File size: 2,384 Bytes
6ffa03d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- audio-classification
- generated_from_trainer
datasets:
- superb
metrics:
- accuracy
model-index:
- name: wav2vec2-base-ft-keyword-spotting
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: superb
      type: superb
      config: ks
      split: validation
      args: ks
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9826419535157399
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-ft-keyword-spotting

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0954
- Accuracy: 0.9826

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 48
- eval_batch_size: 32
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 192
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 8.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 1.3624        | 1.0    | 267  | 1.1959          | 0.6546   |
| 0.3854        | 2.0    | 534  | 0.2675          | 0.9734   |
| 0.2473        | 3.0    | 801  | 0.1461          | 0.9768   |
| 0.1997        | 4.0    | 1068 | 0.1088          | 0.9804   |
| 0.1723        | 5.0    | 1335 | 0.0954          | 0.9826   |
| 0.1442        | 6.0    | 1602 | 0.0927          | 0.9813   |
| 0.1397        | 7.0    | 1869 | 0.0892          | 0.9812   |
| 0.1368        | 7.9728 | 2128 | 0.0896          | 0.9812   |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0+cu118
- Datasets 3.3.1
- Tokenizers 0.21.0