File size: 13,443 Bytes
09a2af4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import datetime
import os
import time
import warnings
import presets
import torch
import torch.utils.data
import torchvision
import utils
from coco_utils import get_coco
from torch import nn
from torch.optim.lr_scheduler import PolynomialLR
from torchvision.transforms import functional as F, InterpolationMode
from trplib import apply_trp
def get_dataset(dir_path, name, image_set, transform):
def sbd(*args, **kwargs):
return torchvision.datasets.SBDataset(*args, mode="segmentation", **kwargs)
paths = {
"voc": (dir_path, torchvision.datasets.VOCSegmentation, 21),
"voc_aug": (dir_path, sbd, 21),
"coco": (dir_path, get_coco, 21),
}
p, ds_fn, num_classes = paths[name]
ds = ds_fn(p, image_set=image_set, transforms=transform)
return ds, num_classes
def get_transform(train, args):
if train:
return presets.SegmentationPresetTrain(base_size=520, crop_size=480)
elif args.weights and args.test_only:
weights = torchvision.models.get_weight(args.weights)
trans = weights.transforms()
def preprocessing(img, target):
img = trans(img)
size = F.get_dimensions(img)[1:]
target = F.resize(target, size, interpolation=InterpolationMode.NEAREST)
return img, F.pil_to_tensor(target)
return preprocessing
else:
return presets.SegmentationPresetEval(base_size=520)
def criterion(inputs, target):
losses = {}
for name, x in inputs.items():
losses[name] = nn.functional.cross_entropy(x, target, ignore_index=255)
if len(losses) == 1:
return losses["out"]
return losses["out"] + 0.5 * losses["aux"]
def evaluate(model, data_loader, device, num_classes):
model.eval()
confmat = utils.ConfusionMatrix(num_classes)
metric_logger = utils.MetricLogger(delimiter=" ")
header = "Test:"
num_processed_samples = 0
with torch.inference_mode():
for image, target in metric_logger.log_every(data_loader, 100, header):
image, target = image.to(device), target.to(device)
output = model(image)
output = output["out"]
confmat.update(target.flatten(), output.argmax(1).flatten())
# FIXME need to take into account that the datasets
# could have been padded in distributed setup
num_processed_samples += image.shape[0]
confmat.reduce_from_all_processes()
num_processed_samples = utils.reduce_across_processes(num_processed_samples)
if (
hasattr(data_loader.dataset, "__len__")
and len(data_loader.dataset) != num_processed_samples
and torch.distributed.get_rank() == 0
):
# See FIXME above
warnings.warn(
f"It looks like the dataset has {len(data_loader.dataset)} samples, but {num_processed_samples} "
"samples were used for the validation, which might bias the results. "
"Try adjusting the batch size and / or the world size. "
"Setting the world size to 1 is always a safe bet."
)
return confmat
def train_one_epoch(model, optimizer, data_loader, lr_scheduler, device, epoch, print_freq, scaler=None):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value}"))
header = f"Epoch: [{epoch}]"
for image, target in metric_logger.log_every(data_loader, print_freq, header):
image, target = image.to(device), target.to(device)
with torch.amp.autocast(device_type="cuda", enabled=scaler is not None):
_, loss = model(image, target)
# output = model(image)
# loss = criterion(output, target)
optimizer.zero_grad()
if scaler is not None:
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
optimizer.step()
lr_scheduler.step()
metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
def main(args):
if args.output_dir:
utils.mkdir(args.output_dir)
utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
if args.use_deterministic_algorithms:
torch.backends.cudnn.benchmark = False
torch.use_deterministic_algorithms(True)
else:
torch.backends.cudnn.benchmark = True
dataset, num_classes = get_dataset(args.data_path, args.dataset, "train", get_transform(True, args))
dataset_test, _ = get_dataset(args.data_path, args.dataset, "val", get_transform(False, args))
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test, shuffle=False)
else:
train_sampler = torch.utils.data.RandomSampler(dataset)
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
sampler=train_sampler,
num_workers=args.workers,
collate_fn=utils.collate_fn,
drop_last=True,
)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=1, sampler=test_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
)
model = torchvision.models.get_model(
args.model,
weights=args.weights,
weights_backbone=args.weights_backbone,
num_classes=num_classes,
aux_loss=args.aux_loss,
)
if args.apply_trp:
model = apply_trp(model, args.trp_depths, args.trp_p, args.trp_lambdas)
model.to(device)
if args.distributed:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
params_to_optimize = [
{"params": [p for p in model_without_ddp.backbone.parameters() if p.requires_grad]},
{"params": [p for p in model_without_ddp.classifier.parameters() if p.requires_grad]},
]
if args.aux_loss:
params = [p for p in model_without_ddp.aux_classifier.parameters() if p.requires_grad]
params_to_optimize.append({"params": params, "lr": args.lr * 10})
optimizer = torch.optim.SGD(params_to_optimize, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
scaler = torch.amp.GradScaler(device="cuda") if args.amp else None
iters_per_epoch = len(data_loader)
main_lr_scheduler = PolynomialLR(
optimizer, total_iters=iters_per_epoch * (args.epochs - args.lr_warmup_epochs), power=0.9
)
if args.lr_warmup_epochs > 0:
warmup_iters = iters_per_epoch * args.lr_warmup_epochs
args.lr_warmup_method = args.lr_warmup_method.lower()
if args.lr_warmup_method == "linear":
warmup_lr_scheduler = torch.optim.lr_scheduler.LinearLR(
optimizer, start_factor=args.lr_warmup_decay, total_iters=warmup_iters
)
elif args.lr_warmup_method == "constant":
warmup_lr_scheduler = torch.optim.lr_scheduler.ConstantLR(
optimizer, factor=args.lr_warmup_decay, total_iters=warmup_iters
)
else:
raise RuntimeError(
f"Invalid warmup lr method '{args.lr_warmup_method}'. Only linear and constant are supported."
)
lr_scheduler = torch.optim.lr_scheduler.SequentialLR(
optimizer, schedulers=[warmup_lr_scheduler, main_lr_scheduler], milestones=[warmup_iters]
)
else:
lr_scheduler = main_lr_scheduler
if args.resume:
checkpoint = torch.load(args.resume, map_location="cpu", weights_only=False)
model_without_ddp.load_state_dict(checkpoint["model"], strict=not args.test_only)
if not args.test_only:
optimizer.load_state_dict(checkpoint["optimizer"])
lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
args.start_epoch = checkpoint["epoch"] + 1
if args.amp:
scaler.load_state_dict(checkpoint["scaler"])
if args.test_only:
# We disable the cudnn benchmarking because it can noticeably affect the accuracy
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
confmat = evaluate(model, data_loader_test, device=device, num_classes=num_classes)
print(confmat)
return
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
train_one_epoch(model, optimizer, data_loader, lr_scheduler, device, epoch, args.print_freq, scaler)
confmat = evaluate(model, data_loader_test, device=device, num_classes=num_classes)
print(confmat)
if args.output_dir:
checkpoint = {
"model": model_without_ddp.state_dict() if not args.apply_trp else {k: v for k, v in model_without_ddp.state_dict().items() if (not k.startswith("out_trp_blocks")) or not k.startswith("aux_trp_blocks")}, # NOTE: remove TRP heads
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch,
"args": args,
}
if args.amp:
checkpoint["scaler"] = scaler.state_dict()
utils.save_on_master(checkpoint, os.path.join(args.output_dir, f"model_{epoch}.pth"))
utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print(f"Training time {total_time_str}")
def get_args_parser(add_help=True):
import argparse
parser = argparse.ArgumentParser(description="PyTorch Segmentation Training", add_help=add_help)
parser.add_argument("--data-path", default="/datasets01/COCO/022719/", type=str, help="dataset path")
parser.add_argument("--dataset", default="coco", type=str, help="dataset name")
parser.add_argument("--model", default="fcn_resnet101", type=str, help="model name")
parser.add_argument("--aux-loss", action="store_true", help="auxiliar loss")
parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
parser.add_argument(
"-b", "--batch-size", default=8, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
)
parser.add_argument("--epochs", default=30, type=int, metavar="N", help="number of total epochs to run")
parser.add_argument(
"-j", "--workers", default=16, type=int, metavar="N", help="number of data loading workers (default: 16)"
)
parser.add_argument("--lr", default=0.01, type=float, help="initial learning rate")
parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
parser.add_argument(
"--wd",
"--weight-decay",
default=1e-4,
type=float,
metavar="W",
help="weight decay (default: 1e-4)",
dest="weight_decay",
)
parser.add_argument("--lr-warmup-epochs", default=0, type=int, help="the number of epochs to warmup (default: 0)")
parser.add_argument("--lr-warmup-method", default="linear", type=str, help="the warmup method (default: linear)")
parser.add_argument("--lr-warmup-decay", default=0.01, type=float, help="the decay for lr")
parser.add_argument("--print-freq", default=10, type=int, help="print frequency")
parser.add_argument("--output-dir", default=".", type=str, help="path to save outputs")
parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="start epoch")
parser.add_argument(
"--test-only",
dest="test_only",
help="Only test the model",
action="store_true",
)
parser.add_argument(
"--use-deterministic-algorithms", action="store_true", help="Forces the use of deterministic algorithms only."
)
# distributed training parameters
parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training")
parser.add_argument("--weights", default=None, type=str, help="the weights enum name to load")
parser.add_argument("--weights-backbone", default=None, type=str, help="the backbone weights enum name to load")
# Mixed precision training parameters
parser.add_argument("--amp", action="store_true", help="Use torch.cuda.amp for mixed precision training")
parser.add_argument("--apply-trp", dest="apply_trp", help="Apply TRP to the model", action="store_true")
parser.add_argument("--trp-depths", type=int, help="trp depth")
parser.add_argument("--trp-p", type=float, help="trp p")
parser.add_argument("--trp-lambdas", nargs="+", type=float, help="trp lambdas")
return parser
if __name__ == "__main__":
args = get_args_parser().parse_args()
main(args)
|