641) acc5: 88.6719 (88.6719) time: 14.5854 data: 4.4313 max mem: 14260\n",
"Epoch: [0] [ 100/2503] eta: 0:20:23 lr: 0.0 img/s: 1383.432089555604 loss: 2.5032 (2.5529) acc1: 68.9453 (69.0652) acc5: 87.6953 (87.2351) time: 0.3696 data: 0.0003 max mem: 14260\n",
"Epoch: [0] [ 200/2503] eta: 0:16:54 lr: 0.0 img/s: 1378.2442081212737 loss: 2.5111 (2.5476) acc1: 69.7266 (69.0396) acc5: 88.0859 (87.3883) time: 0.3723 data: 0.0003 max mem: 14260\n",
"Epoch: [0] [ 300/2503] eta: 0:15:21 lr: 0.0 img/s: 1374.120426975581 loss: 2.5257 (2.5469) acc1: 69.7266 (69.1783) acc5: 87.6953 (87.3566) time: 0.3735 data: 0.0003 max mem: 14260\n",
"Epoch: [0] [ 400/2503] eta: 0:14:16 lr: 0.0 img/s: 1371.8057112267902 loss: 2.5656 (2.5481) acc1: 68.7500 (69.1119) acc5: 87.1094 (87.2935) time: 0.3737 data: 0.0003 max mem: 14260\n",
"Epoch: [0] [ 500/2503] eta: 0:13:22 lr: 0.0 img/s: 1371.3563139705075 loss: 2.5417 (2.5455) acc1: 69.3359 (69.2038) acc5: 87.3047 (87.3834) time: 0.3740 data: 0.0004 max mem: 14260\n",
"Epoch: [0] [ 600/2503] eta: 0:12:33 lr: 0.0 img/s: 1372.5711524572246 loss: 2.5310 (2.5460) acc1: 68.7500 (69.1926) acc5: 86.9141 (87.3664) time: 0.3737 data: 0.0004 max mem: 14260\n",
"Epoch: [0] [ 700/2503] eta: 0:11:48 lr: 0.0 img/s: 1372.686086194476 loss: 2.6031 (2.5471) acc1: 68.3594 (69.1802) acc5: 86.5234 (87.3573) time: 0.3738 data: 0.0004 max mem: 14260\n",
"Epoch: [0] [ 800/2503] eta: 0:11:04 lr: 0.0 img/s: 1372.150185617073 loss: 2.5816 (2.5469) acc1: 68.1641 (69.1716) acc5: 87.3047 (87.3754) time: 0.3735 data: 0.0004 max mem: 14260\n",
"Epoch: [0] [ 900/2503] eta: 0:10:22 lr: 0.0 img/s: 1374.4176827941437 loss: 2.5572 (2.5474) acc1: 68.5547 (69.1322) acc5: 86.5234 (87.3606) time: 0.3734 data: 0.0004 max mem: 14260\n",
"Epoch: [0] [1000/2503] eta: 0:09:41 lr: 0.0 img/s: 1371.263492760823 loss: 2.6090 (2.5481) acc1: 69.3359 (69.1545) acc5: 86.5234 (87.3609) time: 0.3736 data: 0.0004 max mem: 14260\n",
"Epoch: [0] [1100/2503] eta: 0:09:01 lr: 0.0 img/s: 1372.8361431672834 loss: 2.5455 (2.5480) acc1: 68.3594 (69.1791) acc5: 86.3281 (87.3599) time: 0.3736 data: 0.0004 max mem: 14260\n",
"Epoch: [0] [1200/2503] eta: 0:08:21 lr: 0.0 img/s: 1370.863454576676 loss: 2.5028 (2.5465) acc1: 68.9453 (69.1852) acc5: 86.7188 (87.3738) time: 0.3735 data: 0.0004 max mem: 14260\n",
"Epoch: [0] [1300/2503] eta: 0:07:41 lr: 0.0 img/s: 1372.2045459773494 loss: 2.5447 (2.5479) acc1: 68.9453 (69.1936) acc5: 87.5000 (87.3631) time: 0.3740 data: 0.0004 max mem: 14260\n",
"Epoch: [0] [1400/2503] eta: 0:07:02 lr: 0.0 img/s: 1371.6970579987953 loss: 2.5078 (2.5488) acc1: 69.1406 (69.2066) acc5: 87.3047 (87.3691) time: 0.3740 data: 0.0004 max mem: 14260\n",
"Epoch: [0] [1500/2503] eta: 0:06:23 lr: 0.0 img/s: 1372.0747896668404 loss: 2.5085 (2.5485) acc1: 68.3594 (69.1850) acc5: 86.5234 (87.3589) time: 0.3737 data: 0.0005 max mem: 14260\n",
"Epoch: [0] [1600/2503] eta: 0:05:44 lr: 0.0 img/s: 1370.7497007944983 loss: 2.5625 (2.5480) acc1: 68.7500 (69.1884) acc5: 86.9141 (87.3685) time: 0.3738 data: 0.0004 max mem: 14260\n",
"Epoch: [0] [1700/2503] eta: 0:05:06 lr: 0.0 img/s: 1371.5875459541212 loss: 2.5364 (2.5472) acc1: 68.7500 (69.2003) acc5: 87.1094 (87.3729) time: 0.3738 data: 0.0005 max mem: 14260\n",
"Epoch: [0] [1800/2503] eta: 0:04:27 lr: 0.0 img/s: 1373.9032828701265 loss: 2.5430 (2.5472) acc1: 68.3594 (69.1841) acc5: 86.7188 (87.3690) time: 0.3736 data: 0.0004 max mem: 14260\n",
"Epoch: [0] [1900/2503] eta: 0:03:49 lr: 0.0 img/s: 1369.5695265111776 loss: 2.4750 (2.5462) acc1: 69.3359 (69.2043) acc5: 87.3047 (87.3722) time: 0.3738 data: 0.0004 max mem: 14260\n",
"Epoch: [0] [2000/2503] eta: 0:03:11 lr: 0.0 img/s: 1374.2883870947098 loss: 2.4859 (2.5453) acc1: 69.7266 (69.2057) acc5: 87.1094 (87.3765) time: 0.3738 data: 0.0004 max mem: 14260\n",
"Epoch: [0] [2100/2503] eta: 0:02:33 lr: 0.0 img/s: 1371.118156488072 loss: 2.5923 (2.5462) acc1: 70.1172 (69.2161) acc5: 87.6953 (87.3683) time: 0.3739 data: 0.0005 max mem: 14260\n",
"Epoch: [0] [2200/2503] eta: 0:01:55 lr: 0.0 img/s: 1374.420321735207 loss: 2.5274 (2.5462) acc1: 69.5312 (69.2215) acc5: 87.3047 (87.3624) time: 0.3738 data: 0.0005 max mem: 14260\n",
"Epoch: [0] [2300/2503] eta: 0:01:17 lr: 0.0 img/s: 1375.3401698453972 loss: 2.5620 (2.5461) acc1: 68.3594 (69.2079) acc5: 87.8906 (87.3658) time: 0.3735 data: 0.0004 max mem: 14260\n",
"Epoch: [0] [2400/2503] eta: 0:00:39 lr: 0.0 img/s: 1372.6720474542253 loss: 2.4811 (2.5456) acc1: 69.1406 (69.2059) acc5: 87.1094 (87.3672) time: 0.3738 data: 0.0004 max mem: 14260\n",
"Epoch: [0] [2500/2503] eta: 0:00:01 lr: 0.0 img/s: 1374.5883551796933 loss: 2.5695 (2.5453) acc1: 69.3359 (69.1951) acc5: 87.5000 (87.3620) time: 0.3730 data: 0.0002 max mem: 14260\n",
"Epoch: [0] Total time: 0:15:50\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/cs/anaconda3/envs/csenv/lib/python3.10/site-packages/torch/optim/lr_scheduler.py:243: UserWarning: The epoch parameter in `scheduler.step()` was not necessary and is being deprecated where possible. Please use `scheduler.step()` to step the scheduler. During the deprecation, if epoch is different from None, the closed form is used instead of the new chainable form, where available. Please open an issue if you are unable to replicate your use case: https://github.com/pytorch/pytorch/issues/new/choose.\n",
" warnings.warn(EPOCH_DEPRECATION_WARNING, UserWarning)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Test: [ 0/782] eta: 0:47:20 loss: 0.6410 (0.6410) acc1: 85.9375 (85.9375) acc5: 95.3125 (95.3125) time: 3.6326 data: 3.1976 max mem: 14260\n",
"Test: [100/782] eta: 0:00:43 loss: 1.0596 (0.9365) acc1: 76.5625 (76.3150) acc5: 89.0625 (92.2030) time: 0.0358 data: 0.0219 max mem: 14260\n",
"Test: [200/782] eta: 0:00:28 loss: 0.9542 (0.9132) acc1: 73.4375 (75.7851) acc5: 96.8750 (93.2214) time: 0.0266 data: 0.0126 max mem: 14260\n",
"Test: [300/782] eta: 0:00:21 loss: 0.8381 (0.9042) acc1: 76.5625 (76.1991) acc5: 92.1875 (93.5112) time: 0.0387 data: 0.0248 max mem: 14260\n",
"Test: [400/782] eta: 0:00:15 loss: 1.6487 (1.0423) acc1: 59.3750 (73.5817) acc5: 82.8125 (91.7160) time: 0.0286 data: 0.0148 max mem: 14260\n",
"Test: [500/782] eta: 0:00:11 loss: 1.5886 (1.1231) acc1: 56.2500 (71.9935) acc5: 84.3750 (90.5845) time: 0.0256 data: 0.0116 max mem: 14260\n",
"Test: [600/782] eta: 0:00:06 loss: 1.3772 (1.1848) acc1: 64.0625 (70.8403) acc5: 84.3750 (89.7853) time: 0.0265 data: 0.0126 max mem: 14260\n",
"Test: [700/782] eta: 0:00:03 loss: 1.2929 (1.2347) acc1: 68.7500 (69.8890) acc5: 87.5000 (89.0826) time: 0.0402 data: 0.0263 max mem: 14260\n",
"Test: Total time: 0:00:28\n",
"Test: Acc@1 69.826 Acc@5 89.124\n",
"Epoch: [1] [ 0/2503] eta: 3:02:56 lr: 0.002 img/s: 1377.423834135741 loss: 2.5885 (2.5885) acc1: 65.4297 (65.4297) acc5: 85.5469 (85.5469) time: 4.3852 data: 4.0135 max mem: 14260\n",
"Epoch: [1] [ 100/2503] eta: 0:17:11 lr: 0.002 img/s: 1377.6650711932691 loss: 2.4756 (2.4861) acc1: 66.7969 (67.5859) acc5: 85.7422 (86.4693) time: 0.3722 data: 0.0004 max mem: 14260\n",
"Epoch: [1] [ 200/2503] eta: 0:15:24 lr: 0.002 img/s: 1372.1571996150901 loss: 2.4426 (2.4819) acc1: 66.7969 (67.1953) acc5: 86.3281 (86.2222) time: 0.3733 data: 0.0003 max mem: 14260\n",
"Epoch: [1] [ 300/2503] eta: 0:14:23 lr: 0.002 img/s: 1373.1486477500014 loss: 2.4722 (2.4755) acc1: 66.6016 (67.0428) acc5: 85.9375 (86.1477) time: 0.3737 data: 0.0005 max mem: 14260\n",
"Epoch: [1] [ 400/2503] eta: 0:13:34 lr: 0.002 img/s: 1373.565834760211 loss: 2.4423 (2.4638) acc1: 66.0156 (66.9537) acc5: 85.9375 (86.1133) time: 0.3735 data: 0.0004 max mem: 14260\n",
"Epoch: [1] [ 500/2503] eta: 0:12:50 lr: 0.002 img/s: 1374.8294801536492 loss: 2.4545 (2.4537) acc1: 66.6016 (66.9532) acc5: 85.9375 (86.0821) time: 0.3734 data: 0.0004 max mem: 14260\n",
"Epoch: [1] [ 600/2503] eta: 0:12:08 lr: 0.002 img/s: 1373.2759726992576 loss: 2.3748 (2.4462) acc1: 66.4062 (66.8648) acc5: 85.9375 (86.0428) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [1] [ 700/2503] eta: 0:11:27 lr: 0.002 img/s: 1373.3655533634123 loss: 2.3805 (2.4383) acc1: 66.0156 (66.8428) acc5: 86.1328 (86.0194) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [1] [ 800/2503] eta: 0:10:47 lr: 0.002 img/s: 1376.2903568576633 loss: 2.3818 (2.4345) acc1: 66.7969 (66.7913) acc5: 85.5469 (85.9653) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [1] [ 900/2503] eta: 0:10:08 lr: 0.002 img/s: 1372.8756372972396 loss: 2.4255 (2.4302) acc1: 65.8203 (66.7045) acc5: 85.5469 (85.9284) time: 0.3732 data: 0.0005 max mem: 14260\n",
"Epoch: [1] [1000/2503] eta: 0:09:29 lr: 0.002 img/s: 1374.3983308693175 loss: 2.4043 (2.4290) acc1: 65.6250 (66.6322) acc5: 85.7422 (85.8753) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [1] [1100/2503] eta: 0:08:50 lr: 0.002 img/s: 1374.2945434811545 loss: 2.3880 (2.4263) acc1: 65.6250 (66.5863) acc5: 85.5469 (85.8531) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [1] [1200/2503] eta: 0:08:12 lr: 0.002 img/s: 1373.028369315795 loss: 2.3041 (2.4223) acc1: 66.6016 (66.5471) acc5: 86.1328 (85.8172) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [1] [1300/2503] eta: 0:07:34 lr: 0.002 img/s: 1373.0871889829934 loss: 2.3545 (2.4189) acc1: 65.6250 (66.5259) acc5: 85.7422 (85.8100) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [1] [1400/2503] eta: 0:06:56 lr: 0.002 img/s: 1374.8021953469554 loss: 2.4115 (2.4170) acc1: 65.4297 (66.4909) acc5: 85.1562 (85.7717) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [1] [1500/2503] eta: 0:06:18 lr: 0.002 img/s: 1375.0671678203018 loss: 2.4421 (2.4148) acc1: 66.7969 (66.4550) acc5: 85.7422 (85.7547) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [1] [1600/2503] eta: 0:05:40 lr: 0.002 img/s: 1372.8387760385867 loss: 2.3420 (2.4105) acc1: 66.0156 (66.4580) acc5: 85.3516 (85.7397) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [1] [1700/2503] eta: 0:05:02 lr: 0.002 img/s: 1374.548762448642 loss: 2.3955 (2.4074) acc1: 65.6250 (66.4491) acc5: 84.9609 (85.7395) time: 0.3728 data: 0.0003 max mem: 14260\n",
"Epoch: [1] [1800/2503] eta: 0:04:24 lr: 0.002 img/s: 1375.0935826343089 loss: 2.3322 (2.4056) acc1: 65.2344 (66.4221) acc5: 85.5469 (85.7143) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [1] [1900/2503] eta: 0:03:46 lr: 0.002 img/s: 1374.3622673726154 loss: 2.3569 (2.4030) acc1: 67.1875 (66.4210) acc5: 85.9375 (85.6980) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [1] [2000/2503] eta: 0:03:09 lr: 0.002 img/s: 1375.7957079972298 loss: 2.3746 (2.4015) acc1: 65.6250 (66.3911) acc5: 85.1562 (85.6760) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [1] [2100/2503] eta: 0:02:31 lr: 0.002 img/s: 1373.0705082669385 loss: 2.3709 (2.4006) acc1: 66.7969 (66.3541) acc5: 84.5703 (85.6470) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [1] [2200/2503] eta: 0:01:53 lr: 0.002 img/s: 1374.6710673545942 loss: 2.3266 (2.3979) acc1: 66.6016 (66.3470) acc5: 85.7422 (85.6361) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [1] [2300/2503] eta: 0:01:16 lr: 0.002 img/s: 1373.223283649662 loss: 2.3981 (2.3968) acc1: 66.0156 (66.3150) acc5: 84.9609 (85.6175) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [1] [2400/2503] eta: 0:00:38 lr: 0.002 img/s: 1371.8293718730356 loss: 2.2603 (2.3937) acc1: 66.2109 (66.3234) acc5: 85.5469 (85.6142) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [1] [2500/2503] eta: 0:00:01 lr: 0.002 img/s: 1375.273230286853 loss: 2.2845 (2.3911) acc1: 66.2109 (66.3097) acc5: 85.9375 (85.6073) time: 0.3726 data: 0.0002 max mem: 14260\n",
"Epoch: [1] Total time: 0:15:39\n",
"Test: [ 0/782] eta: 0:19:08 loss: 0.6668 (0.6668) acc1: 82.8125 (82.8125) acc5: 93.7500 (93.7500) time: 1.4691 data: 1.4550 max mem: 14260\n",
"Test: [100/782] eta: 0:00:31 loss: 1.1441 (1.0760) acc1: 73.4375 (74.5514) acc5: 89.0625 (91.1819) time: 0.0365 data: 0.0225 max mem: 14260\n",
"Test: [200/782] eta: 0:00:22 loss: 0.9512 (1.0610) acc1: 68.7500 (73.6785) acc5: 95.3125 (92.0942) time: 0.0277 data: 0.0138 max mem: 14260\n",
"Test: [300/782] eta: 0:00:17 loss: 0.9079 (1.0453) acc1: 76.5625 (74.2162) acc5: 92.1875 (92.3692) time: 0.0325 data: 0.0184 max mem: 14260\n",
"Test: [400/782] eta: 0:00:13 loss: 1.9251 (1.2012) acc1: 56.2500 (71.4970) acc5: 81.2500 (90.4613) time: 0.0257 data: 0.0117 max mem: 14260\n",
"Test: [500/782] eta: 0:00:09 loss: 1.9088 (1.2877) acc1: 56.2500 (70.0131) acc5: 81.2500 (89.2060) time: 0.0333 data: 0.0194 max mem: 14260\n",
"Test: [600/782] eta: 0:00:06 loss: 1.5349 (1.3531) acc1: 60.9375 (68.7188) acc5: 84.3750 (88.4437) time: 0.0350 data: 0.0212 max mem: 14260\n",
"Test: [700/782] eta: 0:00:02 loss: 1.4343 (1.4105) acc1: 62.5000 (67.6912) acc5: 84.3750 (87.7051) time: 0.0244 data: 0.0106 max mem: 14260\n",
"Test: Total time: 0:00:26\n",
"Test: Acc@1 67.732 Acc@5 87.802\n",
"Epoch: [2] [ 0/2503] eta: 4:48:07 lr: 0.002 img/s: 1383.4953692011936 loss: 2.1862 (2.1862) acc1: 66.7969 (66.7969) acc5: 86.9141 (86.9141) time: 6.9066 data: 6.5365 max mem: 14260\n",
"Epoch: [2] [ 100/2503] eta: 0:17:27 lr: 0.002 img/s: 1377.0608123662605 loss: 2.3162 (2.3027) acc1: 66.6016 (66.8858) acc5: 85.3516 (85.7905) time: 0.3719 data: 0.0003 max mem: 14260\n",
"Epoch: [2] [ 200/2503] eta: 0:15:31 lr: 0.002 img/s: 1374.1582364056483 loss: 2.3079 (2.3064) acc1: 66.7969 (66.8406) acc5: 85.5469 (85.8073) time: 0.3733 data: 0.0003 max mem: 14260\n",
"Epoch: [2] [ 300/2503] eta: 0:14:28 lr: 0.002 img/s: 1374.2268262637704 loss: 2.3224 (2.3053) acc1: 66.9922 (66.7521) acc5: 85.3516 (85.7338) time: 0.3739 data: 0.0005 max mem: 14260\n",
"Epoch: [2] [ 400/2503] eta: 0:13:38 lr: 0.002 img/s: 1375.5568873168527 loss: 2.2985 (2.3070) acc1: 66.2109 (66.7662) acc5: 84.9609 (85.6433) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [2] [ 500/2503] eta: 0:12:53 lr: 0.002 img/s: 1374.5065327160648 loss: 2.3106 (2.3077) acc1: 66.6016 (66.7092) acc5: 85.9375 (85.6284) time: 0.3735 data: 0.0005 max mem: 14260\n",
"Epoch: [2] [ 600/2503] eta: 0:12:10 lr: 0.002 img/s: 1373.834725304533 loss: 2.3626 (2.3068) acc1: 66.4062 (66.7270) acc5: 84.9609 (85.6476) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [2] [ 700/2503] eta: 0:11:29 lr: 0.002 img/s: 1374.9791257691297 loss: 2.3126 (2.3082) acc1: 66.0156 (66.6991) acc5: 84.9609 (85.6310) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [2] [ 800/2503] eta: 0:10:49 lr: 0.002 img/s: 1372.3746691257763 loss: 2.3272 (2.3085) acc1: 66.2109 (66.6167) acc5: 85.5469 (85.5835) time: 0.3731 data: 0.0004 max mem: 14260\n",
"Epoch: [2] [ 900/2503] eta: 0:10:09 lr: 0.002 img/s: 1373.2408462169565 loss: 2.3275 (2.3098) acc1: 66.2109 (66.5671) acc5: 84.3750 (85.5490) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [2] [1000/2503] eta: 0:09:30 lr: 0.002 img/s: 1373.5711061121342 loss: 2.2981 (2.3111) acc1: 65.6250 (66.5204) acc5: 85.5469 (85.5369) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [2] [1100/2503] eta: 0:08:51 lr: 0.002 img/s: 1373.5183944135272 loss: 2.3150 (2.3116) acc1: 66.0156 (66.4719) acc5: 85.3516 (85.4993) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [2] [1200/2503] eta: 0:08:13 lr: 0.002 img/s: 1376.8771662337779 loss: 2.2561 (2.3113) acc1: 66.9922 (66.4666) acc5: 85.7422 (85.4833) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [2] [1300/2503] eta: 0:07:34 lr: 0.002 img/s: 1375.0971046861873 loss: 2.2986 (2.3103) acc1: 66.0156 (66.4510) acc5: 86.1328 (85.4886) time: 0.3731 data: 0.0004 max mem: 14260\n",
"Epoch: [2] [1400/2503] eta: 0:06:56 lr: 0.002 img/s: 1374.8990172998506 loss: 2.2606 (2.3090) acc1: 66.2109 (66.4484) acc5: 85.5469 (85.4959) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [2] [1500/2503] eta: 0:06:18 lr: 0.002 img/s: 1374.708907093296 loss: 2.3684 (2.3107) acc1: 65.0391 (66.4284) acc5: 85.3516 (85.4825) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [2] [1600/2503] eta: 0:05:40 lr: 0.002 img/s: 1376.0213860020876 loss: 2.2740 (2.3100) acc1: 66.4062 (66.4164) acc5: 85.9375 (85.4723) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [2] [1700/2503] eta: 0:05:02 lr: 0.002 img/s: 1376.775652138234 loss: 2.2948 (2.3102) acc1: 66.2109 (66.3943) acc5: 84.9609 (85.4654) time: 0.3732 data: 0.0005 max mem: 14260\n",
"Epoch: [2] [1800/2503] eta: 0:04:24 lr: 0.002 img/s: 1374.726507681563 loss: 2.3000 (2.3090) acc1: 65.4297 (66.3905) acc5: 84.9609 (85.4665) time: 0.3733 data: 0.0005 max mem: 14260\n",
"Epoch: [2] [1900/2503] eta: 0:03:47 lr: 0.002 img/s: 1373.8320886117249 loss: 2.3499 (2.3098) acc1: 65.2344 (66.3690) acc5: 84.5703 (85.4492) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [2] [2000/2503] eta: 0:03:09 lr: 0.002 img/s: 1375.347216493789 loss: 2.3409 (2.3092) acc1: 65.4297 (66.3607) acc5: 85.7422 (85.4491) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [2] [2100/2503] eta: 0:02:31 lr: 0.002 img/s: 1374.2277056653809 loss: 2.3022 (2.3089) acc1: 65.0391 (66.3468) acc5: 85.5469 (85.4393) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [2] [2200/2503] eta: 0:01:53 lr: 0.002 img/s: 1375.106790421884 loss: 2.2930 (2.3095) acc1: 65.4297 (66.3192) acc5: 85.3516 (85.4269) time: 0.3733 data: 0.0005 max mem: 14260\n",
"Epoch: [2] [2300/2503] eta: 0:01:16 lr: 0.002 img/s: 1374.965040087179 loss: 2.3029 (2.3099) acc1: 65.4297 (66.2895) acc5: 84.5703 (85.4116) time: 0.3734 data: 0.0004 max mem: 14260\n",
"Epoch: [2] [2400/2503] eta: 0:00:38 lr: 0.002 img/s: 1375.4890456435255 loss: 2.2958 (2.3087) acc1: 65.8203 (66.2865) acc5: 85.1562 (85.4129) time: 0.3734 data: 0.0004 max mem: 14260\n",
"Epoch: [2] [2500/2503] eta: 0:00:01 lr: 0.002 img/s: 1376.2780083519401 loss: 2.3475 (2.3089) acc1: 65.4297 (66.2678) acc5: 85.3516 (85.3979) time: 0.3724 data: 0.0002 max mem: 14260\n",
"Epoch: [2] Total time: 0:15:40\n",
"Test: [ 0/782] eta: 0:25:03 loss: 0.6173 (0.6173) acc1: 82.8125 (82.8125) acc5: 95.3125 (95.3125) time: 1.9223 data: 1.9077 max mem: 14260\n",
"Test: [100/782] eta: 0:00:32 loss: 1.1819 (1.0846) acc1: 73.4375 (75.0000) acc5: 90.6250 (91.1046) time: 0.0417 data: 0.0277 max mem: 14260\n",
"Test: [200/782] eta: 0:00:23 loss: 0.9468 (1.0605) acc1: 73.4375 (74.1216) acc5: 95.3125 (92.1175) time: 0.0265 data: 0.0124 max mem: 14260\n",
"Test: [300/782] eta: 0:00:18 loss: 0.9407 (1.0479) acc1: 78.1250 (74.6937) acc5: 92.1875 (92.4886) time: 0.0428 data: 0.0288 max mem: 14260\n",
"Test: [400/782] eta: 0:00:13 loss: 2.1335 (1.2101) acc1: 54.6875 (71.6568) acc5: 81.2500 (90.6016) time: 0.0252 data: 0.0112 max mem: 14260\n",
"Test: [500/782] eta: 0:00:10 loss: 1.9338 (1.2989) acc1: 54.6875 (70.1223) acc5: 82.8125 (89.4024) time: 0.0315 data: 0.0176 max mem: 14260\n",
"Test: [600/782] eta: 0:00:06 loss: 1.5084 (1.3697) acc1: 67.1875 (68.8020) acc5: 84.3750 (88.4853) time: 0.0277 data: 0.0138 max mem: 14260\n",
"Test: [700/782] eta: 0:00:02 loss: 1.5578 (1.4244) acc1: 67.1875 (67.8272) acc5: 82.8125 (87.7385) time: 0.0390 data: 0.0252 max mem: 14260\n",
"Test: Total time: 0:00:26\n",
"Test: Acc@1 67.768 Acc@5 87.830\n",
"Epoch: [3] [ 0/2503] eta: 4:50:51 lr: 0.001 img/s: 1383.2699061945843 loss: 2.1499 (2.1499) acc1: 67.5781 (67.5781) acc5: 87.8906 (87.8906) time: 6.9723 data: 6.6021 max mem: 14260\n",
"Epoch: [3] [ 100/2503] eta: 0:17:29 lr: 0.001 img/s: 1375.8715134445615 loss: 2.2031 (2.2340) acc1: 67.5781 (67.0831) acc5: 85.7422 (85.6880) time: 0.3722 data: 0.0004 max mem: 14260\n",
"Epoch: [3] [ 200/2503] eta: 0:15:32 lr: 0.001 img/s: 1374.1564777813683 loss: 2.1745 (2.2220) acc1: 67.5781 (67.2361) acc5: 86.1328 (85.8044) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [3] [ 300/2503] eta: 0:14:28 lr: 0.001 img/s: 1371.6401095532028 loss: 2.1805 (2.2126) acc1: 67.7734 (67.5003) acc5: 85.7422 (85.9758) time: 0.3734 data: 0.0002 max mem: 14260\n",
"Epoch: [3] [ 400/2503] eta: 0:13:38 lr: 0.001 img/s: 1373.5017032190392 loss: 2.1734 (2.2108) acc1: 67.9688 (67.5884) acc5: 86.1328 (85.9940) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [3] [ 500/2503] eta: 0:12:53 lr: 0.001 img/s: 1372.7466315513593 loss: 2.2091 (2.2140) acc1: 67.3828 (67.5664) acc5: 86.1328 (85.9870) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [3] [ 600/2503] eta: 0:12:10 lr: 0.001 img/s: 1375.1349678833901 loss: 2.1677 (2.2131) acc1: 68.3594 (67.6025) acc5: 86.5234 (86.0051) time: 0.3728 data: 0.0003 max mem: 14260\n",
"Epoch: [3] [ 700/2503] eta: 0:11:29 lr: 0.001 img/s: 1373.4287938101538 loss: 2.1945 (2.2123) acc1: 67.7734 (67.6107) acc5: 86.5234 (86.0339) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [3] [ 800/2503] eta: 0:10:49 lr: 0.001 img/s: 1376.0152141345873 loss: 2.2110 (2.2132) acc1: 67.1875 (67.6008) acc5: 86.3281 (86.0472) time: 0.3731 data: 0.0004 max mem: 14260\n",
"Epoch: [3] [ 900/2503] eta: 0:10:09 lr: 0.001 img/s: 1373.67039079701 loss: 2.2309 (2.2128) acc1: 66.4062 (67.5656) acc5: 86.3281 (86.0487) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [3] [1000/2503] eta: 0:09:30 lr: 0.001 img/s: 1372.505359362667 loss: 2.2221 (2.2109) acc1: 67.3828 (67.5727) acc5: 85.9375 (86.0774) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [3] [1100/2503] eta: 0:08:51 lr: 0.001 img/s: 1373.0713861892584 loss: 2.1326 (2.2098) acc1: 69.1406 (67.6058) acc5: 86.3281 (86.0906) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [3] [1200/2503] eta: 0:08:13 lr: 0.001 img/s: 1374.2602443162148 loss: 2.1885 (2.2097) acc1: 67.3828 (67.5793) acc5: 86.1328 (86.0725) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [3] [1300/2503] eta: 0:07:34 lr: 0.001 img/s: 1375.7798427979378 loss: 2.1960 (2.2090) acc1: 67.5781 (67.5810) acc5: 85.5469 (86.0725) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [3] [1400/2503] eta: 0:06:56 lr: 0.001 img/s: 1372.1598298828335 loss: 2.2235 (2.2082) acc1: 67.3828 (67.5838) acc5: 85.9375 (86.0805) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [3] [1500/2503] eta: 0:06:18 lr: 0.001 img/s: 1374.5091719983307 loss: 2.2043 (2.2073) acc1: 67.5781 (67.5982) acc5: 85.9375 (86.0873) time: 0.3731 data: 0.0004 max mem: 14260\n",
"Epoch: [3] [1600/2503] eta: 0:05:40 lr: 0.001 img/s: 1376.4517898496242 loss: 2.2086 (2.2067) acc1: 67.9688 (67.6107) acc5: 85.7422 (86.0932) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [3] [1700/2503] eta: 0:05:02 lr: 0.001 img/s: 1372.9950111470782 loss: 2.1546 (2.2062) acc1: 65.6250 (67.6013) acc5: 86.1328 (86.0813) time: 0.3731 data: 0.0004 max mem: 14260\n",
"Epoch: [3] [1800/2503] eta: 0:04:24 lr: 0.001 img/s: 1373.4305505723682 loss: 2.1926 (2.2065) acc1: 67.3828 (67.5973) acc5: 85.9375 (86.0772) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [3] [1900/2503] eta: 0:03:47 lr: 0.001 img/s: 1373.463051483991 loss: 2.1696 (2.2061) acc1: 67.3828 (67.5950) acc5: 86.3281 (86.0694) time: 0.3731 data: 0.0004 max mem: 14260\n",
"Epoch: [3] [2000/2503] eta: 0:03:09 lr: 0.001 img/s: 1372.961654599217 loss: 2.2190 (2.2065) acc1: 67.5781 (67.5911) acc5: 86.1328 (86.0679) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [3] [2100/2503] eta: 0:02:31 lr: 0.001 img/s: 1373.8813085463426 loss: 2.2275 (2.2058) acc1: 68.1641 (67.6105) acc5: 86.1328 (86.0772) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [3] [2200/2503] eta: 0:01:53 lr: 0.001 img/s: 1373.0116900288224 loss: 2.1538 (2.2060) acc1: 67.9688 (67.6105) acc5: 86.5234 (86.0739) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [3] [2300/2503] eta: 0:01:16 lr: 0.001 img/s: 1374.5918746439477 loss: 2.1686 (2.2049) acc1: 67.1875 (67.6216) acc5: 85.7422 (86.0791) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [3] [2400/2503] eta: 0:00:38 lr: 0.001 img/s: 1375.5507196154706 loss: 2.1970 (2.2041) acc1: 66.6016 (67.6306) acc5: 86.1328 (86.0897) time: 0.3732 data: 0.0005 max mem: 14260\n",
"Epoch: [3] [2500/2503] eta: 0:00:01 lr: 0.001 img/s: 1373.6352441347408 loss: 2.1789 (2.2035) acc1: 67.3828 (67.6246) acc5: 85.9375 (86.0923) time: 0.3725 data: 0.0002 max mem: 14260\n",
"Epoch: [3] Total time: 0:15:40\n",
"Test: [ 0/782] eta: 0:21:13 loss: 0.6460 (0.6460) acc1: 84.3750 (84.3750) acc5: 95.3125 (95.3125) time: 1.6289 data: 1.6146 max mem: 14260\n",
"Test: [100/782] eta: 0:00:32 loss: 1.1729 (1.0473) acc1: 75.0000 (75.9746) acc5: 89.0625 (91.7079) time: 0.0438 data: 0.0298 max mem: 14260\n",
"Test: [200/782] eta: 0:00:22 loss: 0.8982 (1.0269) acc1: 76.5625 (75.1477) acc5: 95.3125 (92.7394) time: 0.0272 data: 0.0132 max mem: 14260\n",
"Test: [300/782] eta: 0:00:17 loss: 0.8512 (1.0179) acc1: 79.6875 (75.7164) acc5: 92.1875 (92.9973) time: 0.0347 data: 0.0208 max mem: 14260\n",
"Test: [400/782] eta: 0:00:13 loss: 1.9055 (1.1681) acc1: 59.3750 (72.9076) acc5: 84.3750 (91.2290) time: 0.0265 data: 0.0123 max mem: 14260\n",
"Test: [500/782] eta: 0:00:09 loss: 1.9462 (1.2500) acc1: 56.2500 (71.4353) acc5: 84.3750 (90.0792) time: 0.0314 data: 0.0175 max mem: 14260\n",
"Test: [600/782] eta: 0:00:06 loss: 1.5161 (1.3183) acc1: 62.5000 (70.0525) acc5: 85.9375 (89.2133) time: 0.0271 data: 0.0132 max mem: 14260\n",
"Test: [700/782] eta: 0:00:02 loss: 1.4580 (1.3705) acc1: 67.1875 (69.1245) acc5: 84.3750 (88.5231) time: 0.0279 data: 0.0141 max mem: 14260\n",
"Test: Total time: 0:00:25\n",
"Test: Acc@1 69.080 Acc@5 88.544\n",
"Epoch: [4] [ 0/2503] eta: 4:30:12 lr: 0.001 img/s: 1382.6509293287766 loss: 2.3736 (2.3736) acc1: 63.6719 (63.6719) acc5: 86.5234 (86.5234) time: 6.4770 data: 6.1067 max mem: 14260\n",
"Epoch: [4] [ 100/2503] eta: 0:17:17 lr: 0.001 img/s: 1378.5105091765527 loss: 2.1491 (2.1932) acc1: 68.1641 (67.9513) acc5: 87.1094 (86.2740) time: 0.3720 data: 0.0003 max mem: 14260\n",
"Epoch: [4] [ 200/2503] eta: 0:15:26 lr: 0.001 img/s: 1372.9177668739112 loss: 2.1940 (2.1872) acc1: 67.1875 (67.9969) acc5: 85.7422 (86.2212) time: 0.3733 data: 0.0003 max mem: 14260\n",
"Epoch: [4] [ 300/2503] eta: 0:14:25 lr: 0.001 img/s: 1371.3895925584864 loss: 2.1707 (2.1943) acc1: 67.5781 (67.9720) acc5: 86.1328 (86.1562) time: 0.3735 data: 0.0003 max mem: 14260\n",
"Epoch: [4] [ 400/2503] eta: 0:13:35 lr: 0.001 img/s: 1373.3567704286377 loss: 2.1956 (2.1902) acc1: 66.9922 (67.8923) acc5: 85.7422 (86.1913) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [4] [ 500/2503] eta: 0:12:51 lr: 0.001 img/s: 1376.375920448391 loss: 2.1416 (2.1890) acc1: 67.7734 (67.9278) acc5: 86.5234 (86.2201) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [4] [ 600/2503] eta: 0:12:08 lr: 0.001 img/s: 1376.8489173300918 loss: 2.1248 (2.1860) acc1: 67.5781 (67.9216) acc5: 86.3281 (86.2482) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [4] [ 700/2503] eta: 0:11:27 lr: 0.001 img/s: 1373.8479089203872 loss: 2.1350 (2.1847) acc1: 68.5547 (67.8983) acc5: 86.5234 (86.2509) time: 0.3731 data: 0.0004 max mem: 14260\n",
"Epoch: [4] [ 800/2503] eta: 0:10:48 lr: 0.001 img/s: 1373.659846609481 loss: 2.1745 (2.1827) acc1: 67.9688 (67.9524) acc5: 86.3281 (86.2828) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [4] [ 900/2503] eta: 0:10:08 lr: 0.001 img/s: 1375.2564964153403 loss: 2.1277 (2.1816) acc1: 68.5547 (67.9666) acc5: 86.5234 (86.2778) time: 0.3733 data: 0.0005 max mem: 14260\n",
"Epoch: [4] [1000/2503] eta: 0:09:29 lr: 0.001 img/s: 1374.41944208706 loss: 2.1935 (2.1810) acc1: 67.5781 (67.9851) acc5: 86.3281 (86.2672) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [4] [1100/2503] eta: 0:08:51 lr: 0.001 img/s: 1374.5874753164455 loss: 2.2101 (2.1814) acc1: 67.1875 (67.9473) acc5: 85.5469 (86.2471) time: 0.3733 data: 0.0003 max mem: 14260\n",
"Epoch: [4] [1200/2503] eta: 0:08:12 lr: 0.001 img/s: 1375.4238534578003 loss: 2.1642 (2.1809) acc1: 67.3828 (67.9583) acc5: 86.5234 (86.2507) time: 0.3735 data: 0.0004 max mem: 14260\n",
"Epoch: [4] [1300/2503] eta: 0:07:34 lr: 0.001 img/s: 1374.8013152099318 loss: 2.1941 (2.1805) acc1: 68.3594 (67.9688) acc5: 85.5469 (86.2435) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [4] [1400/2503] eta: 0:06:56 lr: 0.001 img/s: 1374.1810989309142 loss: 2.1316 (2.1809) acc1: 68.5547 (67.9814) acc5: 85.9375 (86.2453) time: 0.3734 data: 0.0005 max mem: 14260\n",
"Epoch: [4] [1500/2503] eta: 0:06:18 lr: 0.001 img/s: 1377.0043006464114 loss: 2.1451 (2.1803) acc1: 67.3828 (67.9863) acc5: 86.5234 (86.2486) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [4] [1600/2503] eta: 0:05:40 lr: 0.001 img/s: 1373.8909771622075 loss: 2.1422 (2.1813) acc1: 68.1641 (67.9723) acc5: 86.7188 (86.2364) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [4] [1700/2503] eta: 0:05:02 lr: 0.001 img/s: 1374.3481943263146 loss: 2.1529 (2.1815) acc1: 68.3594 (67.9662) acc5: 86.7188 (86.2380) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [4] [1800/2503] eta: 0:04:24 lr: 0.001 img/s: 1374.854125426064 loss: 2.1541 (2.1817) acc1: 68.5547 (67.9540) acc5: 86.5234 (86.2261) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [4] [1900/2503] eta: 0:03:46 lr: 0.001 img/s: 1371.723343491722 loss: 2.1893 (2.1806) acc1: 69.1406 (67.9705) acc5: 86.3281 (86.2388) time: 0.3734 data: 0.0005 max mem: 14260\n",
"Epoch: [4] [2000/2503] eta: 0:03:09 lr: 0.001 img/s: 1376.041665385128 loss: 2.1741 (2.1805) acc1: 67.1875 (67.9476) acc5: 86.7188 (86.2363) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [4] [2100/2503] eta: 0:02:31 lr: 0.001 img/s: 1374.115151406567 loss: 2.1454 (2.1806) acc1: 67.3828 (67.9351) acc5: 85.9375 (86.2380) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [4] [2200/2503] eta: 0:01:53 lr: 0.001 img/s: 1371.6120751323401 loss: 2.1076 (2.1804) acc1: 68.3594 (67.9465) acc5: 86.5234 (86.2448) time: 0.3733 data: 0.0005 max mem: 14260\n",
"Epoch: [4] [2300/2503] eta: 0:01:16 lr: 0.001 img/s: 1372.1826259590175 loss: 2.1178 (2.1807) acc1: 68.1641 (67.9456) acc5: 86.5234 (86.2320) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [4] [2400/2503] eta: 0:00:38 lr: 0.001 img/s: 1372.0204395865571 loss: 2.1817 (2.1806) acc1: 68.5547 (67.9448) acc5: 86.5234 (86.2347) time: 0.3735 data: 0.0004 max mem: 14260\n",
"Epoch: [4] [2500/2503] eta: 0:00:01 lr: 0.001 img/s: 1377.6827475597668 loss: 2.1835 (2.1796) acc1: 67.9688 (67.9440) acc5: 85.9375 (86.2433) time: 0.3722 data: 0.0001 max mem: 14260\n",
"Epoch: [4] Total time: 0:15:40\n",
"Test: [ 0/782] eta: 0:14:26 loss: 0.7886 (0.7886) acc1: 81.2500 (81.2500) acc5: 90.6250 (90.6250) time: 1.1077 data: 1.0937 max mem: 14260\n",
"Test: [100/782] eta: 0:00:28 loss: 1.1426 (1.0401) acc1: 76.5625 (76.3923) acc5: 90.6250 (91.9400) time: 0.0392 data: 0.0253 max mem: 14260\n",
"Test: [200/782] eta: 0:00:20 loss: 1.0887 (1.0258) acc1: 73.4375 (75.6141) acc5: 95.3125 (92.8172) time: 0.0252 data: 0.0113 max mem: 14260\n",
"Test: [300/782] eta: 0:00:17 loss: 0.8914 (1.0167) acc1: 76.5625 (76.0330) acc5: 92.1875 (93.1167) time: 0.0417 data: 0.0278 max mem: 14260\n",
"Test: [400/782] eta: 0:00:13 loss: 1.8164 (1.1685) acc1: 59.3750 (73.2271) acc5: 82.8125 (91.2329) time: 0.0310 data: 0.0171 max mem: 14260\n",
"Test: [500/782] eta: 0:00:09 loss: 1.8076 (1.2538) acc1: 56.2500 (71.8001) acc5: 84.3750 (90.1073) time: 0.0291 data: 0.0153 max mem: 14260\n",
"Test: [600/782] eta: 0:00:06 loss: 1.4276 (1.3227) acc1: 64.0625 (70.3619) acc5: 82.8125 (89.2679) time: 0.0267 data: 0.0127 max mem: 14260\n",
"Test: [700/782] eta: 0:00:02 loss: 1.3476 (1.3775) acc1: 68.7500 (69.3808) acc5: 85.9375 (88.4763) time: 0.0369 data: 0.0229 max mem: 14260\n",
"Test: Total time: 0:00:25\n",
"Test: Acc@1 69.350 Acc@5 88.510\n",
"Epoch: [5] [ 0/2503] eta: 3:38:30 lr: 0.0005 img/s: 1384.6568204297596 loss: 2.1909 (2.1909) acc1: 68.1641 (68.1641) acc5: 88.8672 (88.8672) time: 5.2378 data: 4.8680 max mem: 14260\n",
"Epoch: [5] [ 100/2503] eta: 0:17:31 lr: 0.0005 img/s: 1376.145716838 loss: 2.1311 (2.1426) acc1: 68.5547 (68.7597) acc5: 86.3281 (86.6066) time: 0.3722 data: 0.0003 max mem: 14260\n",
"Epoch: [5] [ 200/2503] eta: 0:15:34 lr: 0.0005 img/s: 1370.6832073273868 loss: 2.0784 (2.1287) acc1: 69.9219 (68.9269) acc5: 86.9141 (86.6711) time: 0.3737 data: 0.0003 max mem: 14260\n",
"Epoch: [5] [ 300/2503] eta: 0:14:30 lr: 0.0005 img/s: 1371.4062324581598 loss: 2.1135 (2.1308) acc1: 68.3594 (68.9343) acc5: 86.5234 (86.7252) time: 0.3739 data: 0.0003 max mem: 14260\n",
"Epoch: [5] [ 400/2503] eta: 0:13:39 lr: 0.0005 img/s: 1371.5691496461995 loss: 2.1033 (2.1284) acc1: 67.9688 (68.9088) acc5: 86.7188 (86.6929) time: 0.3735 data: 0.0003 max mem: 14260\n",
"Epoch: [5] [ 500/2503] eta: 0:12:54 lr: 0.0005 img/s: 1375.4335437970838 loss: 2.1092 (2.1302) acc1: 68.9453 (68.8681) acc5: 86.5234 (86.5979) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [5] [ 600/2503] eta: 0:12:11 lr: 0.0005 img/s: 1375.2107005335026 loss: 2.1298 (2.1278) acc1: 68.5547 (68.8559) acc5: 86.9141 (86.6174) time: 0.3734 data: 0.0003 max mem: 14260\n",
"Epoch: [5] [ 700/2503] eta: 0:11:30 lr: 0.0005 img/s: 1372.7413665256945 loss: 2.1303 (2.1261) acc1: 68.1641 (68.8720) acc5: 87.3047 (86.6388) time: 0.3735 data: 0.0004 max mem: 14260\n",
"Epoch: [5] [ 800/2503] eta: 0:10:49 lr: 0.0005 img/s: 1373.4033212630675 loss: 2.1036 (2.1246) acc1: 67.9688 (68.8614) acc5: 85.9375 (86.6395) time: 0.3737 data: 0.0005 max mem: 14260\n",
"Epoch: [5] [ 900/2503] eta: 0:10:10 lr: 0.0005 img/s: 1371.7811751223753 loss: 2.1149 (2.1246) acc1: 67.9688 (68.8159) acc5: 85.9375 (86.6190) time: 0.3734 data: 0.0004 max mem: 14260\n",
"Epoch: [5] [1000/2503] eta: 0:09:31 lr: 0.0005 img/s: 1371.9284049158534 loss: 2.0887 (2.1243) acc1: 67.9688 (68.7960) acc5: 86.3281 (86.6101) time: 0.3737 data: 0.0004 max mem: 14260\n",
"Epoch: [5] [1100/2503] eta: 0:08:52 lr: 0.0005 img/s: 1368.3695843055893 loss: 2.0901 (2.1223) acc1: 68.5547 (68.7977) acc5: 86.7188 (86.6175) time: 0.3736 data: 0.0004 max mem: 14260\n",
"Epoch: [5] [1200/2503] eta: 0:08:13 lr: 0.0005 img/s: 1373.9410803513733 loss: 2.1272 (2.1232) acc1: 68.3594 (68.7907) acc5: 85.9375 (86.6052) time: 0.3735 data: 0.0004 max mem: 14260\n",
"Epoch: [5] [1300/2503] eta: 0:07:35 lr: 0.0005 img/s: 1374.7273877228067 loss: 2.1486 (2.1239) acc1: 67.7734 (68.7691) acc5: 86.1328 (86.6065) time: 0.3737 data: 0.0005 max mem: 14260\n",
"Epoch: [5] [1400/2503] eta: 0:06:57 lr: 0.0005 img/s: 1374.2514499343106 loss: 2.1073 (2.1244) acc1: 70.1172 (68.7754) acc5: 86.7188 (86.6071) time: 0.3737 data: 0.0004 max mem: 14260\n",
"Epoch: [5] [1500/2503] eta: 0:06:19 lr: 0.0005 img/s: 1374.0210772279306 loss: 2.1250 (2.1237) acc1: 68.1641 (68.7741) acc5: 86.9141 (86.6221) time: 0.3735 data: 0.0004 max mem: 14260\n",
"Epoch: [5] [1600/2503] eta: 0:05:40 lr: 0.0005 img/s: 1372.7457540442772 loss: 2.1263 (2.1235) acc1: 68.5547 (68.7815) acc5: 86.5234 (86.6377) time: 0.3736 data: 0.0004 max mem: 14260\n",
"Epoch: [5] [1700/2503] eta: 0:05:03 lr: 0.0005 img/s: 1374.649068464126 loss: 2.1610 (2.1234) acc1: 68.3594 (68.7772) acc5: 87.3047 (86.6524) time: 0.3736 data: 0.0004 max mem: 14260\n",
"Epoch: [5] [1800/2503] eta: 0:04:25 lr: 0.0005 img/s: 1370.6219690514713 loss: 2.1261 (2.1233) acc1: 68.9453 (68.7823) acc5: 86.9141 (86.6581) time: 0.3737 data: 0.0004 max mem: 14260\n",
"Epoch: [5] [1900/2503] eta: 0:03:47 lr: 0.0005 img/s: 1373.3084662953322 loss: 2.1031 (2.1242) acc1: 69.3359 (68.7770) acc5: 86.5234 (86.6429) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [5] [2000/2503] eta: 0:03:09 lr: 0.0005 img/s: 1373.4867693362507 loss: 2.1362 (2.1242) acc1: 68.7500 (68.7747) acc5: 85.9375 (86.6454) time: 0.3736 data: 0.0004 max mem: 14260\n",
"Epoch: [5] [2100/2503] eta: 0:02:31 lr: 0.0005 img/s: 1374.148564027812 loss: 2.0572 (2.1238) acc1: 69.5312 (68.7785) acc5: 86.7188 (86.6375) time: 0.3733 data: 0.0003 max mem: 14260\n",
"Epoch: [5] [2200/2503] eta: 0:01:54 lr: 0.0005 img/s: 1375.4590917097134 loss: 2.0764 (2.1235) acc1: 68.5547 (68.7793) acc5: 86.9141 (86.6440) time: 0.3733 data: 0.0003 max mem: 14260\n",
"Epoch: [5] [2300/2503] eta: 0:01:16 lr: 0.0005 img/s: 1372.3834395034714 loss: 2.1352 (2.1226) acc1: 68.3594 (68.7862) acc5: 87.1094 (86.6495) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [5] [2400/2503] eta: 0:00:38 lr: 0.0005 img/s: 1372.4115054654028 loss: 2.1190 (2.1228) acc1: 68.3594 (68.7825) acc5: 86.3281 (86.6402) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [5] [2500/2503] eta: 0:00:01 lr: 0.0005 img/s: 1373.438456057949 loss: 2.1008 (2.1223) acc1: 67.9688 (68.7743) acc5: 86.3281 (86.6373) time: 0.3727 data: 0.0001 max mem: 14260\n",
"Epoch: [5] Total time: 0:15:41\n",
"Test: [ 0/782] eta: 0:14:44 loss: 0.6408 (0.6408) acc1: 85.9375 (85.9375) acc5: 95.3125 (95.3125) time: 1.1316 data: 1.1173 max mem: 14260\n",
"Test: [100/782] eta: 0:00:29 loss: 1.0767 (1.0193) acc1: 78.1250 (76.7172) acc5: 90.6250 (92.3422) time: 0.0415 data: 0.0275 max mem: 14260\n",
"Test: [200/782] eta: 0:00:21 loss: 0.8614 (0.9945) acc1: 75.0000 (76.2127) acc5: 96.8750 (93.1203) time: 0.0266 data: 0.0126 max mem: 14260\n",
"Test: [300/782] eta: 0:00:17 loss: 0.8539 (0.9893) acc1: 78.1250 (76.5729) acc5: 92.1875 (93.3711) time: 0.0287 data: 0.0147 max mem: 14260\n",
"Test: [400/782] eta: 0:00:13 loss: 1.8363 (1.1393) acc1: 60.9375 (73.8661) acc5: 82.8125 (91.5680) time: 0.0270 data: 0.0129 max mem: 14260\n",
"Test: [500/782] eta: 0:00:09 loss: 1.9171 (1.2267) acc1: 56.2500 (72.3179) acc5: 84.3750 (90.4036) time: 0.0264 data: 0.0125 max mem: 14260\n",
"Test: [600/782] eta: 0:00:06 loss: 1.4282 (1.2941) acc1: 62.5000 (70.8611) acc5: 82.8125 (89.6215) time: 0.0340 data: 0.0202 max mem: 14260\n",
"Test: [700/782] eta: 0:00:02 loss: 1.3874 (1.3462) acc1: 68.7500 (69.8734) acc5: 85.9375 (88.9087) time: 0.0280 data: 0.0142 max mem: 14260\n",
"Test: Total time: 0:00:26\n",
"Test: Acc@1 69.826 Acc@5 88.892\n",
"Epoch: [6] [ 0/2503] eta: 3:58:54 lr: 0.0005 img/s: 1382.5289805388652 loss: 2.2078 (2.2078) acc1: 67.9688 (67.9688) acc5: 85.5469 (85.5469) time: 5.7268 data: 5.3564 max mem: 14260\n",
"Epoch: [6] [ 100/2503] eta: 0:16:59 lr: 0.0005 img/s: 1378.7317676984603 loss: 2.0922 (2.1056) acc1: 69.1406 (69.0555) acc5: 86.5234 (86.8696) time: 0.3720 data: 0.0003 max mem: 14260\n",
"Epoch: [6] [ 200/2503] eta: 0:15:17 lr: 0.0005 img/s: 1373.7485985738494 loss: 2.1611 (2.1031) acc1: 69.1406 (69.1630) acc5: 86.5234 (86.7839) time: 0.3733 data: 0.0003 max mem: 14260\n",
"Epoch: [6] [ 300/2503] eta: 0:14:19 lr: 0.0005 img/s: 1372.0318352143677 loss: 2.1514 (2.1035) acc1: 68.7500 (69.0595) acc5: 87.1094 (86.6883) time: 0.3735 data: 0.0003 max mem: 14260\n",
"Epoch: [6] [ 400/2503] eta: 0:13:31 lr: 0.0005 img/s: 1375.015221646458 loss: 2.0837 (2.1048) acc1: 68.7500 (69.0237) acc5: 87.1094 (86.6959) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [6] [ 500/2503] eta: 0:12:47 lr: 0.0005 img/s: 1373.273338150751 loss: 2.0800 (2.1028) acc1: 68.3594 (68.9991) acc5: 87.5000 (86.7152) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [6] [ 600/2503] eta: 0:12:06 lr: 0.0005 img/s: 1376.3044697069715 loss: 2.0787 (2.1029) acc1: 68.7500 (69.0110) acc5: 86.3281 (86.7356) time: 0.3728 data: 0.0003 max mem: 14260\n",
"Epoch: [6] [ 700/2503] eta: 0:11:25 lr: 0.0005 img/s: 1374.2127559910693 loss: 2.1109 (2.1046) acc1: 68.9453 (69.0022) acc5: 86.3281 (86.7051) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [6] [ 800/2503] eta: 0:10:46 lr: 0.0005 img/s: 1374.1213062410218 loss: 2.0157 (2.1058) acc1: 69.7266 (68.9948) acc5: 86.9141 (86.6980) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [6] [ 900/2503] eta: 0:10:07 lr: 0.0005 img/s: 1376.1695274335636 loss: 2.1286 (2.1067) acc1: 68.3594 (68.9700) acc5: 86.7188 (86.6797) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [6] [1000/2503] eta: 0:09:28 lr: 0.0005 img/s: 1374.0782235576708 loss: 2.1129 (2.1050) acc1: 69.1406 (68.9937) acc5: 86.3281 (86.7209) time: 0.3731 data: 0.0004 max mem: 14260\n",
"Epoch: [6] [1100/2503] eta: 0:08:50 lr: 0.0005 img/s: 1372.4018576615117 loss: 2.1073 (2.1074) acc1: 69.1406 (68.9714) acc5: 86.5234 (86.7030) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [6] [1200/2503] eta: 0:08:11 lr: 0.0005 img/s: 1373.360283589067 loss: 2.1258 (2.1072) acc1: 68.1641 (68.9421) acc5: 86.1328 (86.7062) time: 0.3733 data: 0.0005 max mem: 14260\n",
"Epoch: [6] [1300/2503] eta: 0:07:33 lr: 0.0005 img/s: 1375.2661843965818 loss: 2.0873 (2.1069) acc1: 68.5547 (68.9518) acc5: 87.1094 (86.7148) time: 0.3731 data: 0.0004 max mem: 14260\n",
"Epoch: [6] [1400/2503] eta: 0:06:55 lr: 0.0005 img/s: 1375.4476390797913 loss: 2.1331 (2.1069) acc1: 68.3594 (68.9512) acc5: 86.7188 (86.7203) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [6] [1500/2503] eta: 0:06:17 lr: 0.0005 img/s: 1374.7300278532987 loss: 2.0836 (2.1075) acc1: 68.5547 (68.9473) acc5: 86.7188 (86.7115) time: 0.3733 data: 0.0005 max mem: 14260\n",
"Epoch: [6] [1600/2503] eta: 0:05:39 lr: 0.0005 img/s: 1373.1591840910544 loss: 2.0973 (2.1071) acc1: 68.7500 (68.9613) acc5: 87.1094 (86.7238) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [6] [1700/2503] eta: 0:05:02 lr: 0.0005 img/s: 1374.3235671887749 loss: 2.0603 (2.1067) acc1: 70.1172 (68.9723) acc5: 87.5000 (86.7394) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [6] [1800/2503] eta: 0:04:24 lr: 0.0005 img/s: 1374.2101178470139 loss: 2.0859 (2.1060) acc1: 68.7500 (68.9833) acc5: 86.9141 (86.7514) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [6] [1900/2503] eta: 0:03:46 lr: 0.0005 img/s: 1372.5983487787776 loss: 2.1176 (2.1065) acc1: 68.5547 (68.9724) acc5: 86.1328 (86.7435) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [6] [2000/2503] eta: 0:03:08 lr: 0.0005 img/s: 1374.1177891860107 loss: 2.0992 (2.1062) acc1: 68.9453 (68.9624) acc5: 86.5234 (86.7397) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [6] [2100/2503] eta: 0:02:31 lr: 0.0005 img/s: 1373.3427179666571 loss: 2.1189 (2.1061) acc1: 68.7500 (68.9620) acc5: 86.7188 (86.7408) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [6] [2200/2503] eta: 0:01:53 lr: 0.0005 img/s: 1376.7085727766707 loss: 2.1298 (2.1069) acc1: 68.9453 (68.9591) acc5: 87.1094 (86.7350) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [6] [2300/2503] eta: 0:01:16 lr: 0.0005 img/s: 1374.38953472 loss: 2.0977 (2.1065) acc1: 68.7500 (68.9612) acc5: 86.5234 (86.7406) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [6] [2400/2503] eta: 0:00:38 lr: 0.0005 img/s: 1374.8963765202404 loss: 2.0938 (2.1068) acc1: 69.5312 (68.9646) acc5: 86.3281 (86.7427) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [6] [2500/2503] eta: 0:00:01 lr: 0.0005 img/s: 1374.408006763611 loss: 2.0790 (2.1071) acc1: 68.5547 (68.9612) acc5: 86.3281 (86.7348) time: 0.3723 data: 0.0001 max mem: 14260\n",
"Epoch: [6] Total time: 0:15:39\n",
"Test: [ 0/782] eta: 0:14:41 loss: 0.6884 (0.6884) acc1: 84.3750 (84.3750) acc5: 95.3125 (95.3125) time: 1.1274 data: 1.1136 max mem: 14260\n",
"Test: [100/782] eta: 0:00:28 loss: 1.0928 (1.0222) acc1: 78.1250 (76.8100) acc5: 90.6250 (92.2339) time: 0.0378 data: 0.0239 max mem: 14260\n",
"Test: [200/782] eta: 0:00:20 loss: 0.9227 (1.0006) acc1: 73.4375 (76.1039) acc5: 95.3125 (93.0271) time: 0.0235 data: 0.0096 max mem: 14260\n",
"Test: [300/782] eta: 0:00:17 loss: 0.8622 (0.9921) acc1: 79.6875 (76.6352) acc5: 92.1875 (93.3140) time: 0.0376 data: 0.0237 max mem: 14260\n",
"Test: [400/782] eta: 0:00:13 loss: 1.8481 (1.1427) acc1: 60.9375 (73.9129) acc5: 84.3750 (91.5368) time: 0.0304 data: 0.0165 max mem: 14260\n",
"Test: [500/782] eta: 0:00:09 loss: 1.9001 (1.2259) acc1: 56.2500 (72.4988) acc5: 84.3750 (90.3942) time: 0.0282 data: 0.0143 max mem: 14260\n",
"Test: [600/782] eta: 0:00:06 loss: 1.4800 (1.2927) acc1: 62.5000 (71.1366) acc5: 82.8125 (89.6293) time: 0.0225 data: 0.0086 max mem: 14260\n",
"Test: [700/782] eta: 0:00:02 loss: 1.4293 (1.3471) acc1: 71.8750 (70.0807) acc5: 85.9375 (88.9087) time: 0.0324 data: 0.0184 max mem: 14260\n",
"Test: Total time: 0:00:25\n",
"Test: Acc@1 69.970 Acc@5 88.936\n",
"Epoch: [7] [ 0/2503] eta: 3:39:34 lr: 0.00025 img/s: 1386.0098412288628 loss: 2.2069 (2.2069) acc1: 69.7266 (69.7266) acc5: 87.6953 (87.6953) time: 5.2636 data: 4.8942 max mem: 14260\n",
"Epoch: [7] [ 100/2503] eta: 0:17:35 lr: 0.00025 img/s: 1375.9808290291555 loss: 2.0126 (2.0921) acc1: 69.9219 (69.4868) acc5: 87.3047 (86.8038) time: 0.3723 data: 0.0004 max mem: 14260\n",
"Epoch: [7] [ 200/2503] eta: 0:15:35 lr: 0.00025 img/s: 1374.2417762442183 loss: 2.1093 (2.0838) acc1: 68.7500 (69.3855) acc5: 86.7188 (86.9131) time: 0.3734 data: 0.0003 max mem: 14260\n",
"Epoch: [7] [ 300/2503] eta: 0:14:31 lr: 0.00025 img/s: 1373.4164966004885 loss: 2.0579 (2.0859) acc1: 69.7266 (69.3249) acc5: 87.1094 (86.8641) time: 0.3740 data: 0.0004 max mem: 14260\n",
"Epoch: [7] [ 400/2503] eta: 0:13:40 lr: 0.00025 img/s: 1372.4237846847204 loss: 2.0518 (2.0854) acc1: 69.9219 (69.3491) acc5: 87.3047 (86.8585) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [7] [ 500/2503] eta: 0:12:54 lr: 0.00025 img/s: 1372.9625323823432 loss: 2.0516 (2.0824) acc1: 68.9453 (69.3800) acc5: 87.1094 (86.9191) time: 0.3733 data: 0.0003 max mem: 14260\n",
"Epoch: [7] [ 600/2503] eta: 0:12:11 lr: 0.00025 img/s: 1374.5953941262244 loss: 2.0705 (2.0839) acc1: 68.9453 (69.3554) acc5: 86.1328 (86.8676) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [7] [ 700/2503] eta: 0:11:30 lr: 0.00025 img/s: 1376.5126678589056 loss: 2.0908 (2.0819) acc1: 68.9453 (69.3568) acc5: 85.9375 (86.8781) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [7] [ 800/2503] eta: 0:10:49 lr: 0.00025 img/s: 1372.6887184902419 loss: 2.0244 (2.0802) acc1: 69.7266 (69.3450) acc5: 86.7188 (86.8797) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [7] [ 900/2503] eta: 0:10:10 lr: 0.00025 img/s: 1370.5467409458663 loss: 2.0942 (2.0803) acc1: 67.5781 (69.3468) acc5: 86.9141 (86.8755) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [7] [1000/2503] eta: 0:09:31 lr: 0.00025 img/s: 1375.6784904384012 loss: 2.0316 (2.0799) acc1: 69.3359 (69.3418) acc5: 87.1094 (86.8893) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [7] [1100/2503] eta: 0:08:52 lr: 0.00025 img/s: 1372.4553608290908 loss: 2.0875 (2.0782) acc1: 70.1172 (69.3746) acc5: 87.3047 (86.9123) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [7] [1200/2503] eta: 0:08:13 lr: 0.00025 img/s: 1372.5079909653455 loss: 2.0568 (2.0775) acc1: 69.1406 (69.3959) acc5: 87.3047 (86.9233) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [7] [1300/2503] eta: 0:07:35 lr: 0.00025 img/s: 1370.9010849831086 loss: 2.0831 (2.0785) acc1: 69.1406 (69.3987) acc5: 86.9141 (86.9133) time: 0.3736 data: 0.0005 max mem: 14260\n",
"Epoch: [7] [1400/2503] eta: 0:06:56 lr: 0.00025 img/s: 1374.925425653903 loss: 2.1004 (2.0775) acc1: 69.1406 (69.4249) acc5: 86.9141 (86.9272) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [7] [1500/2503] eta: 0:06:18 lr: 0.00025 img/s: 1374.322687664472 loss: 2.0689 (2.0784) acc1: 70.1172 (69.4242) acc5: 87.5000 (86.9249) time: 0.3734 data: 0.0005 max mem: 14260\n",
"Epoch: [7] [1600/2503] eta: 0:05:40 lr: 0.00025 img/s: 1375.4106395788233 loss: 2.0802 (2.0790) acc1: 70.3125 (69.4226) acc5: 86.3281 (86.9213) time: 0.3731 data: 0.0004 max mem: 14260\n",
"Epoch: [7] [1700/2503] eta: 0:05:02 lr: 0.00025 img/s: 1374.4950959433684 loss: 2.0082 (2.0790) acc1: 69.7266 (69.4192) acc5: 86.3281 (86.9269) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [7] [1800/2503] eta: 0:04:25 lr: 0.00025 img/s: 1374.163512305496 loss: 2.0532 (2.0788) acc1: 69.5312 (69.4340) acc5: 87.3047 (86.9320) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [7] [1900/2503] eta: 0:03:47 lr: 0.00025 img/s: 1372.0528737938141 loss: 2.0800 (2.0794) acc1: 69.1406 (69.4261) acc5: 87.1094 (86.9262) time: 0.3735 data: 0.0004 max mem: 14260\n",
"Epoch: [7] [2000/2503] eta: 0:03:09 lr: 0.00025 img/s: 1373.3014405226452 loss: 2.1463 (2.0796) acc1: 68.7500 (69.4094) acc5: 86.1328 (86.9198) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [7] [2100/2503] eta: 0:02:31 lr: 0.00025 img/s: 1376.33357837278 loss: 2.1390 (2.0798) acc1: 68.7500 (69.4111) acc5: 86.5234 (86.9282) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [7] [2200/2503] eta: 0:01:54 lr: 0.00025 img/s: 1373.950749808541 loss: 2.0798 (2.0800) acc1: 68.9453 (69.4145) acc5: 86.3281 (86.9272) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [7] [2300/2503] eta: 0:01:16 lr: 0.00025 img/s: 1375.9376296658897 loss: 2.0959 (2.0796) acc1: 69.1406 (69.4167) acc5: 86.5234 (86.9196) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [7] [2400/2503] eta: 0:00:38 lr: 0.00025 img/s: 1375.1649077015584 loss: 2.0908 (2.0796) acc1: 69.3359 (69.4115) acc5: 87.3047 (86.9178) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [7] [2500/2503] eta: 0:00:01 lr: 0.00025 img/s: 1374.5839558747189 loss: 2.1112 (2.0791) acc1: 68.5547 (69.4110) acc5: 85.7422 (86.9191) time: 0.3727 data: 0.0002 max mem: 14260\n",
"Epoch: [7] Total time: 0:15:40\n",
"Test: [ 0/782] eta: 0:19:46 loss: 0.6660 (0.6660) acc1: 85.9375 (85.9375) acc5: 93.7500 (93.7500) time: 1.5172 data: 1.5031 max mem: 14260\n",
"Test: [100/782] eta: 0:00:33 loss: 1.0802 (1.0143) acc1: 76.5625 (76.8255) acc5: 89.0625 (91.9554) time: 0.0373 data: 0.0233 max mem: 14260\n",
"Test: [200/782] eta: 0:00:23 loss: 0.8769 (0.9842) acc1: 73.4375 (76.4925) acc5: 95.3125 (93.1126) time: 0.0272 data: 0.0132 max mem: 14260\n",
"Test: [300/782] eta: 0:00:18 loss: 0.8049 (0.9795) acc1: 78.1250 (76.8792) acc5: 92.1875 (93.4489) time: 0.0353 data: 0.0213 max mem: 14260\n",
"Test: [400/782] eta: 0:00:13 loss: 1.8327 (1.1295) acc1: 60.9375 (74.1700) acc5: 84.3750 (91.6576) time: 0.0281 data: 0.0142 max mem: 14260\n",
"Test: [500/782] eta: 0:00:10 loss: 1.7833 (1.2144) acc1: 57.8125 (72.6547) acc5: 84.3750 (90.4722) time: 0.0298 data: 0.0159 max mem: 14260\n",
"Test: [600/782] eta: 0:00:06 loss: 1.4185 (1.2814) acc1: 65.6250 (71.3290) acc5: 84.3750 (89.6813) time: 0.0280 data: 0.0142 max mem: 14260\n",
"Test: [700/782] eta: 0:00:02 loss: 1.3914 (1.3335) acc1: 68.7500 (70.2969) acc5: 87.5000 (88.9934) time: 0.0310 data: 0.0171 max mem: 14260\n",
"Test: Total time: 0:00:26\n",
"Test: Acc@1 70.206 Acc@5 89.020\n",
"Epoch: [8] [ 0/2503] eta: 4:02:00 lr: 0.00025 img/s: 1381.9729176292822 loss: 2.2176 (2.2176) acc1: 67.5781 (67.5781) acc5: 85.7422 (85.7422) time: 5.8013 data: 5.4308 max mem: 14260\n",
"Epoch: [8] [ 100/2503] eta: 0:17:01 lr: 0.00025 img/s: 1376.8427380369246 loss: 2.0530 (2.0660) acc1: 69.3359 (69.3940) acc5: 86.7188 (86.9566) time: 0.3724 data: 0.0004 max mem: 14260\n",
"Epoch: [8] [ 200/2503] eta: 0:15:19 lr: 0.00025 img/s: 1373.6756629514773 loss: 2.0625 (2.0794) acc1: 68.9453 (69.2815) acc5: 87.1094 (87.0219) time: 0.3735 data: 0.0004 max mem: 14260\n",
"Epoch: [8] [ 300/2503] eta: 0:14:21 lr: 0.00025 img/s: 1370.3534600810924 loss: 2.1067 (2.0796) acc1: 68.5547 (69.3119) acc5: 86.3281 (87.0081) time: 0.3739 data: 0.0003 max mem: 14260\n",
"Epoch: [8] [ 400/2503] eta: 0:13:33 lr: 0.00025 img/s: 1374.1133928925642 loss: 2.0060 (2.0789) acc1: 69.3359 (69.3622) acc5: 86.9141 (86.9710) time: 0.3737 data: 0.0004 max mem: 14260\n",
"Epoch: [8] [ 500/2503] eta: 0:12:49 lr: 0.00025 img/s: 1374.0421768576903 loss: 2.0901 (2.0752) acc1: 69.5312 (69.4194) acc5: 87.5000 (86.9994) time: 0.3735 data: 0.0003 max mem: 14260\n",
"Epoch: [8] [ 600/2503] eta: 0:12:07 lr: 0.00025 img/s: 1373.150403795615 loss: 2.1061 (2.0733) acc1: 69.9219 (69.5267) acc5: 86.5234 (87.0294) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [8] [ 700/2503] eta: 0:11:26 lr: 0.00025 img/s: 1374.3851366875626 loss: 2.0608 (2.0724) acc1: 69.7266 (69.5502) acc5: 87.5000 (87.0545) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [8] [ 800/2503] eta: 0:10:47 lr: 0.00025 img/s: 1374.9747239625185 loss: 2.0107 (2.0721) acc1: 70.8984 (69.5725) acc5: 87.8906 (87.0782) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [8] [ 900/2503] eta: 0:10:07 lr: 0.00025 img/s: 1376.1880473553276 loss: 2.0283 (2.0728) acc1: 70.3125 (69.5599) acc5: 87.6953 (87.0573) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [8] [1000/2503] eta: 0:09:29 lr: 0.00025 img/s: 1375.5427897949642 loss: 2.0446 (2.0714) acc1: 69.7266 (69.5689) acc5: 87.3047 (87.0789) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [8] [1100/2503] eta: 0:08:50 lr: 0.00025 img/s: 1374.167029594568 loss: 2.0998 (2.0707) acc1: 69.7266 (69.5696) acc5: 85.9375 (87.0767) time: 0.3735 data: 0.0004 max mem: 14260\n",
"Epoch: [8] [1200/2503] eta: 0:08:12 lr: 0.00025 img/s: 1372.257156878783 loss: 1.9798 (2.0707) acc1: 69.3359 (69.5560) acc5: 87.1094 (87.0492) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [8] [1300/2503] eta: 0:07:33 lr: 0.00025 img/s: 1373.8786716747245 loss: 2.0388 (2.0701) acc1: 69.9219 (69.5659) acc5: 87.1094 (87.0505) time: 0.3734 data: 0.0004 max mem: 14260\n",
"Epoch: [8] [1400/2503] eta: 0:06:55 lr: 0.00025 img/s: 1373.1679644987819 loss: 2.1186 (2.0718) acc1: 68.3594 (69.5570) acc5: 86.7188 (87.0430) time: 0.3734 data: 0.0005 max mem: 14260\n",
"Epoch: [8] [1500/2503] eta: 0:06:17 lr: 0.00025 img/s: 1367.52956879347 loss: 2.0425 (2.0716) acc1: 70.3125 (69.5558) acc5: 87.1094 (87.0372) time: 0.3735 data: 0.0004 max mem: 14260\n",
"Epoch: [8] [1600/2503] eta: 0:05:40 lr: 0.00025 img/s: 1375.0328300792244 loss: 2.0820 (2.0712) acc1: 69.5312 (69.5382) acc5: 86.5234 (87.0091) time: 0.3732 data: 0.0005 max mem: 14260\n",
"Epoch: [8] [1700/2503] eta: 0:05:02 lr: 0.00025 img/s: 1373.782872203635 loss: 2.0926 (2.0712) acc1: 69.7266 (69.5286) acc5: 86.5234 (86.9977) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [8] [1800/2503] eta: 0:04:24 lr: 0.00025 img/s: 1372.195777885978 loss: 1.9958 (2.0698) acc1: 70.5078 (69.5476) acc5: 87.3047 (87.0125) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [8] [1900/2503] eta: 0:03:46 lr: 0.00025 img/s: 1372.7589167683059 loss: 2.0798 (2.0702) acc1: 69.5312 (69.5529) acc5: 86.9141 (87.0155) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [8] [2000/2503] eta: 0:03:09 lr: 0.00025 img/s: 1372.930055154169 loss: 2.0876 (2.0700) acc1: 69.3359 (69.5524) acc5: 87.3047 (87.0223) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [8] [2100/2503] eta: 0:02:31 lr: 0.00025 img/s: 1374.3033384146147 loss: 2.0913 (2.0698) acc1: 70.1172 (69.5614) acc5: 86.9141 (87.0259) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [8] [2200/2503] eta: 0:01:53 lr: 0.00025 img/s: 1375.885617705268 loss: 2.0623 (2.0696) acc1: 70.1172 (69.5517) acc5: 87.1094 (87.0260) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [8] [2300/2503] eta: 0:01:16 lr: 0.00025 img/s: 1373.4235235504755 loss: 2.0851 (2.0702) acc1: 68.7500 (69.5565) acc5: 87.1094 (87.0240) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [8] [2400/2503] eta: 0:00:38 lr: 0.00025 img/s: 1376.1016253181558 loss: 2.1105 (2.0703) acc1: 69.5312 (69.5624) acc5: 87.3047 (87.0282) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [8] [2500/2503] eta: 0:00:01 lr: 0.00025 img/s: 1376.230380476926 loss: 2.0784 (2.0705) acc1: 69.1406 (69.5512) acc5: 86.9141 (87.0310) time: 0.3724 data: 0.0001 max mem: 14260\n",
"Epoch: [8] Total time: 0:15:39\n",
"Test: [ 0/782] eta: 0:14:16 loss: 0.6473 (0.6473) acc1: 84.3750 (84.3750) acc5: 93.7500 (93.7500) time: 1.0953 data: 1.0812 max mem: 14260\n",
"Test: [100/782] eta: 0:00:28 loss: 1.0667 (1.0034) acc1: 76.5625 (77.0421) acc5: 90.6250 (92.2184) time: 0.0370 data: 0.0232 max mem: 14260\n",
"Test: [200/782] eta: 0:00:20 loss: 0.9032 (0.9782) acc1: 73.4375 (76.7257) acc5: 95.3125 (93.2914) time: 0.0260 data: 0.0121 max mem: 14260\n",
"Test: [300/782] eta: 0:00:16 loss: 0.8587 (0.9763) acc1: 79.6875 (76.9778) acc5: 92.1875 (93.5579) time: 0.0270 data: 0.0130 max mem: 14260\n",
"Test: [400/782] eta: 0:00:12 loss: 1.8124 (1.1293) acc1: 60.9375 (74.2012) acc5: 82.8125 (91.7706) time: 0.0265 data: 0.0126 max mem: 14260\n",
"Test: [500/782] eta: 0:00:09 loss: 1.8634 (1.2136) acc1: 56.2500 (72.7389) acc5: 84.3750 (90.6468) time: 0.0345 data: 0.0206 max mem: 14260\n",
"Test: [600/782] eta: 0:00:05 loss: 1.4885 (1.2794) acc1: 64.0625 (71.4434) acc5: 82.8125 (89.8814) time: 0.0287 data: 0.0148 max mem: 14260\n",
"Test: [700/782] eta: 0:00:02 loss: 1.3933 (1.3320) acc1: 70.3125 (70.4774) acc5: 87.5000 (89.1962) time: 0.0231 data: 0.0091 max mem: 14260\n",
"Test: Total time: 0:00:25\n",
"Test: Acc@1 70.380 Acc@5 89.206\n",
"Epoch: [9] [ 0/2503] eta: 3:25:47 lr: 0.000125 img/s: 1382.3981542993392 loss: 2.0060 (2.0060) acc1: 70.3125 (70.3125) acc5: 87.8906 (87.8906) time: 4.9332 data: 4.5628 max mem: 14260\n",
"Epoch: [9] [ 100/2503] eta: 0:17:10 lr: 0.000125 img/s: 1379.8098694262646 loss: 2.0278 (2.0596) acc1: 70.5078 (70.0379) acc5: 86.3281 (87.2215) time: 0.3722 data: 0.0004 max mem: 14260\n",
"Epoch: [9] [ 200/2503] eta: 0:15:23 lr: 0.000125 img/s: 1373.381362929101 loss: 2.0648 (2.0507) acc1: 69.1406 (69.8354) acc5: 86.7188 (87.1978) time: 0.3733 data: 0.0003 max mem: 14260\n",
"Epoch: [9] [ 300/2503] eta: 0:14:23 lr: 0.000125 img/s: 1370.5756065680907 loss: 2.0451 (2.0516) acc1: 70.5078 (69.8953) acc5: 86.9141 (87.2320) time: 0.3739 data: 0.0004 max mem: 14260\n",
"Epoch: [9] [ 400/2503] eta: 0:13:34 lr: 0.000125 img/s: 1373.5842846689557 loss: 2.0512 (2.0560) acc1: 68.5547 (69.8021) acc5: 87.5000 (87.1858) time: 0.3736 data: 0.0004 max mem: 14260\n",
"Epoch: [9] [ 500/2503] eta: 0:12:50 lr: 0.000125 img/s: 1375.2600193018172 loss: 2.0238 (2.0557) acc1: 69.9219 (69.7995) acc5: 87.1094 (87.2392) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [9] [ 600/2503] eta: 0:12:08 lr: 0.000125 img/s: 1373.601856471425 loss: 2.0332 (2.0551) acc1: 69.5312 (69.8397) acc5: 86.7188 (87.2312) time: 0.3732 data: 0.0005 max mem: 14260\n",
"Epoch: [9] [ 700/2503] eta: 0:11:27 lr: 0.000125 img/s: 1376.009042322452 loss: 1.9914 (2.0538) acc1: 70.3125 (69.8528) acc5: 87.1094 (87.2197) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [9] [ 800/2503] eta: 0:10:47 lr: 0.000125 img/s: 1373.102992140484 loss: 2.0790 (2.0518) acc1: 69.5312 (69.8431) acc5: 87.6953 (87.2196) time: 0.3731 data: 0.0004 max mem: 14260\n",
"Epoch: [9] [ 900/2503] eta: 0:10:08 lr: 0.000125 img/s: 1372.0940762142566 loss: 2.0324 (2.0535) acc1: 70.3125 (69.8267) acc5: 87.8906 (87.1774) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [9] [1000/2503] eta: 0:09:29 lr: 0.000125 img/s: 1374.0650355212113 loss: 2.0063 (2.0558) acc1: 70.3125 (69.8356) acc5: 87.5000 (87.1644) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [9] [1100/2503] eta: 0:08:50 lr: 0.000125 img/s: 1374.108117377561 loss: 2.0290 (2.0554) acc1: 69.3359 (69.8089) acc5: 86.7188 (87.1386) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [9] [1200/2503] eta: 0:08:12 lr: 0.000125 img/s: 1370.906335901741 loss: 2.0536 (2.0560) acc1: 69.7266 (69.8074) acc5: 86.7188 (87.1367) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [9] [1300/2503] eta: 0:07:34 lr: 0.000125 img/s: 1372.0020316645787 loss: 2.0173 (2.0568) acc1: 69.5312 (69.7901) acc5: 87.1094 (87.1280) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [9] [1400/2503] eta: 0:06:56 lr: 0.000125 img/s: 1372.0423544234407 loss: 2.1000 (2.0587) acc1: 69.1406 (69.7776) acc5: 87.3047 (87.1274) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [9] [1500/2503] eta: 0:06:18 lr: 0.000125 img/s: 1375.2415243491648 loss: 2.0611 (2.0592) acc1: 68.7500 (69.7620) acc5: 86.3281 (87.1099) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [9] [1600/2503] eta: 0:05:40 lr: 0.000125 img/s: 1372.8756372972396 loss: 2.0571 (2.0591) acc1: 69.1406 (69.7624) acc5: 86.5234 (87.1041) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [9] [1700/2503] eta: 0:05:02 lr: 0.000125 img/s: 1374.8435630582644 loss: 2.0257 (2.0585) acc1: 70.5078 (69.7687) acc5: 88.0859 (87.1151) time: 0.3730 data: 0.0002 max mem: 14260\n",
"Epoch: [9] [1800/2503] eta: 0:04:24 lr: 0.000125 img/s: 1373.9533869568445 loss: 2.1389 (2.0594) acc1: 69.5312 (69.7545) acc5: 86.7188 (87.1051) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [9] [1900/2503] eta: 0:03:46 lr: 0.000125 img/s: 1372.5588706007475 loss: 2.0832 (2.0594) acc1: 70.3125 (69.7470) acc5: 86.9141 (87.1027) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [9] [2000/2503] eta: 0:03:09 lr: 0.000125 img/s: 1372.5290441500738 loss: 2.0365 (2.0601) acc1: 70.5078 (69.7273) acc5: 87.3047 (87.0952) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [9] [2100/2503] eta: 0:02:31 lr: 0.000125 img/s: 1373.7494773635067 loss: 2.0595 (2.0607) acc1: 69.3359 (69.7347) acc5: 86.9141 (87.0952) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [9] [2200/2503] eta: 0:01:53 lr: 0.000125 img/s: 1375.2741110282134 loss: 2.0011 (2.0604) acc1: 69.7266 (69.7380) acc5: 87.3047 (87.0957) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [9] [2300/2503] eta: 0:01:16 lr: 0.000125 img/s: 1375.9006037991164 loss: 2.0468 (2.0588) acc1: 68.5547 (69.7525) acc5: 86.5234 (87.1121) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [9] [2400/2503] eta: 0:00:38 lr: 0.000125 img/s: 1373.2689472590366 loss: 2.0125 (2.0589) acc1: 69.1406 (69.7448) acc5: 87.5000 (87.1090) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [9] [2500/2503] eta: 0:00:01 lr: 0.000125 img/s: 1373.3269092906673 loss: 2.0498 (2.0590) acc1: 68.7500 (69.7391) acc5: 87.3047 (87.1050) time: 0.3724 data: 0.0001 max mem: 14260\n",
"Epoch: [9] Total time: 0:15:39\n",
"Test: [ 0/782] eta: 0:14:51 loss: 0.6752 (0.6752) acc1: 84.3750 (84.3750) acc5: 95.3125 (95.3125) time: 1.1400 data: 1.1260 max mem: 14260\n",
"Test: [100/782] eta: 0:00:28 loss: 1.0416 (1.0025) acc1: 76.5625 (77.1813) acc5: 89.0625 (92.1720) time: 0.0410 data: 0.0270 max mem: 14260\n",
"Test: [200/782] eta: 0:00:21 loss: 0.9427 (0.9753) acc1: 73.4375 (76.7879) acc5: 96.8750 (93.2914) time: 0.0282 data: 0.0143 max mem: 14260\n",
"Test: [300/782] eta: 0:00:17 loss: 0.8311 (0.9728) acc1: 78.1250 (77.1024) acc5: 92.1875 (93.5787) time: 0.0382 data: 0.0243 max mem: 14260\n",
"Test: [400/782] eta: 0:00:13 loss: 1.8319 (1.1207) acc1: 60.9375 (74.4233) acc5: 82.8125 (91.8056) time: 0.0262 data: 0.0124 max mem: 14260\n",
"Test: [500/782] eta: 0:00:09 loss: 1.8749 (1.2052) acc1: 57.8125 (72.9104) acc5: 84.3750 (90.6531) time: 0.0289 data: 0.0151 max mem: 14260\n",
"Test: [600/782] eta: 0:00:06 loss: 1.4533 (1.2725) acc1: 65.6250 (71.5266) acc5: 82.8125 (89.8658) time: 0.0287 data: 0.0147 max mem: 14260\n",
"Test: [700/782] eta: 0:00:02 loss: 1.3377 (1.3256) acc1: 70.3125 (70.5020) acc5: 87.5000 (89.1784) time: 0.0303 data: 0.0164 max mem: 14260\n",
"Test: Total time: 0:00:26\n",
"Test: Acc@1 70.452 Acc@5 89.192\n",
"Epoch: [10] [ 0/2503] eta: 4:32:54 lr: 0.000125 img/s: 1382.579715743309 loss: 1.9930 (1.9930) acc1: 71.2891 (71.2891) acc5: 88.2812 (88.2812) time: 6.5421 data: 6.1717 max mem: 14260\n",
"Epoch: [10] [ 100/2503] eta: 0:17:19 lr: 0.000125 img/s: 1378.5184732510816 loss: 1.9991 (2.0550) acc1: 69.3359 (69.9606) acc5: 87.6953 (87.4188) time: 0.3721 data: 0.0003 max mem: 14260\n",
"Epoch: [10] [ 200/2503] eta: 0:15:27 lr: 0.000125 img/s: 1371.4903139156074 loss: 2.0567 (2.0572) acc1: 69.3359 (69.8140) acc5: 86.5234 (87.2464) time: 0.3736 data: 0.0003 max mem: 14260\n",
"Epoch: [10] [ 300/2503] eta: 0:14:26 lr: 0.000125 img/s: 1370.4811417806243 loss: 2.0618 (2.0589) acc1: 70.1172 (69.7843) acc5: 87.5000 (87.2275) time: 0.3737 data: 0.0004 max mem: 14260\n",
"Epoch: [10] [ 400/2503] eta: 0:13:36 lr: 0.000125 img/s: 1370.7978250906106 loss: 2.0730 (2.0551) acc1: 69.5312 (69.7602) acc5: 86.5234 (87.2009) time: 0.3735 data: 0.0003 max mem: 14260\n",
"Epoch: [10] [ 500/2503] eta: 0:12:51 lr: 0.000125 img/s: 1373.3629184711845 loss: 2.0050 (2.0545) acc1: 70.8984 (69.7757) acc5: 87.3047 (87.2033) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [10] [ 600/2503] eta: 0:12:09 lr: 0.000125 img/s: 1375.585964368369 loss: 2.0323 (2.0552) acc1: 69.9219 (69.8081) acc5: 86.9141 (87.2082) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [10] [ 700/2503] eta: 0:11:28 lr: 0.000125 img/s: 1373.3725797921156 loss: 2.0423 (2.0540) acc1: 70.7031 (69.8168) acc5: 87.5000 (87.1893) time: 0.3731 data: 0.0004 max mem: 14260\n",
"Epoch: [10] [ 800/2503] eta: 0:10:48 lr: 0.000125 img/s: 1376.9972370075554 loss: 2.0162 (2.0539) acc1: 70.5078 (69.8663) acc5: 87.8906 (87.2198) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [10] [ 900/2503] eta: 0:10:09 lr: 0.000125 img/s: 1375.6441221594093 loss: 2.0468 (2.0543) acc1: 69.5312 (69.8345) acc5: 85.7422 (87.2141) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [10] [1000/2503] eta: 0:09:30 lr: 0.000125 img/s: 1370.3455900698802 loss: 2.0709 (2.0541) acc1: 69.3359 (69.8107) acc5: 87.1094 (87.2145) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [10] [1100/2503] eta: 0:08:51 lr: 0.000125 img/s: 1375.358667451433 loss: 2.0207 (2.0531) acc1: 70.1172 (69.8209) acc5: 87.5000 (87.2023) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [10] [1200/2503] eta: 0:08:12 lr: 0.000125 img/s: 1371.2451051444912 loss: 2.1047 (2.0534) acc1: 69.1406 (69.8272) acc5: 86.5234 (87.1899) time: 0.3736 data: 0.0004 max mem: 14260\n",
"Epoch: [10] [1300/2503] eta: 0:07:34 lr: 0.000125 img/s: 1372.708022301002 loss: 2.0050 (2.0531) acc1: 69.7266 (69.8270) acc5: 87.5000 (87.1895) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [10] [1400/2503] eta: 0:06:56 lr: 0.000125 img/s: 1374.0430560229931 loss: 2.0484 (2.0529) acc1: 70.1172 (69.8191) acc5: 87.5000 (87.1819) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [10] [1500/2503] eta: 0:06:18 lr: 0.000125 img/s: 1373.6159142371016 loss: 2.0442 (2.0530) acc1: 69.1406 (69.8084) acc5: 87.3047 (87.1868) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [10] [1600/2503] eta: 0:05:40 lr: 0.000125 img/s: 1375.1508182129628 loss: 2.0196 (2.0531) acc1: 70.1172 (69.8065) acc5: 86.9141 (87.1785) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [10] [1700/2503] eta: 0:05:02 lr: 0.000125 img/s: 1375.0856580835482 loss: 2.1207 (2.0539) acc1: 69.1406 (69.8000) acc5: 87.1094 (87.1728) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [10] [1800/2503] eta: 0:04:24 lr: 0.000125 img/s: 1376.025794512771 loss: 2.0315 (2.0537) acc1: 69.5312 (69.8069) acc5: 87.3047 (87.1767) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [10] [1900/2503] eta: 0:03:46 lr: 0.000125 img/s: 1371.8214849002668 loss: 2.0731 (2.0541) acc1: 69.1406 (69.8190) acc5: 86.1328 (87.1675) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [10] [2000/2503] eta: 0:03:09 lr: 0.000125 img/s: 1375.8388984491824 loss: 2.0230 (2.0535) acc1: 69.3359 (69.8203) acc5: 87.5000 (87.1698) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [10] [2100/2503] eta: 0:02:31 lr: 0.000125 img/s: 1373.8479089203872 loss: 2.0099 (2.0527) acc1: 69.9219 (69.8253) acc5: 87.5000 (87.1809) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [10] [2200/2503] eta: 0:01:53 lr: 0.000125 img/s: 1373.565834760211 loss: 1.9812 (2.0526) acc1: 69.9219 (69.8284) acc5: 87.3047 (87.1823) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [10] [2300/2503] eta: 0:01:16 lr: 0.000125 img/s: 1372.2185751566162 loss: 2.0163 (2.0535) acc1: 69.1406 (69.8205) acc5: 87.3047 (87.1743) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [10] [2400/2503] eta: 0:00:38 lr: 0.000125 img/s: 1374.3147719964034 loss: 2.0282 (2.0529) acc1: 70.8984 (69.8330) acc5: 87.1094 (87.1781) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [10] [2500/2503] eta: 0:00:01 lr: 0.000125 img/s: 1374.5285270446548 loss: 1.9206 (2.0523) acc1: 70.3125 (69.8248) acc5: 88.2812 (87.1807) time: 0.3722 data: 0.0001 max mem: 14260\n",
"Epoch: [10] Total time: 0:15:40\n",
"Test: [ 0/782] eta: 0:14:52 loss: 0.6813 (0.6813) acc1: 84.3750 (84.3750) acc5: 92.1875 (92.1875) time: 1.1410 data: 1.1270 max mem: 14260\n",
"Test: [100/782] eta: 0:00:28 loss: 1.0771 (0.9967) acc1: 76.5625 (77.0885) acc5: 90.6250 (92.3267) time: 0.0389 data: 0.0251 max mem: 14260\n",
"Test: [200/782] eta: 0:00:20 loss: 0.9244 (0.9740) acc1: 75.0000 (76.5858) acc5: 96.8750 (93.4624) time: 0.0259 data: 0.0120 max mem: 14260\n",
"Test: [300/782] eta: 0:00:16 loss: 0.8188 (0.9703) acc1: 78.1250 (77.0089) acc5: 92.1875 (93.6618) time: 0.0312 data: 0.0173 max mem: 14260\n",
"Test: [400/782] eta: 0:00:12 loss: 1.8375 (1.1196) acc1: 60.9375 (74.2519) acc5: 84.3750 (91.9070) time: 0.0265 data: 0.0126 max mem: 14260\n",
"Test: [500/782] eta: 0:00:09 loss: 1.8717 (1.2043) acc1: 57.8125 (72.7233) acc5: 84.3750 (90.7622) time: 0.0313 data: 0.0174 max mem: 14260\n",
"Test: [600/782] eta: 0:00:05 loss: 1.4483 (1.2716) acc1: 65.6250 (71.4018) acc5: 82.8125 (89.9334) time: 0.0292 data: 0.0153 max mem: 14260\n",
"Test: [700/782] eta: 0:00:02 loss: 1.3360 (1.3255) acc1: 70.3125 (70.3883) acc5: 85.9375 (89.2052) time: 0.0277 data: 0.0137 max mem: 14260\n",
"Test: Total time: 0:00:25\n",
"Test: Acc@1 70.322 Acc@5 89.218\n",
"Epoch: [11] [ 0/2503] eta: 4:20:37 lr: 6.25e-05 img/s: 1381.262697904774 loss: 2.1742 (2.1742) acc1: 66.9922 (66.9922) acc5: 86.5234 (86.5234) time: 6.2474 data: 5.8767 max mem: 14260\n",
"Epoch: [11] [ 100/2503] eta: 0:17:12 lr: 6.25e-05 img/s: 1376.4323806019943 loss: 2.0443 (2.0504) acc1: 70.1172 (69.6724) acc5: 87.3047 (87.2931) time: 0.3722 data: 0.0004 max mem: 14260\n",
"Epoch: [11] [ 200/2503] eta: 0:15:24 lr: 6.25e-05 img/s: 1374.9993744425528 loss: 2.0107 (2.0489) acc1: 70.5078 (69.8296) acc5: 87.1094 (87.2882) time: 0.3734 data: 0.0004 max mem: 14260\n",
"Epoch: [11] [ 300/2503] eta: 0:14:24 lr: 6.25e-05 img/s: 1371.8118453900383 loss: 1.9970 (2.0489) acc1: 70.1172 (69.9193) acc5: 87.1094 (87.2443) time: 0.3738 data: 0.0004 max mem: 14260\n",
"Epoch: [11] [ 400/2503] eta: 0:13:35 lr: 6.25e-05 img/s: 1374.7150672479243 loss: 2.0609 (2.0489) acc1: 70.1172 (69.9686) acc5: 87.3047 (87.2414) time: 0.3735 data: 0.0004 max mem: 14260\n",
"Epoch: [11] [ 500/2503] eta: 0:12:50 lr: 6.25e-05 img/s: 1373.91910481851 loss: 1.9974 (2.0468) acc1: 68.9453 (69.9367) acc5: 87.8906 (87.2415) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [11] [ 600/2503] eta: 0:12:08 lr: 6.25e-05 img/s: 1373.854940285636 loss: 2.0522 (2.0475) acc1: 68.9453 (69.8640) acc5: 87.3047 (87.2348) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [11] [ 700/2503] eta: 0:11:27 lr: 6.25e-05 img/s: 1373.041537460183 loss: 2.0108 (2.0488) acc1: 69.9219 (69.8528) acc5: 87.3047 (87.1835) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [11] [ 800/2503] eta: 0:10:47 lr: 6.25e-05 img/s: 1375.1340873202387 loss: 2.0206 (2.0482) acc1: 69.3359 (69.8631) acc5: 87.6953 (87.1889) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [11] [ 900/2503] eta: 0:10:08 lr: 6.25e-05 img/s: 1376.1695274335636 loss: 2.0308 (2.0494) acc1: 69.3359 (69.8616) acc5: 87.1094 (87.1690) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [11] [1000/2503] eta: 0:09:29 lr: 6.25e-05 img/s: 1372.219451989845 loss: 2.0692 (2.0504) acc1: 69.5312 (69.8571) acc5: 86.5234 (87.1572) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [11] [1100/2503] eta: 0:08:50 lr: 6.25e-05 img/s: 1376.1139706589122 loss: 2.0327 (2.0503) acc1: 70.1172 (69.8695) acc5: 86.9141 (87.1390) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [11] [1200/2503] eta: 0:08:12 lr: 6.25e-05 img/s: 1374.2620032061025 loss: 2.0255 (2.0494) acc1: 69.5312 (69.8687) acc5: 87.6953 (87.1538) time: 0.3732 data: 0.0005 max mem: 14260\n",
"Epoch: [11] [1300/2503] eta: 0:07:34 lr: 6.25e-05 img/s: 1373.102992140484 loss: 2.0055 (2.0487) acc1: 70.1172 (69.8582) acc5: 87.6953 (87.1675) time: 0.3734 data: 0.0005 max mem: 14260\n",
"Epoch: [11] [1400/2503] eta: 0:06:56 lr: 6.25e-05 img/s: 1372.7246942108611 loss: 2.0225 (2.0474) acc1: 70.3125 (69.8951) acc5: 87.8906 (87.1913) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [11] [1500/2503] eta: 0:06:18 lr: 6.25e-05 img/s: 1373.4586593790193 loss: 1.9940 (2.0476) acc1: 70.3125 (69.9000) acc5: 87.5000 (87.1904) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [11] [1600/2503] eta: 0:05:40 lr: 6.25e-05 img/s: 1375.3930214684633 loss: 2.0315 (2.0465) acc1: 68.9453 (69.9097) acc5: 86.3281 (87.1944) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [11] [1700/2503] eta: 0:05:02 lr: 6.25e-05 img/s: 1376.0108056916981 loss: 2.0554 (2.0463) acc1: 69.9219 (69.9079) acc5: 86.9141 (87.1987) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [11] [1800/2503] eta: 0:04:24 lr: 6.25e-05 img/s: 1373.0424153454562 loss: 2.0084 (2.0453) acc1: 70.3125 (69.9111) acc5: 87.3047 (87.2084) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [11] [1900/2503] eta: 0:03:46 lr: 6.25e-05 img/s: 1374.3868958971598 loss: 2.0449 (2.0455) acc1: 69.9219 (69.9041) acc5: 87.3047 (87.2079) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [11] [2000/2503] eta: 0:03:09 lr: 6.25e-05 img/s: 1375.017862882623 loss: 2.0545 (2.0451) acc1: 70.7031 (69.9195) acc5: 86.9141 (87.2159) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [11] [2100/2503] eta: 0:02:31 lr: 6.25e-05 img/s: 1375.8988407123077 loss: 2.0061 (2.0450) acc1: 69.7266 (69.9315) acc5: 87.3047 (87.2093) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [11] [2200/2503] eta: 0:01:53 lr: 6.25e-05 img/s: 1372.419399224026 loss: 2.1206 (2.0444) acc1: 70.1172 (69.9415) acc5: 87.1094 (87.2164) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [11] [2300/2503] eta: 0:01:16 lr: 6.25e-05 img/s: 1373.0722641127009 loss: 2.0822 (2.0451) acc1: 69.1406 (69.9367) acc5: 86.9141 (87.2123) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [11] [2400/2503] eta: 0:00:38 lr: 6.25e-05 img/s: 1373.2557747523645 loss: 2.1119 (2.0445) acc1: 68.7500 (69.9370) acc5: 87.1094 (87.2118) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [11] [2500/2503] eta: 0:00:01 lr: 6.25e-05 img/s: 1373.3330570658604 loss: 2.0422 (2.0442) acc1: 69.5312 (69.9368) acc5: 86.5234 (87.2109) time: 0.3725 data: 0.0002 max mem: 14260\n",
"Epoch: [11] Total time: 0:15:39\n",
"Test: [ 0/782] eta: 0:20:32 loss: 0.6754 (0.6754) acc1: 84.3750 (84.3750) acc5: 93.7500 (93.7500) time: 1.5756 data: 1.5614 max mem: 14260\n",
"Test: [100/782] eta: 0:00:33 loss: 1.0414 (0.9982) acc1: 76.5625 (77.1349) acc5: 90.6250 (92.2494) time: 0.0401 data: 0.0261 max mem: 14260\n",
"Test: [200/782] eta: 0:00:22 loss: 0.9151 (0.9707) acc1: 73.4375 (76.7646) acc5: 95.3125 (93.3302) time: 0.0253 data: 0.0114 max mem: 14260\n",
"Test: [300/782] eta: 0:00:18 loss: 0.8344 (0.9680) acc1: 78.1250 (77.1439) acc5: 93.7500 (93.5683) time: 0.0422 data: 0.0281 max mem: 14260\n",
"Test: [400/782] eta: 0:00:13 loss: 1.8671 (1.1180) acc1: 60.9375 (74.3688) acc5: 84.3750 (91.8524) time: 0.0247 data: 0.0108 max mem: 14260\n",
"Test: [500/782] eta: 0:00:09 loss: 1.8661 (1.2026) acc1: 56.2500 (72.7982) acc5: 84.3750 (90.7186) time: 0.0266 data: 0.0127 max mem: 14260\n",
"Test: [600/782] eta: 0:00:06 loss: 1.4113 (1.2681) acc1: 65.6250 (71.4642) acc5: 84.3750 (89.9542) time: 0.0232 data: 0.0093 max mem: 14260\n",
"Test: [700/782] eta: 0:00:02 loss: 1.3475 (1.3217) acc1: 68.7500 (70.4351) acc5: 87.5000 (89.2542) time: 0.0323 data: 0.0185 max mem: 14260\n",
"Test: Total time: 0:00:25\n",
"Test: Acc@1 70.374 Acc@5 89.256\n",
"Epoch: [12] [ 0/2503] eta: 3:09:11 lr: 6.25e-05 img/s: 1383.3251512006839 loss: 2.3231 (2.3231) acc1: 68.5547 (68.5547) acc5: 85.5469 (85.5469) time: 4.5352 data: 4.1650 max mem: 14260\n",
"Epoch: [12] [ 100/2503] eta: 0:16:32 lr: 6.25e-05 img/s: 1375.9808290291555 loss: 1.9817 (2.0261) acc1: 70.5078 (70.1501) acc5: 87.3047 (87.3588) time: 0.3724 data: 0.0004 max mem: 14260\n",
"Epoch: [12] [ 200/2503] eta: 0:15:05 lr: 6.25e-05 img/s: 1371.7110768029913 loss: 2.0268 (2.0401) acc1: 69.9219 (70.0200) acc5: 87.5000 (87.3066) time: 0.3735 data: 0.0004 max mem: 14260\n",
"Epoch: [12] [ 300/2503] eta: 0:14:11 lr: 6.25e-05 img/s: 1372.0975829174947 loss: 2.0198 (2.0401) acc1: 70.1172 (69.9692) acc5: 87.1094 (87.2599) time: 0.3737 data: 0.0004 max mem: 14260\n",
"Epoch: [12] [ 400/2503] eta: 0:13:26 lr: 6.25e-05 img/s: 1373.314613905404 loss: 1.9947 (2.0414) acc1: 69.5312 (69.9116) acc5: 86.9141 (87.2779) time: 0.3735 data: 0.0003 max mem: 14260\n",
"Epoch: [12] [ 500/2503] eta: 0:12:43 lr: 6.25e-05 img/s: 1372.5036049664877 loss: 2.0371 (2.0364) acc1: 70.5078 (69.9741) acc5: 87.8906 (87.3409) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [12] [ 600/2503] eta: 0:12:03 lr: 6.25e-05 img/s: 1373.3330570658604 loss: 2.0693 (2.0400) acc1: 69.7266 (69.9661) acc5: 86.9141 (87.2803) time: 0.3731 data: 0.0004 max mem: 14260\n",
"Epoch: [12] [ 700/2503] eta: 0:11:23 lr: 6.25e-05 img/s: 1373.9911871950085 loss: 2.0024 (2.0375) acc1: 70.8984 (69.9826) acc5: 87.3047 (87.2640) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [12] [ 800/2503] eta: 0:10:44 lr: 6.25e-05 img/s: 1370.92558961421 loss: 2.0543 (2.0381) acc1: 69.9219 (69.9672) acc5: 86.7188 (87.2486) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [12] [ 900/2503] eta: 0:10:05 lr: 6.25e-05 img/s: 1373.4639299083562 loss: 2.0341 (2.0390) acc1: 69.7266 (69.9670) acc5: 87.3047 (87.2446) time: 0.3731 data: 0.0004 max mem: 14260\n",
"Epoch: [12] [1000/2503] eta: 0:09:27 lr: 6.25e-05 img/s: 1371.6593838823205 loss: 2.0126 (2.0369) acc1: 70.8984 (70.0270) acc5: 87.1094 (87.2698) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [12] [1100/2503] eta: 0:08:48 lr: 6.25e-05 img/s: 1372.8299998401815 loss: 2.0512 (2.0370) acc1: 68.5547 (70.0012) acc5: 86.7188 (87.2460) time: 0.3733 data: 0.0005 max mem: 14260\n",
"Epoch: [12] [1200/2503] eta: 0:08:10 lr: 6.25e-05 img/s: 1375.3128647648884 loss: 2.0615 (2.0393) acc1: 69.3359 (69.9552) acc5: 86.7188 (87.2149) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [12] [1300/2503] eta: 0:07:32 lr: 6.25e-05 img/s: 1375.0125804204401 loss: 1.9920 (2.0386) acc1: 70.3125 (69.9842) acc5: 87.5000 (87.2299) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [12] [1400/2503] eta: 0:06:54 lr: 6.25e-05 img/s: 1375.3243151505214 loss: 2.0218 (2.0401) acc1: 70.5078 (69.9591) acc5: 87.1094 (87.2227) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [12] [1500/2503] eta: 0:06:17 lr: 6.25e-05 img/s: 1374.8048357647879 loss: 2.0416 (2.0395) acc1: 69.5312 (69.9544) acc5: 86.7188 (87.2231) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [12] [1600/2503] eta: 0:05:39 lr: 6.25e-05 img/s: 1374.7432286578692 loss: 2.0357 (2.0403) acc1: 69.7266 (69.9436) acc5: 87.1094 (87.2176) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [12] [1700/2503] eta: 0:05:01 lr: 6.25e-05 img/s: 1374.8479640251246 loss: 1.9842 (2.0392) acc1: 69.3359 (69.9500) acc5: 87.3047 (87.2301) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [12] [1800/2503] eta: 0:04:23 lr: 6.25e-05 img/s: 1375.505785174785 loss: 2.0072 (2.0403) acc1: 69.3359 (69.9105) acc5: 86.9141 (87.2120) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [12] [1900/2503] eta: 0:03:46 lr: 6.25e-05 img/s: 1372.3781772634027 loss: 2.0518 (2.0407) acc1: 69.5312 (69.9174) acc5: 87.1094 (87.2151) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [12] [2000/2503] eta: 0:03:08 lr: 6.25e-05 img/s: 1375.270588069541 loss: 2.0746 (2.0404) acc1: 69.5312 (69.9352) acc5: 87.1094 (87.2322) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [12] [2100/2503] eta: 0:02:31 lr: 6.25e-05 img/s: 1372.6615185874805 loss: 2.0678 (2.0406) acc1: 69.9219 (69.9291) acc5: 87.8906 (87.2411) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [12] [2200/2503] eta: 0:01:53 lr: 6.25e-05 img/s: 1372.3729150636889 loss: 1.9724 (2.0405) acc1: 69.7266 (69.9273) acc5: 87.6953 (87.2538) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [12] [2300/2503] eta: 0:01:16 lr: 6.25e-05 img/s: 1372.3299419431316 loss: 2.0217 (2.0405) acc1: 70.8984 (69.9357) acc5: 87.5000 (87.2557) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [12] [2400/2503] eta: 0:00:38 lr: 6.25e-05 img/s: 1374.4467117032068 loss: 2.0661 (2.0404) acc1: 69.5312 (69.9217) acc5: 86.7188 (87.2521) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [12] [2500/2503] eta: 0:00:01 lr: 6.25e-05 img/s: 1374.0791027691023 loss: 2.0501 (2.0406) acc1: 68.9453 (69.9067) acc5: 86.3281 (87.2391) time: 0.3724 data: 0.0001 max mem: 14260\n",
"Epoch: [12] Total time: 0:15:38\n",
"Test: [ 0/782] eta: 0:15:40 loss: 0.6648 (0.6648) acc1: 84.3750 (84.3750) acc5: 92.1875 (92.1875) time: 1.2028 data: 1.1888 max mem: 14260\n",
"Test: [100/782] eta: 0:00:29 loss: 1.0592 (0.9972) acc1: 76.5625 (77.2741) acc5: 89.0625 (92.2339) time: 0.0427 data: 0.0288 max mem: 14260\n",
"Test: [200/782] eta: 0:00:21 loss: 0.8749 (0.9692) acc1: 75.0000 (77.0367) acc5: 96.8750 (93.3691) time: 0.0256 data: 0.0117 max mem: 14260\n",
"Test: [300/782] eta: 0:00:17 loss: 0.8319 (0.9672) acc1: 78.1250 (77.2996) acc5: 93.7500 (93.6254) time: 0.0395 data: 0.0256 max mem: 14260\n",
"Test: [400/782] eta: 0:00:13 loss: 1.7955 (1.1164) acc1: 59.3750 (74.5558) acc5: 84.3750 (91.8758) time: 0.0310 data: 0.0170 max mem: 14260\n",
"Test: [500/782] eta: 0:00:09 loss: 1.8665 (1.2014) acc1: 56.2500 (73.0009) acc5: 84.3750 (90.7498) time: 0.0372 data: 0.0232 max mem: 14260\n",
"Test: [600/782] eta: 0:00:06 loss: 1.4344 (1.2676) acc1: 65.6250 (71.6046) acc5: 82.8125 (89.9620) time: 0.0279 data: 0.0139 max mem: 14260\n",
"Test: [700/782] eta: 0:00:02 loss: 1.3379 (1.3211) acc1: 70.3125 (70.6023) acc5: 85.9375 (89.2386) time: 0.0267 data: 0.0128 max mem: 14260\n",
"Test: Total time: 0:00:26\n",
"Test: Acc@1 70.510 Acc@5 89.252\n",
"Epoch: [13] [ 0/2503] eta: 2:56:58 lr: 3.125e-05 img/s: 1362.685699781715 loss: 2.0875 (2.0875) acc1: 70.8984 (70.8984) acc5: 87.8906 (87.8906) time: 4.2422 data: 3.8664 max mem: 14260\n",
"Epoch: [13] [ 100/2503] eta: 0:16:36 lr: 3.125e-05 img/s: 1375.1085514793976 loss: 2.0670 (2.0296) acc1: 69.7266 (69.8851) acc5: 87.1094 (87.3936) time: 0.3722 data: 0.0003 max mem: 14260\n",
"Epoch: [13] [ 200/2503] eta: 0:15:07 lr: 3.125e-05 img/s: 1370.70945397796 loss: 2.0368 (2.0414) acc1: 69.3359 (69.8801) acc5: 87.5000 (87.2658) time: 0.3735 data: 0.0003 max mem: 14260\n",
"Epoch: [13] [ 300/2503] eta: 0:14:13 lr: 3.125e-05 img/s: 1371.2687464560654 loss: 2.0066 (2.0358) acc1: 69.7266 (69.9193) acc5: 86.9141 (87.3027) time: 0.3736 data: 0.0003 max mem: 14260\n",
"Epoch: [13] [ 400/2503] eta: 0:13:27 lr: 3.125e-05 img/s: 1373.9437174625577 loss: 2.0444 (2.0372) acc1: 70.1172 (69.9238) acc5: 86.5234 (87.2779) time: 0.3733 data: 0.0003 max mem: 14260\n",
"Epoch: [13] [ 500/2503] eta: 0:12:44 lr: 3.125e-05 img/s: 1374.8092364837137 loss: 2.0196 (2.0386) acc1: 70.1172 (69.9577) acc5: 87.5000 (87.2400) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [13] [ 600/2503] eta: 0:12:03 lr: 3.125e-05 img/s: 1373.2390899400118 loss: 2.0298 (2.0383) acc1: 69.5312 (69.9352) acc5: 87.3047 (87.2299) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [13] [ 700/2503] eta: 0:11:23 lr: 3.125e-05 img/s: 1376.6750355470137 loss: 2.0218 (2.0391) acc1: 70.3125 (69.9391) acc5: 87.1094 (87.2077) time: 0.3732 data: 0.0005 max mem: 14260\n",
"Epoch: [13] [ 800/2503] eta: 0:10:44 lr: 3.125e-05 img/s: 1371.932787239235 loss: 2.0102 (2.0380) acc1: 70.3125 (69.9453) acc5: 88.2812 (87.2189) time: 0.3733 data: 0.0005 max mem: 14260\n",
"Epoch: [13] [ 900/2503] eta: 0:10:05 lr: 3.125e-05 img/s: 1374.2936639939999 loss: 2.0232 (2.0380) acc1: 70.3125 (69.9494) acc5: 86.9141 (87.2032) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [13] [1000/2503] eta: 0:09:27 lr: 3.125e-05 img/s: 1375.566579530773 loss: 2.0282 (2.0361) acc1: 70.7031 (69.9773) acc5: 87.5000 (87.2298) time: 0.3731 data: 0.0004 max mem: 14260\n",
"Epoch: [13] [1100/2503] eta: 0:08:49 lr: 3.125e-05 img/s: 1374.9175030411677 loss: 2.0242 (2.0356) acc1: 70.7031 (70.0044) acc5: 87.3047 (87.2437) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [13] [1200/2503] eta: 0:08:10 lr: 3.125e-05 img/s: 1376.128079891011 loss: 1.9957 (2.0354) acc1: 69.9219 (70.0115) acc5: 86.9141 (87.2474) time: 0.3731 data: 0.0002 max mem: 14260\n",
"Epoch: [13] [1300/2503] eta: 0:07:32 lr: 3.125e-05 img/s: 1372.9458546948713 loss: 1.9955 (2.0338) acc1: 69.7266 (70.0258) acc5: 86.9141 (87.2739) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [13] [1400/2503] eta: 0:06:55 lr: 3.125e-05 img/s: 1373.6097639292127 loss: 2.0231 (2.0348) acc1: 69.9219 (70.0185) acc5: 87.6953 (87.2631) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [13] [1500/2503] eta: 0:06:17 lr: 3.125e-05 img/s: 1373.1100158827999 loss: 1.9771 (2.0341) acc1: 69.7266 (70.0170) acc5: 87.8906 (87.2686) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [13] [1600/2503] eta: 0:05:39 lr: 3.125e-05 img/s: 1372.219451989845 loss: 1.9552 (2.0336) acc1: 70.5078 (70.0344) acc5: 88.0859 (87.2886) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [13] [1700/2503] eta: 0:05:01 lr: 3.125e-05 img/s: 1376.569139232295 loss: 2.0286 (2.0346) acc1: 69.7266 (70.0382) acc5: 87.3047 (87.2775) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [13] [1800/2503] eta: 0:04:24 lr: 3.125e-05 img/s: 1376.067235894002 loss: 2.0475 (2.0350) acc1: 69.9219 (70.0394) acc5: 86.7188 (87.2817) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [13] [1900/2503] eta: 0:03:46 lr: 3.125e-05 img/s: 1372.440449690967 loss: 2.0581 (2.0364) acc1: 70.3125 (70.0344) acc5: 87.1094 (87.2695) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [13] [2000/2503] eta: 0:03:08 lr: 3.125e-05 img/s: 1372.9265441945063 loss: 2.0339 (2.0362) acc1: 70.1172 (70.0219) acc5: 87.5000 (87.2702) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [13] [2100/2503] eta: 0:02:31 lr: 3.125e-05 img/s: 1371.8556624372518 loss: 1.9990 (2.0362) acc1: 70.3125 (70.0184) acc5: 87.3047 (87.2685) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [13] [2200/2503] eta: 0:01:53 lr: 3.125e-05 img/s: 1375.8512390763947 loss: 1.9911 (2.0363) acc1: 70.7031 (70.0283) acc5: 87.1094 (87.2624) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [13] [2300/2503] eta: 0:01:16 lr: 3.125e-05 img/s: 1374.9351089712397 loss: 2.0383 (2.0371) acc1: 69.9219 (70.0119) acc5: 87.5000 (87.2586) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [13] [2400/2503] eta: 0:00:38 lr: 3.125e-05 img/s: 1374.646428644585 loss: 2.0366 (2.0371) acc1: 68.3594 (70.0009) acc5: 86.5234 (87.2537) time: 0.3730 data: 0.0002 max mem: 14260\n",
"Epoch: [13] [2500/2503] eta: 0:00:01 lr: 3.125e-05 img/s: 1375.8406613823731 loss: 2.0402 (2.0375) acc1: 70.3125 (69.9959) acc5: 87.6953 (87.2585) time: 0.3727 data: 0.0002 max mem: 14260\n",
"Epoch: [13] Total time: 0:15:38\n",
"Test: [ 0/782] eta: 0:20:48 loss: 0.6720 (0.6720) acc1: 84.3750 (84.3750) acc5: 92.1875 (92.1875) time: 1.5971 data: 1.5828 max mem: 14260\n",
"Test: [100/782] eta: 0:00:33 loss: 1.0491 (0.9983) acc1: 76.5625 (77.3670) acc5: 90.6250 (92.0947) time: 0.0389 data: 0.0249 max mem: 14260\n",
"Test: [200/782] eta: 0:00:23 loss: 0.9042 (0.9695) acc1: 73.4375 (76.9123) acc5: 95.3125 (93.2914) time: 0.0253 data: 0.0114 max mem: 14260\n",
"Test: [300/782] eta: 0:00:18 loss: 0.8337 (0.9674) acc1: 78.1250 (77.1958) acc5: 93.7500 (93.6047) time: 0.0311 data: 0.0171 max mem: 14260\n",
"Test: [400/782] eta: 0:00:13 loss: 1.8155 (1.1160) acc1: 59.3750 (74.4311) acc5: 82.8125 (91.8836) time: 0.0291 data: 0.0152 max mem: 14260\n",
"Test: [500/782] eta: 0:00:09 loss: 1.8470 (1.1998) acc1: 56.2500 (72.9323) acc5: 85.9375 (90.7404) time: 0.0379 data: 0.0240 max mem: 14260\n",
"Test: [600/782] eta: 0:00:06 loss: 1.4066 (1.2660) acc1: 65.6250 (71.5838) acc5: 82.8125 (89.9750) time: 0.0264 data: 0.0125 max mem: 14260\n",
"Test: [700/782] eta: 0:00:02 loss: 1.3310 (1.3201) acc1: 70.3125 (70.5599) acc5: 87.5000 (89.2809) time: 0.0309 data: 0.0170 max mem: 14260\n",
"Test: Total time: 0:00:25\n",
"Test: Acc@1 70.490 Acc@5 89.280\n",
"Epoch: [14] [ 0/2503] eta: 3:57:23 lr: 3.125e-05 img/s: 1380.4706736941034 loss: 1.9210 (1.9210) acc1: 69.5312 (69.5312) acc5: 87.6953 (87.6953) time: 5.6905 data: 5.3196 max mem: 14260\n",
"Epoch: [14] [ 100/2503] eta: 0:17:12 lr: 3.125e-05 img/s: 1378.0841231307486 loss: 2.0083 (2.0326) acc1: 70.3125 (70.0611) acc5: 86.9141 (87.2467) time: 0.3722 data: 0.0003 max mem: 14260\n",
"Epoch: [14] [ 200/2503] eta: 0:15:24 lr: 3.125e-05 img/s: 1373.5219084009013 loss: 1.9993 (2.0409) acc1: 70.5078 (70.0492) acc5: 86.9141 (87.1900) time: 0.3735 data: 0.0003 max mem: 14260\n",
"Epoch: [14] [ 300/2503] eta: 0:14:24 lr: 3.125e-05 img/s: 1374.2022034756221 loss: 2.0283 (2.0404) acc1: 69.3359 (70.0127) acc5: 86.7188 (87.1788) time: 0.3737 data: 0.0004 max mem: 14260\n",
"Epoch: [14] [ 400/2503] eta: 0:13:35 lr: 3.125e-05 img/s: 1375.437067590677 loss: 2.0173 (2.0388) acc1: 69.5312 (69.9453) acc5: 87.1094 (87.1878) time: 0.3736 data: 0.0003 max mem: 14260\n",
"Epoch: [14] [ 500/2503] eta: 0:12:50 lr: 3.125e-05 img/s: 1372.851940546588 loss: 2.0037 (2.0397) acc1: 69.7266 (69.9227) acc5: 86.7188 (87.1550) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [14] [ 600/2503] eta: 0:12:08 lr: 3.125e-05 img/s: 1373.6739055621583 loss: 2.0059 (2.0369) acc1: 70.3125 (69.9001) acc5: 87.3047 (87.1705) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [14] [ 700/2503] eta: 0:11:27 lr: 3.125e-05 img/s: 1374.0966872340166 loss: 2.0571 (2.0377) acc1: 70.8984 (69.8993) acc5: 87.1094 (87.1762) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [14] [ 800/2503] eta: 0:10:47 lr: 3.125e-05 img/s: 1373.261921890697 loss: 2.0219 (2.0374) acc1: 70.1172 (69.9389) acc5: 86.5234 (87.1969) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [14] [ 900/2503] eta: 0:10:08 lr: 3.125e-05 img/s: 1373.3277875408965 loss: 2.0973 (2.0395) acc1: 69.9219 (69.9585) acc5: 87.1094 (87.2089) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [14] [1000/2503] eta: 0:09:29 lr: 3.125e-05 img/s: 1373.5737418032681 loss: 2.0244 (2.0396) acc1: 69.5312 (69.9582) acc5: 87.6953 (87.2063) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [14] [1100/2503] eta: 0:08:51 lr: 3.125e-05 img/s: 1374.7775519362585 loss: 2.0600 (2.0392) acc1: 70.1172 (69.9916) acc5: 87.5000 (87.2339) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [14] [1200/2503] eta: 0:08:12 lr: 3.125e-05 img/s: 1375.140251285982 loss: 2.0365 (2.0393) acc1: 69.9219 (70.0162) acc5: 86.9141 (87.2287) time: 0.3735 data: 0.0004 max mem: 14260\n",
"Epoch: [14] [1300/2503] eta: 0:07:34 lr: 3.125e-05 img/s: 1371.594554201231 loss: 2.0376 (2.0391) acc1: 68.9453 (69.9830) acc5: 86.3281 (87.2190) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [14] [1400/2503] eta: 0:06:56 lr: 3.125e-05 img/s: 1375.0090588015337 loss: 1.9764 (2.0392) acc1: 70.7031 (69.9927) acc5: 87.6953 (87.2277) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [14] [1500/2503] eta: 0:06:18 lr: 3.125e-05 img/s: 1373.7775992262007 loss: 2.0324 (2.0398) acc1: 69.3359 (69.9670) acc5: 87.1094 (87.2201) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [14] [1600/2503] eta: 0:05:40 lr: 3.125e-05 img/s: 1376.0910437738055 loss: 1.9701 (2.0382) acc1: 70.8984 (70.0030) acc5: 87.5000 (87.2339) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [14] [1700/2503] eta: 0:05:02 lr: 3.125e-05 img/s: 1372.8142029658127 loss: 2.0675 (2.0385) acc1: 69.9219 (70.0081) acc5: 86.9141 (87.2303) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [14] [1800/2503] eta: 0:04:24 lr: 3.125e-05 img/s: 1374.377220300106 loss: 2.0315 (2.0378) acc1: 69.9219 (70.0282) acc5: 86.9141 (87.2299) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [14] [1900/2503] eta: 0:03:46 lr: 3.125e-05 img/s: 1373.054705857154 loss: 2.0286 (2.0366) acc1: 69.7266 (70.0487) acc5: 87.3047 (87.2401) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [14] [2000/2503] eta: 0:03:09 lr: 3.125e-05 img/s: 1373.4876477909545 loss: 2.0133 (2.0363) acc1: 69.9219 (70.0554) acc5: 87.5000 (87.2516) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [14] [2100/2503] eta: 0:02:31 lr: 3.125e-05 img/s: 1376.08222594449 loss: 2.0194 (2.0352) acc1: 69.5312 (70.0728) acc5: 87.1094 (87.2645) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [14] [2200/2503] eta: 0:01:53 lr: 3.125e-05 img/s: 1373.9173468062497 loss: 2.0050 (2.0351) acc1: 70.5078 (70.0787) acc5: 87.3047 (87.2626) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [14] [2300/2503] eta: 0:01:16 lr: 3.125e-05 img/s: 1371.4351342962937 loss: 2.0315 (2.0355) acc1: 69.5312 (70.0646) acc5: 86.9141 (87.2594) time: 0.3729 data: 0.0003 max mem: 14260\n",
"Epoch: [14] [2400/2503] eta: 0:00:38 lr: 3.125e-05 img/s: 1373.9366851885618 loss: 2.0668 (2.0363) acc1: 69.9219 (70.0614) acc5: 87.1094 (87.2539) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [14] [2500/2503] eta: 0:00:01 lr: 3.125e-05 img/s: 1375.7948265876696 loss: 2.0316 (2.0364) acc1: 69.7266 (70.0786) acc5: 86.9141 (87.2595) time: 0.3723 data: 0.0001 max mem: 14260\n",
"Epoch: [14] Total time: 0:15:39\n",
"Test: [ 0/782] eta: 0:19:11 loss: 0.6806 (0.6806) acc1: 84.3750 (84.3750) acc5: 93.7500 (93.7500) time: 1.4730 data: 1.4588 max mem: 14260\n",
"Test: [100/782] eta: 0:00:32 loss: 1.0519 (0.9977) acc1: 78.1250 (77.2896) acc5: 90.6250 (92.1875) time: 0.0394 data: 0.0254 max mem: 14260\n",
"Test: [200/782] eta: 0:00:23 loss: 0.9032 (0.9713) acc1: 71.8750 (76.8424) acc5: 95.3125 (93.3691) time: 0.0254 data: 0.0113 max mem: 14260\n",
"Test: [300/782] eta: 0:00:18 loss: 0.8211 (0.9690) acc1: 79.6875 (77.2270) acc5: 93.7500 (93.6150) time: 0.0313 data: 0.0172 max mem: 14260\n",
"Test: [400/782] eta: 0:00:13 loss: 1.8256 (1.1178) acc1: 59.3750 (74.4779) acc5: 84.3750 (91.8992) time: 0.0286 data: 0.0146 max mem: 14260\n",
"Test: [500/782] eta: 0:00:09 loss: 1.8515 (1.2028) acc1: 56.2500 (72.9510) acc5: 84.3750 (90.7622) time: 0.0285 data: 0.0146 max mem: 14260\n",
"Test: [600/782] eta: 0:00:06 loss: 1.4281 (1.2684) acc1: 65.6250 (71.5812) acc5: 84.3750 (90.0166) time: 0.0263 data: 0.0124 max mem: 14260\n",
"Test: [700/782] eta: 0:00:02 loss: 1.3673 (1.3217) acc1: 70.3125 (70.5867) acc5: 87.5000 (89.3300) time: 0.0315 data: 0.0177 max mem: 14260\n",
"Test: Total time: 0:00:26\n",
"Test: Acc@1 70.512 Acc@5 89.322\n",
"Epoch: [15] [ 0/2503] eta: 4:19:49 lr: 1.5625e-05 img/s: 1382.5699244489797 loss: 2.0446 (2.0446) acc1: 69.5312 (69.5312) acc5: 85.9375 (85.9375) time: 6.2283 data: 5.8580 max mem: 14260\n",
"Epoch: [15] [ 100/2503] eta: 0:17:11 lr: 1.5625e-05 img/s: 1375.492569721511 loss: 2.0509 (2.0361) acc1: 69.7266 (70.2003) acc5: 87.5000 (87.4981) time: 0.3721 data: 0.0003 max mem: 14260\n",
"Epoch: [15] [ 200/2503] eta: 0:15:24 lr: 1.5625e-05 img/s: 1372.2334814739081 loss: 2.0622 (2.0405) acc1: 69.9219 (70.1386) acc5: 86.5234 (87.3756) time: 0.3736 data: 0.0003 max mem: 14260\n",
"Epoch: [15] [ 300/2503] eta: 0:14:23 lr: 1.5625e-05 img/s: 1371.9766120129207 loss: 2.0198 (2.0362) acc1: 70.3125 (70.1457) acc5: 87.3047 (87.3754) time: 0.3736 data: 0.0003 max mem: 14260\n",
"Epoch: [15] [ 400/2503] eta: 0:13:34 lr: 1.5625e-05 img/s: 1372.0730363712337 loss: 2.0471 (2.0389) acc1: 69.9219 (70.0329) acc5: 87.3047 (87.3641) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [15] [ 500/2503] eta: 0:12:50 lr: 1.5625e-05 img/s: 1372.7185518811661 loss: 2.0607 (2.0376) acc1: 70.7031 (70.0295) acc5: 87.1094 (87.3671) time: 0.3733 data: 0.0004 max mem: 14260\n",
"Epoch: [15] [ 600/2503] eta: 0:12:08 lr: 1.5625e-05 img/s: 1374.9923313580673 loss: 1.9689 (2.0341) acc1: 71.0938 (70.0493) acc5: 88.0859 (87.3791) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [15] [ 700/2503] eta: 0:11:27 lr: 1.5625e-05 img/s: 1374.1195477112658 loss: 2.0411 (2.0306) acc1: 69.9219 (70.0534) acc5: 87.3047 (87.3874) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [15] [ 800/2503] eta: 0:10:47 lr: 1.5625e-05 img/s: 1376.2453740820422 loss: 1.9856 (2.0296) acc1: 70.5078 (70.0550) acc5: 87.6953 (87.3856) time: 0.3732 data: 0.0004 max mem: 14260\n",
"Epoch: [15] [ 900/2503] eta: 0:10:08 lr: 1.5625e-05 img/s: 1372.197531495288 loss: 2.0350 (2.0331) acc1: 71.0938 (70.0600) acc5: 87.1094 (87.3346) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [15] [1000/2503] eta: 0:09:29 lr: 1.5625e-05 img/s: 1375.1693107259541 loss: 1.9944 (2.0325) acc1: 70.7031 (70.0959) acc5: 88.2812 (87.3466) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [15] [1100/2503] eta: 0:08:50 lr: 1.5625e-05 img/s: 1374.9579973544262 loss: 2.0496 (2.0320) acc1: 70.1172 (70.1296) acc5: 86.9141 (87.3591) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [15] [1200/2503] eta: 0:08:12 lr: 1.5625e-05 img/s: 1375.4573297542347 loss: 2.0908 (2.0326) acc1: 70.1172 (70.1387) acc5: 87.1094 (87.3567) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [15] [1300/2503] eta: 0:07:34 lr: 1.5625e-05 img/s: 1372.6974928823736 loss: 1.9990 (2.0327) acc1: 70.1172 (70.1239) acc5: 87.1094 (87.3365) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [15] [1400/2503] eta: 0:06:56 lr: 1.5625e-05 img/s: 1374.5047732001851 loss: 2.0173 (2.0331) acc1: 70.1172 (70.1233) acc5: 87.1094 (87.3351) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [15] [1500/2503] eta: 0:06:18 lr: 1.5625e-05 img/s: 1373.2171368572367 loss: 1.9933 (2.0325) acc1: 70.8984 (70.1289) acc5: 87.3047 (87.3381) time: 0.3728 data: 0.0003 max mem: 14260\n",
"Epoch: [15] [1600/2503] eta: 0:05:40 lr: 1.5625e-05 img/s: 1375.046036699762 loss: 2.0170 (2.0308) acc1: 70.5078 (70.1535) acc5: 87.6953 (87.3612) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [15] [1700/2503] eta: 0:05:02 lr: 1.5625e-05 img/s: 1374.531166411387 loss: 2.0664 (2.0322) acc1: 69.5312 (70.1297) acc5: 86.5234 (87.3411) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [15] [1800/2503] eta: 0:04:24 lr: 1.5625e-05 img/s: 1373.415618236796 loss: 2.0155 (2.0328) acc1: 69.7266 (70.1297) acc5: 87.3047 (87.3422) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [15] [1900/2503] eta: 0:03:46 lr: 1.5625e-05 img/s: 1372.1396647544952 loss: 2.0226 (2.0328) acc1: 71.0938 (70.1318) acc5: 87.3047 (87.3468) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [15] [2000/2503] eta: 0:03:09 lr: 1.5625e-05 img/s: 1374.69922696185 loss: 2.0819 (2.0339) acc1: 69.5312 (70.1231) acc5: 86.9141 (87.3370) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [15] [2100/2503] eta: 0:02:31 lr: 1.5625e-05 img/s: 1375.4467581161584 loss: 2.0481 (2.0333) acc1: 69.7266 (70.1219) acc5: 87.3047 (87.3377) time: 0.3732 data: 0.0003 max mem: 14260\n",
"Epoch: [15] [2200/2503] eta: 0:01:53 lr: 1.5625e-05 img/s: 1373.7705686525878 loss: 2.0255 (2.0329) acc1: 70.5078 (70.1487) acc5: 87.3047 (87.3507) time: 0.3729 data: 0.0002 max mem: 14260\n",
"Epoch: [15] [2300/2503] eta: 0:01:16 lr: 1.5625e-05 img/s: 1373.8892192219282 loss: 2.0713 (2.0330) acc1: 69.5312 (70.1352) acc5: 87.1094 (87.3470) time: 0.3730 data: 0.0003 max mem: 14260\n",
"Epoch: [15] [2400/2503] eta: 0:00:38 lr: 1.5625e-05 img/s: 1374.6948269471684 loss: 1.9726 (2.0331) acc1: 70.7031 (70.1268) acc5: 87.5000 (87.3482) time: 0.3731 data: 0.0003 max mem: 14260\n",
"Epoch: [15] [2500/2503] eta: 0:00:01 lr: 1.5625e-05 img/s: 1377.165018010698 loss: 2.0347 (2.0337) acc1: 70.8984 (70.1293) acc5: 87.5000 (87.3426) time: 0.3725 data: 0.0001 max mem: 14260\n",
"Epoch: [15] Total time: 0:15:39\n",
"Test: [ 0/782] eta: 0:20:03 loss: 0.6819 (0.6819) acc1: 84.3750 (84.3750) acc5: 93.7500 (93.7500) time: 1.5387 data: 1.5247 max mem: 14260\n",
"Test: [100/782] eta: 0:00:31 loss: 1.0299 (0.9982) acc1: 76.5625 (77.3670) acc5: 90.6250 (92.1875) time: 0.0363 data: 0.0224 max mem: 14260\n",
"Test: [200/782] eta: 0:00:22 loss: 0.9097 (0.9699) acc1: 75.0000 (76.9356) acc5: 95.3125 (93.3613) time: 0.0257 data: 0.0118 max mem: 14260\n",
"Test: [300/782] eta: 0:00:17 loss: 0.8155 (0.9677) acc1: 79.6875 (77.2425) acc5: 93.7500 (93.6358) time: 0.0269 data: 0.0130 max mem: 14260\n",
"Test: [400/782] eta: 0:00:13 loss: 1.8431 (1.1161) acc1: 59.3750 (74.5246) acc5: 84.3750 (91.8797) time: 0.0277 data: 0.0138 max mem: 14260\n",
"Test: [500/782] eta: 0:00:09 loss: 1.8323 (1.2011) acc1: 56.2500 (73.0071) acc5: 84.3750 (90.7404) time: 0.0390 data: 0.0251 max mem: 14260\n",
"Test: [600/782] eta: 0:00:06 loss: 1.4322 (1.2668) acc1: 65.6250 (71.6488) acc5: 85.9375 (89.9620) time: 0.0238 data: 0.0098 max mem: 14260\n",
"Test: [700/782] eta: 0:00:02 loss: 1.3594 (1.3203) acc1: 70.3125 (70.6468) acc5: 87.5000 (89.2676) time: 0.0243 data: 0.0103 max mem: 14260\n",
"Test: Total time: 0:00:26\n",
"Test: Acc@1 70.554 Acc@5 89.268\n",
"Training time 4:17:53\n"
]
}
],
"source": [
"from types import SimpleNamespace\n",
"\n",
"args = SimpleNamespace(\n",
" data_path=\"/home/cs/Documents/datasets/imagenet\", # Replace with your /path/to/imagenet\n",
" model=\"resnet18\",\n",
" device=\"cuda\",\n",
" batch_size=512,\n",
" epochs=16,\n",
" lr=0.002,\n",
" momentum=0.9,\n",
" weight_decay=1e-4,\n",
" label_smoothing=0.0,\n",
" lr_warmup_epochs=1,\n",
" lr_warmup_decay=0.0,\n",
" lr_step_size=2,\n",
" lr_gamma=0.5,\n",
" print_freq=100,\n",
" output_dir=\"resnet18\",\n",
" use_deterministic_algorithms=False,\n",
" weights=\"ResNet18_Weights.IMAGENET1K_V1\",\n",
" apply_trp=True,\n",
" trp_depths=[4, 4, 4],\n",
" in_planes=512,\n",
" out_planes=8,\n",
" trp_rewards=[1.0, 0.4, 0.2, 0.1],\n",
")\n",
"\n",
"main(args)"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "L4",
"machine_shape": "hm",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.18"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|