File size: 23,691 Bytes
97d8aaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
import types
from typing import Optional, List, Union, Callable
from collections import OrderedDict

import torch 
from torch import nn, Tensor
from torch.nn import functional as F

from torchvision.models.mobilenetv2 import MobileNetV2
from torchvision.models.resnet import ResNet
from torchvision.models.efficientnet import EfficientNet
from torchvision.models.vision_transformer import VisionTransformer
from torchvision.models.segmentation.fcn import FCN
from torchvision.models.segmentation.deeplabv3 import DeepLabV3


def compute_policy_loss(loss_sequence, mask_sequence, rewards):
    losses = sum(mask * padded_loss for mask, padded_loss in zip(mask_sequence, loss_sequence))
    returns = sum(padded_reward * mask for padded_reward, mask in zip(rewards, mask_sequence))
    loss = torch.mean(losses * returns)

    return loss


class TPBlock(nn.Module):
    def __init__(self, depths: int, in_planes: int, out_planes: int = None, rank=1, shape_dims=3, channel_first=True, dtype=torch.float32) -> None:
        super().__init__()
        out_planes = in_planes if out_planes is None else out_planes
        self.layers = torch.nn.ModuleList([self._make_layer(in_planes, out_planes, rank, shape_dims, channel_first, dtype) for _ in range(depths)])

    def forward(self, x: Tensor) -> Tensor:
        for layer in self.layers:
            x = x + layer(x)
        return x

    def _make_layer(self, in_planes: int, out_planes: int = None, rank=1, shape_dims=3, channel_first=True, dtype=torch.float32) -> nn.Sequential:
        
        class Permute(nn.Module):
            def __init__(self, *dims):
                super().__init__()
                self.dims = dims
            def forward(self, x):
                return x.permute(*self.dims)
        
        class RMSNorm(nn.Module):
            __constants__ = ["eps"]
            eps: float

            def __init__(self, hidden_size, eps: float = 1e-6, device=None, dtype=None):
                """
                LlamaRMSNorm is equivalent to T5LayerNorm.
                """
                factory_kwargs = {"device": device, "dtype": dtype}
                super().__init__()
                self.eps = eps
                self.weight = nn.Parameter(torch.ones(hidden_size, **factory_kwargs))

            def forward(self, hidden_states):
                input_dtype = hidden_states.dtype
                hidden_states = hidden_states.to(torch.float32)
                variance = hidden_states.pow(2).mean(dim=1, keepdim=True)
                hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
                weight = self.weight.view(1, -1, *[1] * (hidden_states.ndim - 2))
                return weight * hidden_states.to(input_dtype)

            def extra_repr(self):
                return f"{self.weight.shape[0]}, eps={self.eps}"

        conv_map = {
            2: (nn.Conv1d, (0, 2, 1), (0, 2, 1)),
            3: (nn.Conv2d, (0, 3, 1, 2), (0, 2, 3, 1)),
            4: (nn.Conv3d, (0, 4, 1, 2, 3), (0, 2, 3, 4, 1)),
        }
        Conv, pre_dims, post_dims = conv_map[shape_dims]
        kernel_size, dilation, padding = self.generate_hyperparameters(rank)
        
        pre_permute = nn.Identity() if channel_first else Permute(*pre_dims)
        post_permute = nn.Identity() if channel_first else Permute(*post_dims)
        conv1 = Conv(in_planes, out_planes, kernel_size, padding=padding, dilation=dilation, bias=False, dtype=dtype, device='cuda')
        nn.init.zeros_(conv1.weight)
        bn1 = RMSNorm(out_planes, dtype=dtype, device="cuda")
        relu = nn.ReLU(inplace=True)
        conv2 = Conv(out_planes, in_planes, kernel_size, padding=padding, dilation=dilation, bias=False, dtype=dtype, device='cuda')
        nn.init.zeros_(conv2.weight)
        bn2 = RMSNorm(in_planes, dtype=dtype, device="cuda")

        return torch.nn.Sequential(pre_permute, conv1, bn1, relu, conv2, bn2, relu, post_permute)

    @staticmethod
    def generate_hyperparameters(rank: int):
        """
        Generates kernel size and dilation rate pairs sorted by increasing padded kernel size.
        
        Args:
            rank: Number of (kernel_size, dilation) pairs to generate. Must be positive.

        Returns:
            Tuple[int, int]: A (kernel_size, dilation) tuple where:
                - kernel_size: Always odd and >= 1
                - dilation: Computed to maintain consistent padded kernel size growth
            
        Note:
            Padded kernel size is calculated as:
                (kernel_size - 1) * dilation + 1
            Pairs are generated first in order of increasing padded kernel size,
            then by increasing kernel size for equal padded kernel sizes.
        """
        pairs = [(1, 1, 0)]  # Start with smallest possible
        padded_kernel_size = 3
        
        while len(pairs) < rank:
            for kernel_size in range(3, padded_kernel_size + 1, 2):
                if (padded_kernel_size - 1) % (kernel_size - 1) == 0:
                    dilation = (padded_kernel_size - 1) // (kernel_size - 1)
                    padding = dilation * (kernel_size - 1) // 2
                    pairs.append((kernel_size, dilation, padding))
                    if len(pairs) >= rank:
                        break
            
            # Move to next odd padded kernel size
            padded_kernel_size += 2
        
        return pairs[-1]


# ResNet for Image Classification
class ResNetConfig:
    @staticmethod
    def gen_shared_head(self):
        def func(hidden_states):
            """
            Args:
                hidden_states (Tensor): Hidden States tensor of shape [B, C, H, W].

            Returns:
                logits (Tensor): Logits tensor of shape [B, C].
            """
            x = self.avgpool(hidden_states)
            x = torch.flatten(x, 1)
            logits = self.fc(x)
            return logits
        return func
    
    @staticmethod
    def gen_logits(self, shared_head):
        def func(hidden_states):
            """
            Args:
                hidden_states (Tensor): Hidden States tensor of shape [B, L, hidden_units].

            Returns:
                logits_seqence (List[Tensor]): List of Logits tensors.
            """
            logits_sequence = [shared_head(hidden_states)]
            for layer in self.trp_blocks:
                logits_sequence.append(shared_head(layer(hidden_states))) 
            return logits_sequence
        return func

    @staticmethod
    def gen_mask(label_smoothing=0.0, top_k=1):
        def func(logits_sequence, labels):
            """
            Args:
                logits_sequence (List[Tensor]): List of Logits tensors.
                labels (Tensor): Target labels of shape [B] or [B, C].

            Returns:
                mask_sequence (List[Tensor]): Boolean mask tensor of shape [B*(L-1)].
            """
            labels = torch.argmax(labels, dim=1) if label_smoothing > 0.0 else labels

            mask_sequence = [torch.ones_like(labels, dtype=torch.float32, device=labels.device)]
            for logits in logits_sequence:
                with torch.no_grad():
                    topk_values, topk_indices = torch.topk(logits, top_k, dim=-1)
                    mask = torch.eq(topk_indices, labels[:, None]).any(dim=-1).to(torch.float32)
                    mask_sequence.append(mask_sequence[-1] * mask)
            return mask_sequence
        return func
    
    @staticmethod
    def gen_criterion(label_smoothing=0.0):
        def func(logits_sequence, labels):
            """
            Args:
                logits_sequence (List[Tensor]): List of Logits tensor.
                labels (Tensor): labels labels of shape [B] or [B, C].

            Returns:
                loss (Tensor): Scalar tensor representing the loss.
                mask (Tensor): Boolean mask tensor of shape [B].
            """
            labels = torch.argmax(labels, dim=1) if label_smoothing > 0.0 else labels

            loss_sequence = []
            for logits in logits_sequence:
                loss_sequence.append(F.cross_entropy(logits, labels, reduction="none", label_smoothing=label_smoothing))

            return loss_sequence
        return func

    @staticmethod
    def gen_forward(rewards, label_smoothing=0.0, top_k=1):
        def func(self, x: Tensor, targets=None) -> Tensor:
            x = self.conv1(x)
            x = self.bn1(x)
            x = self.relu(x)
            x = self.maxpool(x)

            x = self.layer1(x)
            x = self.layer2(x)
            x = self.layer3(x)
            hidden_states = self.layer4(x)
            x = self.avgpool(hidden_states)
            x = torch.flatten(x, 1)
            logits = self.fc(x)

            if self.training:
                shared_head = ResNetConfig.gen_shared_head(self)
                compute_logits = ResNetConfig.gen_logits(self, shared_head)
                compute_mask = ResNetConfig.gen_mask(label_smoothing, top_k)
                compute_loss = ResNetConfig.gen_criterion(label_smoothing)
                
                logits_sequence = compute_logits(hidden_states)
                mask_sequence = compute_mask(logits_sequence, targets)
                loss_sequence = compute_loss(logits_sequence, targets)
                loss = compute_policy_loss(loss_sequence, mask_sequence, rewards)
                
                return logits, loss

            return logits
        
        return func


# MobileNetV2 for Image Classification
class MobileNetV2Config(ResNetConfig):
    @staticmethod
    def gen_shared_head(self):
        def func(hidden_states):
            """
            Args:
                hidden_states (Tensor): Hidden States tensor of shape [B, C, H, W].

            Returns:
                logits (Tensor): Logits tensor of shape [B, C].
            """
            x = nn.functional.adaptive_avg_pool2d(hidden_states, (1, 1))
            x = torch.flatten(x, 1)
            logits = self.classifier(x)
            return logits
        return func
    
    @staticmethod
    def gen_forward(rewards, label_smoothing=0.0, top_k=1):
        def func(self, x: Tensor, targets=None) -> Tensor:
            hidden_states = self.features(x)
            # Cannot use "squeeze" as batch-size can be 1
            x = nn.functional.adaptive_avg_pool2d(hidden_states, (1, 1))
            x = torch.flatten(x, 1)
            logits = self.classifier(x)

            if self.training:
                shared_head = MobileNetV2Config.gen_shared_head(self)
                compute_logits = MobileNetV2Config.gen_logits(self, shared_head)
                compute_mask = MobileNetV2Config.gen_mask(label_smoothing, top_k)
                compute_loss = MobileNetV2Config.gen_criterion(label_smoothing)
                
                logits_sequence = compute_logits(hidden_states)
                mask_sequence = compute_mask(logits_sequence, targets)
                loss_sequence = compute_loss(logits_sequence, targets)
                loss = compute_policy_loss(loss_sequence, mask_sequence, rewards)
                
                return logits, loss

            return logits
        
        return func


# EfficientNet for Image Classification
class EfficientNetConfig(ResNetConfig):
    @staticmethod
    def gen_shared_head(self):
        def func(hidden_states):
            """
            Args:
                hidden_states (Tensor): Hidden States tensor of shape [B, C, H, W].

            Returns:
                logits (Tensor): Logits tensor of shape [B, C].
            """
            x = self.avgpool(hidden_states)
            x = torch.flatten(x, 1)
            logits = self.classifier(x)
            return logits
        return func
    
    @staticmethod
    def gen_forward(rewards, label_smoothing=0.0, top_k=1):
        def func(self, x: Tensor, targets=None) -> Tensor:
            hidden_states = self.features(x)
            x = self.avgpool(hidden_states)
            x = torch.flatten(x, 1)
            logits = self.classifier(x)

            if self.training:
                shared_head = EfficientNetConfig.gen_shared_head(self)
                compute_logits = EfficientNetConfig.gen_logits(self, shared_head)
                compute_mask = EfficientNetConfig.gen_mask(label_smoothing, top_k)
                compute_loss = EfficientNetConfig.gen_criterion(label_smoothing)
                
                logits_sequence = compute_logits(hidden_states)
                mask_sequence = compute_mask(logits_sequence, targets)
                loss_sequence = compute_loss(logits_sequence, targets)
                loss = compute_policy_loss(loss_sequence, mask_sequence, rewards)
                
                return logits, loss

            return logits
        
        return func
    

# VisionTransformer for Image Classification
class VisionTransformerConfig(ResNetConfig):
    @staticmethod
    def gen_shared_head(self):
        def func(hidden_states):
            """
            Args:
                hidden_states (Tensor): Hidden States tensor of shape [B, C, H, W].

            Returns:
                logits (Tensor): Logits tensor of shape [B, C].
            """
            x = hidden_states[:, 0]
            logits = self.heads(x)
            return logits
        return func

    @staticmethod
    def gen_forward(rewards, label_smoothing=0.0, top_k=1):
        def func(self, images: Tensor, targets=None):
            x = self._process_input(images)
            n = x.shape[0]
            batch_class_token = self.class_token.expand(n, -1, -1)
            x = torch.cat([batch_class_token, x], dim=1)
            hidden_states = self.encoder(x)
            x = hidden_states[:, 0]

            logits = self.heads(x)


            if self.training:
                shared_head = VisionTransformerConfig.gen_shared_head(self)
                compute_logits = VisionTransformerConfig.gen_logits(self, shared_head)
                compute_mask = VisionTransformerConfig.gen_mask(label_smoothing, top_k)
                compute_loss = VisionTransformerConfig.gen_criterion(label_smoothing)
                
                logits_sequence = compute_logits(hidden_states)
                mask_sequence = compute_mask(logits_sequence, targets)
                loss_sequence = compute_loss(logits_sequence, targets)
                loss = compute_policy_loss(loss_sequence, mask_sequence, rewards)
                
                return logits, loss
            return logits
        return func
    

# FCN for Semantic Segmentation
class FCNConfig(ResNetConfig):
    @staticmethod
    def gen_out_shared_head(self, input_shape):
        def func(features):
            """
            Args:
                features (Tensor): features tensor of shape [B, hidden_units, H, W].

            Returns:
                result (Tensors): result tensor of shape [B, C, H, W].
            """
            x = self.classifier(features)
            result = F.interpolate(x, size=input_shape, mode="bilinear", align_corners=False)
            return result
        return func
    
    @staticmethod
    def gen_aux_shared_head(self, input_shape):
        def func(features):
            """
            Args:
                features (Tensor): features tensor of shape [B, hidden_units, H, W].

            Returns:
                result (Tensors): result tensor of shape [B, C, H, W].
            """
            x = self.aux_classifier(features)
            result = F.interpolate(x, size=input_shape, mode="bilinear", align_corners=False)
            return result
        return func
    
    @staticmethod
    def gen_out_logits(self, shared_head):
        def func(hidden_states):
            """
            Args:
                hidden_states (Tensor): Hidden States tensor of shape [B, L, hidden_units].

            Returns:
                logits_seqence (List[Tensor]): List of Logits tensors.
            """
            logits_sequence = [shared_head(hidden_states)]
            for layer in self.out_trp_blocks:
                logits_sequence.append(shared_head(layer(hidden_states))) 
            return logits_sequence
        return func
    
    @staticmethod
    def gen_aux_logits(self, shared_head):
        def func(hidden_states):
            """
            Args:
                hidden_states (Tensor): Hidden States tensor of shape [B, L, hidden_units].

            Returns:
                logits_seqence (List[Tensor]): List of Logits tensors.
            """
            logits_sequence = [shared_head(hidden_states)]
            for layer in self.aux_trp_blocks:
                logits_sequence.append(shared_head(layer(hidden_states))) 
            return logits_sequence
        return func

    @staticmethod
    def gen_mask(label_smoothing=0.0, top_k=1):
        def func(logits_sequence, labels):
            """
            Args:
                logits_sequence (List[Tensor]): List of Logits tensors with shape [B, C, H, W].
                labels (Tensor): Target labels of shape [B, H, W].

            Returns:
                mask_sequence (List[Tensor]): Boolean mask tensor of shape [B, H, W].
            """
            labels = torch.argmax(labels, dim=1) if label_smoothing > 0.0 else labels

            mask_sequence = [torch.ones_like(labels, dtype=torch.float32, device=labels.device)]
            for logits in logits_sequence:
                with torch.no_grad():
                    topk_values, topk_indices = torch.topk(logits, top_k, dim=1)
                    mask = torch.eq(topk_indices, labels[:, None, :, :]).any(dim=1).to(torch.float32)
                    mask_sequence.append(mask_sequence[-1] * mask)
            return mask_sequence
        return func
    
    @staticmethod
    def gen_criterion(label_smoothing=0.0):
        def func(logits_sequence, labels):
            """
            Args:
                logits_sequence (List[Tensor]): List of Logits tensor.
                labels (Tensor): labels labels of shape [B] or [B, C].

            Returns:
                loss (Tensor): Scalar tensor representing the loss.
                mask (Tensor): Boolean mask tensor of shape [B].
            """
            labels = torch.argmax(labels, dim=1) if label_smoothing > 0.0 else labels

            loss_sequence = []
            for logits in logits_sequence:
                loss_sequence.append(F.cross_entropy(logits, labels, ignore_index=255, reduction="none", label_smoothing=label_smoothing))

            return loss_sequence
        return func
    
    @staticmethod
    def gen_forward(rewards, label_smoothing=0.0, top_k=1):
        def func(self, images: Tensor, targets=None):
            input_shape = images.shape[-2:]
            # contract: features is a dict of tensors
            features = self.backbone(images)

            result = OrderedDict()
            x = features["out"]
            x = self.classifier(x)
            x = F.interpolate(x, size=input_shape, mode="bilinear", align_corners=False)
            result["out"] = x

            if self.aux_classifier is not None:
                x = features["aux"]
                x = self.aux_classifier(x)
                x = F.interpolate(x, size=input_shape, mode="bilinear", align_corners=False)
                result["aux"] = x

            if self.training:
                torch._assert(targets is not None, "targets should not be none when in training mode")
                out_shared_head = FCNConfig.gen_out_shared_head(self, input_shape)
                aux_shared_head = FCNConfig.gen_aux_shared_head(self, input_shape)
                compute_out_logits = FCNConfig.gen_out_logits(self, out_shared_head)
                compute_aux_logits = FCNConfig.gen_aux_logits(self, aux_shared_head)
                compute_mask = FCNConfig.gen_mask(label_smoothing, top_k)
                compute_loss = FCNConfig.gen_criterion(label_smoothing)

                out_logits_sequence = compute_out_logits(features["out"])
                out_mask_sequence = compute_mask(out_logits_sequence, targets)
                out_loss_sequence = compute_loss(out_logits_sequence, targets)
                out_loss = compute_policy_loss(out_loss_sequence, out_mask_sequence, rewards)

                aux_logits_sequence = compute_aux_logits(features["aux"])
                aux_mask_sequence = compute_mask(aux_logits_sequence, targets)
                aux_loss_sequence = compute_loss(aux_logits_sequence, targets)
                aux_loss = compute_policy_loss(aux_loss_sequence, aux_mask_sequence, rewards)

                loss = out_loss + 0.5 * aux_loss
                return result, loss
            return result
        return func


# DeepLabV3Config for Semantic Segmentation
class DeepLabV3Config(FCNConfig):
    pass


def apply_trp(model, depths: List[int], in_planes: int, out_planes: int, rewards, **kwargs):
    if isinstance(model, ResNet):
        print("βœ… Applying TRP to ResNet for Image Classification...")
        model.trp_blocks = torch.nn.ModuleList([TPBlock(depths=d, in_planes=in_planes, out_planes=out_planes, rank=k) for k, d in enumerate(depths)])
        model.forward = types.MethodType(ResNetConfig.gen_forward(rewards, label_smoothing=kwargs["label_smoothing"], top_k=1), model)
    elif isinstance(model, MobileNetV2):
        print("βœ… Applying TRP to MobileNetV2 for Image Classification...")
        model.trp_blocks = torch.nn.ModuleList([TPBlock(depths=d, in_planes=in_planes, out_planes=out_planes, rank=k) for k, d in enumerate(depths)])
        model.forward = types.MethodType(MobileNetV2Config.gen_forward(rewards, label_smoothing=kwargs["label_smoothing"], top_k=1), model)   
    elif isinstance(model, EfficientNet):
        print("βœ… Applying TRP to EfficientNet for Image Classification...")
        model.trp_blocks = torch.nn.ModuleList([TPBlock(depths=d, in_planes=in_planes, out_planes=out_planes, rank=k) for k, d in enumerate(depths)])
        model.forward = types.MethodType(EfficientNetConfig.gen_forward(rewards, label_smoothing=kwargs["label_smoothing"], top_k=1), model)   
    elif isinstance(model, VisionTransformer):
        print("βœ… Applying TRP to VisionTransformer for Image Classification...")
        model.trp_blocks = torch.nn.ModuleList([TPBlock(depths=d, in_planes=in_planes, out_planes=out_planes, rank=k, shape_dims=2, channel_first=False) for k, d in enumerate(depths)])
        model.forward = types.MethodType(VisionTransformerConfig.gen_forward(rewards, label_smoothing=kwargs["label_smoothing"], top_k=1), model)   
    elif isinstance(model, FCN):
        print("βœ… Applying TRP to FCN for Semantic Segmentation...")
        model.out_trp_blocks = torch.nn.ModuleList([TPBlock(depths=d, in_planes=2048, out_planes=out_planes, rank=k) for k, d in enumerate(depths)])
        model.aux_trp_blocks = torch.nn.ModuleList([TPBlock(depths=d, in_planes=1024, out_planes=out_planes, rank=k) for k, d in enumerate(depths)])
        model.forward = types.MethodType(FCNConfig.gen_forward(rewards, label_smoothing=0.0, top_k=1), model) 
    elif isinstance(model, DeepLabV3):
        print("βœ… Applying TRP to DeepLabV3 for Semantic Segmentation...")
        model.out_trp_blocks = torch.nn.ModuleList([TPBlock(depths, in_planes=2048, out_planes=out_planes, rank=k) for k, d in enumerate(depths)])
        model.aux_trp_blocks = torch.nn.ModuleList([TPBlock(depths, in_planes=1024, out_planes=out_planes, rank=k) for k, d in enumerate(depths)])
        model.forward = types.MethodType(DeepLabV3Config.gen_forward(rewards, label_smoothing=0.0, top_k=1), model) 
    return model