import types from typing import Optional, List, Union, Callable from collections import OrderedDict import torch from torch import nn, Tensor from torch.nn import functional as F from torchvision.models.mobilenetv2 import MobileNetV2 from torchvision.models.resnet import ResNet from torchvision.models.efficientnet import EfficientNet from torchvision.models.vision_transformer import VisionTransformer from torchvision.models.segmentation.fcn import FCN from torchvision.models.segmentation.deeplabv3 import DeepLabV3 def compute_policy_loss(loss_sequence, mask_sequence, rewards): losses = sum(mask * padded_loss for mask, padded_loss in zip(mask_sequence, loss_sequence)) returns = sum(padded_reward * mask for padded_reward, mask in zip(rewards, mask_sequence)) loss = torch.mean(losses * returns) return loss class TPBlock(nn.Module): def __init__(self, depths: int, in_planes: int, out_planes: int = None, rank=1, shape_dims=3, channel_first=True, dtype=torch.float32) -> None: super().__init__() out_planes = in_planes if out_planes is None else out_planes self.layers = torch.nn.ModuleList([self._make_layer(in_planes, out_planes, rank, shape_dims, channel_first, dtype) for _ in range(depths)]) def forward(self, x: Tensor) -> Tensor: for layer in self.layers: x = x + layer(x) return x def _make_layer(self, in_planes: int, out_planes: int = None, rank=1, shape_dims=3, channel_first=True, dtype=torch.float32) -> nn.Sequential: class Permute(nn.Module): def __init__(self, *dims): super().__init__() self.dims = dims def forward(self, x): return x.permute(*self.dims) class RMSNorm(nn.Module): __constants__ = ["eps"] eps: float def __init__(self, hidden_size, eps: float = 1e-6, device=None, dtype=None): """ LlamaRMSNorm is equivalent to T5LayerNorm. """ factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(hidden_size, **factory_kwargs)) def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(dim=1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.eps) weight = self.weight.view(1, -1, *[1] * (hidden_states.ndim - 2)) return weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{self.weight.shape[0]}, eps={self.eps}" conv_map = { 2: (nn.Conv1d, (0, 2, 1), (0, 2, 1)), 3: (nn.Conv2d, (0, 3, 1, 2), (0, 2, 3, 1)), 4: (nn.Conv3d, (0, 4, 1, 2, 3), (0, 2, 3, 4, 1)), } Conv, pre_dims, post_dims = conv_map[shape_dims] kernel_size, dilation, padding = self.generate_hyperparameters(rank) pre_permute = nn.Identity() if channel_first else Permute(*pre_dims) post_permute = nn.Identity() if channel_first else Permute(*post_dims) conv1 = Conv(in_planes, out_planes, kernel_size, padding=padding, dilation=dilation, bias=False, dtype=dtype, device='cuda') nn.init.zeros_(conv1.weight) bn1 = RMSNorm(out_planes, dtype=dtype, device="cuda") relu = nn.ReLU(inplace=True) conv2 = Conv(out_planes, in_planes, kernel_size, padding=padding, dilation=dilation, bias=False, dtype=dtype, device='cuda') nn.init.zeros_(conv2.weight) bn2 = RMSNorm(in_planes, dtype=dtype, device="cuda") return torch.nn.Sequential(pre_permute, conv1, bn1, relu, conv2, bn2, relu, post_permute) @staticmethod def generate_hyperparameters(rank: int): """ Generates kernel size and dilation rate pairs sorted by increasing padded kernel size. Args: rank: Number of (kernel_size, dilation) pairs to generate. Must be positive. Returns: Tuple[int, int]: A (kernel_size, dilation) tuple where: - kernel_size: Always odd and >= 1 - dilation: Computed to maintain consistent padded kernel size growth Note: Padded kernel size is calculated as: (kernel_size - 1) * dilation + 1 Pairs are generated first in order of increasing padded kernel size, then by increasing kernel size for equal padded kernel sizes. """ pairs = [(1, 1, 0)] # Start with smallest possible padded_kernel_size = 3 while len(pairs) < rank: for kernel_size in range(3, padded_kernel_size + 1, 2): if (padded_kernel_size - 1) % (kernel_size - 1) == 0: dilation = (padded_kernel_size - 1) // (kernel_size - 1) padding = dilation * (kernel_size - 1) // 2 pairs.append((kernel_size, dilation, padding)) if len(pairs) >= rank: break # Move to next odd padded kernel size padded_kernel_size += 2 return pairs[-1] # ResNet for Image Classification class ResNetConfig: @staticmethod def gen_shared_head(self): def func(hidden_states): """ Args: hidden_states (Tensor): Hidden States tensor of shape [B, C, H, W]. Returns: logits (Tensor): Logits tensor of shape [B, C]. """ x = self.avgpool(hidden_states) x = torch.flatten(x, 1) logits = self.fc(x) return logits return func @staticmethod def gen_logits(self, shared_head): def func(hidden_states): """ Args: hidden_states (Tensor): Hidden States tensor of shape [B, L, hidden_units]. Returns: logits_seqence (List[Tensor]): List of Logits tensors. """ logits_sequence = [shared_head(hidden_states)] for layer in self.trp_blocks: logits_sequence.append(shared_head(layer(hidden_states))) return logits_sequence return func @staticmethod def gen_mask(label_smoothing=0.0, top_k=1): def func(logits_sequence, labels): """ Args: logits_sequence (List[Tensor]): List of Logits tensors. labels (Tensor): Target labels of shape [B] or [B, C]. Returns: mask_sequence (List[Tensor]): Boolean mask tensor of shape [B*(L-1)]. """ labels = torch.argmax(labels, dim=1) if label_smoothing > 0.0 else labels mask_sequence = [torch.ones_like(labels, dtype=torch.float32, device=labels.device)] for logits in logits_sequence: with torch.no_grad(): topk_values, topk_indices = torch.topk(logits, top_k, dim=-1) mask = torch.eq(topk_indices, labels[:, None]).any(dim=-1).to(torch.float32) mask_sequence.append(mask_sequence[-1] * mask) return mask_sequence return func @staticmethod def gen_criterion(label_smoothing=0.0): def func(logits_sequence, labels): """ Args: logits_sequence (List[Tensor]): List of Logits tensor. labels (Tensor): labels labels of shape [B] or [B, C]. Returns: loss (Tensor): Scalar tensor representing the loss. mask (Tensor): Boolean mask tensor of shape [B]. """ labels = torch.argmax(labels, dim=1) if label_smoothing > 0.0 else labels loss_sequence = [] for logits in logits_sequence: loss_sequence.append(F.cross_entropy(logits, labels, reduction="none", label_smoothing=label_smoothing)) return loss_sequence return func @staticmethod def gen_forward(rewards, label_smoothing=0.0, top_k=1): def func(self, x: Tensor, targets=None) -> Tensor: x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) hidden_states = self.layer4(x) x = self.avgpool(hidden_states) x = torch.flatten(x, 1) logits = self.fc(x) if self.training: shared_head = ResNetConfig.gen_shared_head(self) compute_logits = ResNetConfig.gen_logits(self, shared_head) compute_mask = ResNetConfig.gen_mask(label_smoothing, top_k) compute_loss = ResNetConfig.gen_criterion(label_smoothing) logits_sequence = compute_logits(hidden_states) mask_sequence = compute_mask(logits_sequence, targets) loss_sequence = compute_loss(logits_sequence, targets) loss = compute_policy_loss(loss_sequence, mask_sequence, rewards) return logits, loss return logits return func # MobileNetV2 for Image Classification class MobileNetV2Config(ResNetConfig): @staticmethod def gen_shared_head(self): def func(hidden_states): """ Args: hidden_states (Tensor): Hidden States tensor of shape [B, C, H, W]. Returns: logits (Tensor): Logits tensor of shape [B, C]. """ x = nn.functional.adaptive_avg_pool2d(hidden_states, (1, 1)) x = torch.flatten(x, 1) logits = self.classifier(x) return logits return func @staticmethod def gen_forward(rewards, label_smoothing=0.0, top_k=1): def func(self, x: Tensor, targets=None) -> Tensor: hidden_states = self.features(x) # Cannot use "squeeze" as batch-size can be 1 x = nn.functional.adaptive_avg_pool2d(hidden_states, (1, 1)) x = torch.flatten(x, 1) logits = self.classifier(x) if self.training: shared_head = MobileNetV2Config.gen_shared_head(self) compute_logits = MobileNetV2Config.gen_logits(self, shared_head) compute_mask = MobileNetV2Config.gen_mask(label_smoothing, top_k) compute_loss = MobileNetV2Config.gen_criterion(label_smoothing) logits_sequence = compute_logits(hidden_states) mask_sequence = compute_mask(logits_sequence, targets) loss_sequence = compute_loss(logits_sequence, targets) loss = compute_policy_loss(loss_sequence, mask_sequence, rewards) return logits, loss return logits return func # EfficientNet for Image Classification class EfficientNetConfig(ResNetConfig): @staticmethod def gen_shared_head(self): def func(hidden_states): """ Args: hidden_states (Tensor): Hidden States tensor of shape [B, C, H, W]. Returns: logits (Tensor): Logits tensor of shape [B, C]. """ x = self.avgpool(hidden_states) x = torch.flatten(x, 1) logits = self.classifier(x) return logits return func @staticmethod def gen_forward(rewards, label_smoothing=0.0, top_k=1): def func(self, x: Tensor, targets=None) -> Tensor: hidden_states = self.features(x) x = self.avgpool(hidden_states) x = torch.flatten(x, 1) logits = self.classifier(x) if self.training: shared_head = EfficientNetConfig.gen_shared_head(self) compute_logits = EfficientNetConfig.gen_logits(self, shared_head) compute_mask = EfficientNetConfig.gen_mask(label_smoothing, top_k) compute_loss = EfficientNetConfig.gen_criterion(label_smoothing) logits_sequence = compute_logits(hidden_states) mask_sequence = compute_mask(logits_sequence, targets) loss_sequence = compute_loss(logits_sequence, targets) loss = compute_policy_loss(loss_sequence, mask_sequence, rewards) return logits, loss return logits return func # VisionTransformer for Image Classification class VisionTransformerConfig(ResNetConfig): @staticmethod def gen_shared_head(self): def func(hidden_states): """ Args: hidden_states (Tensor): Hidden States tensor of shape [B, C, H, W]. Returns: logits (Tensor): Logits tensor of shape [B, C]. """ x = hidden_states[:, 0] logits = self.heads(x) return logits return func @staticmethod def gen_forward(rewards, label_smoothing=0.0, top_k=1): def func(self, images: Tensor, targets=None): x = self._process_input(images) n = x.shape[0] batch_class_token = self.class_token.expand(n, -1, -1) x = torch.cat([batch_class_token, x], dim=1) hidden_states = self.encoder(x) x = hidden_states[:, 0] logits = self.heads(x) if self.training: shared_head = VisionTransformerConfig.gen_shared_head(self) compute_logits = VisionTransformerConfig.gen_logits(self, shared_head) compute_mask = VisionTransformerConfig.gen_mask(label_smoothing, top_k) compute_loss = VisionTransformerConfig.gen_criterion(label_smoothing) logits_sequence = compute_logits(hidden_states) mask_sequence = compute_mask(logits_sequence, targets) loss_sequence = compute_loss(logits_sequence, targets) loss = compute_policy_loss(loss_sequence, mask_sequence, rewards) return logits, loss return logits return func # FCN for Semantic Segmentation class FCNConfig(ResNetConfig): @staticmethod def gen_out_shared_head(self, input_shape): def func(features): """ Args: features (Tensor): features tensor of shape [B, hidden_units, H, W]. Returns: result (Tensors): result tensor of shape [B, C, H, W]. """ x = self.classifier(features) result = F.interpolate(x, size=input_shape, mode="bilinear", align_corners=False) return result return func @staticmethod def gen_aux_shared_head(self, input_shape): def func(features): """ Args: features (Tensor): features tensor of shape [B, hidden_units, H, W]. Returns: result (Tensors): result tensor of shape [B, C, H, W]. """ x = self.aux_classifier(features) result = F.interpolate(x, size=input_shape, mode="bilinear", align_corners=False) return result return func @staticmethod def gen_out_logits(self, shared_head): def func(hidden_states): """ Args: hidden_states (Tensor): Hidden States tensor of shape [B, L, hidden_units]. Returns: logits_seqence (List[Tensor]): List of Logits tensors. """ logits_sequence = [shared_head(hidden_states)] for layer in self.out_trp_blocks: logits_sequence.append(shared_head(layer(hidden_states))) return logits_sequence return func @staticmethod def gen_aux_logits(self, shared_head): def func(hidden_states): """ Args: hidden_states (Tensor): Hidden States tensor of shape [B, L, hidden_units]. Returns: logits_seqence (List[Tensor]): List of Logits tensors. """ logits_sequence = [shared_head(hidden_states)] for layer in self.aux_trp_blocks: logits_sequence.append(shared_head(layer(hidden_states))) return logits_sequence return func @staticmethod def gen_mask(label_smoothing=0.0, top_k=1): def func(logits_sequence, labels): """ Args: logits_sequence (List[Tensor]): List of Logits tensors with shape [B, C, H, W]. labels (Tensor): Target labels of shape [B, H, W]. Returns: mask_sequence (List[Tensor]): Boolean mask tensor of shape [B, H, W]. """ labels = torch.argmax(labels, dim=1) if label_smoothing > 0.0 else labels mask_sequence = [torch.ones_like(labels, dtype=torch.float32, device=labels.device)] for logits in logits_sequence: with torch.no_grad(): topk_values, topk_indices = torch.topk(logits, top_k, dim=1) mask = torch.eq(topk_indices, labels[:, None, :, :]).any(dim=1).to(torch.float32) mask_sequence.append(mask_sequence[-1] * mask) return mask_sequence return func @staticmethod def gen_criterion(label_smoothing=0.0): def func(logits_sequence, labels): """ Args: logits_sequence (List[Tensor]): List of Logits tensor. labels (Tensor): labels labels of shape [B] or [B, C]. Returns: loss (Tensor): Scalar tensor representing the loss. mask (Tensor): Boolean mask tensor of shape [B]. """ labels = torch.argmax(labels, dim=1) if label_smoothing > 0.0 else labels loss_sequence = [] for logits in logits_sequence: loss_sequence.append(F.cross_entropy(logits, labels, ignore_index=255, reduction="none", label_smoothing=label_smoothing)) return loss_sequence return func @staticmethod def gen_forward(rewards, label_smoothing=0.0, top_k=1): def func(self, images: Tensor, targets=None): input_shape = images.shape[-2:] # contract: features is a dict of tensors features = self.backbone(images) result = OrderedDict() x = features["out"] x = self.classifier(x) x = F.interpolate(x, size=input_shape, mode="bilinear", align_corners=False) result["out"] = x if self.aux_classifier is not None: x = features["aux"] x = self.aux_classifier(x) x = F.interpolate(x, size=input_shape, mode="bilinear", align_corners=False) result["aux"] = x if self.training: torch._assert(targets is not None, "targets should not be none when in training mode") out_shared_head = FCNConfig.gen_out_shared_head(self, input_shape) aux_shared_head = FCNConfig.gen_aux_shared_head(self, input_shape) compute_out_logits = FCNConfig.gen_out_logits(self, out_shared_head) compute_aux_logits = FCNConfig.gen_aux_logits(self, aux_shared_head) compute_mask = FCNConfig.gen_mask(label_smoothing, top_k) compute_loss = FCNConfig.gen_criterion(label_smoothing) out_logits_sequence = compute_out_logits(features["out"]) out_mask_sequence = compute_mask(out_logits_sequence, targets) out_loss_sequence = compute_loss(out_logits_sequence, targets) out_loss = compute_policy_loss(out_loss_sequence, out_mask_sequence, rewards) aux_logits_sequence = compute_aux_logits(features["aux"]) aux_mask_sequence = compute_mask(aux_logits_sequence, targets) aux_loss_sequence = compute_loss(aux_logits_sequence, targets) aux_loss = compute_policy_loss(aux_loss_sequence, aux_mask_sequence, rewards) loss = out_loss + 0.5 * aux_loss return result, loss return result return func # DeepLabV3Config for Semantic Segmentation class DeepLabV3Config(FCNConfig): pass def apply_trp(model, depths: List[int], in_planes: int, out_planes: int, rewards, **kwargs): if isinstance(model, ResNet): print("✅ Applying TRP to ResNet for Image Classification...") model.trp_blocks = torch.nn.ModuleList([TPBlock(depths=d, in_planes=in_planes, out_planes=out_planes, rank=k) for k, d in enumerate(depths)]) model.forward = types.MethodType(ResNetConfig.gen_forward(rewards, label_smoothing=kwargs["label_smoothing"], top_k=1), model) elif isinstance(model, MobileNetV2): print("✅ Applying TRP to MobileNetV2 for Image Classification...") model.trp_blocks = torch.nn.ModuleList([TPBlock(depths=d, in_planes=in_planes, out_planes=out_planes, rank=k) for k, d in enumerate(depths)]) model.forward = types.MethodType(MobileNetV2Config.gen_forward(rewards, label_smoothing=kwargs["label_smoothing"], top_k=1), model) elif isinstance(model, EfficientNet): print("✅ Applying TRP to EfficientNet for Image Classification...") model.trp_blocks = torch.nn.ModuleList([TPBlock(depths=d, in_planes=in_planes, out_planes=out_planes, rank=k) for k, d in enumerate(depths)]) model.forward = types.MethodType(EfficientNetConfig.gen_forward(rewards, label_smoothing=kwargs["label_smoothing"], top_k=1), model) elif isinstance(model, VisionTransformer): print("✅ Applying TRP to VisionTransformer for Image Classification...") model.trp_blocks = torch.nn.ModuleList([TPBlock(depths=d, in_planes=in_planes, out_planes=out_planes, rank=k, shape_dims=2, channel_first=False) for k, d in enumerate(depths)]) model.forward = types.MethodType(VisionTransformerConfig.gen_forward(rewards, label_smoothing=kwargs["label_smoothing"], top_k=1), model) elif isinstance(model, FCN): print("✅ Applying TRP to FCN for Semantic Segmentation...") model.out_trp_blocks = torch.nn.ModuleList([TPBlock(depths=d, in_planes=2048, out_planes=out_planes, rank=k) for k, d in enumerate(depths)]) model.aux_trp_blocks = torch.nn.ModuleList([TPBlock(depths=d, in_planes=1024, out_planes=out_planes, rank=k) for k, d in enumerate(depths)]) model.forward = types.MethodType(FCNConfig.gen_forward(rewards, label_smoothing=0.0, top_k=1), model) elif isinstance(model, DeepLabV3): print("✅ Applying TRP to DeepLabV3 for Semantic Segmentation...") model.out_trp_blocks = torch.nn.ModuleList([TPBlock(depths, in_planes=2048, out_planes=out_planes, rank=k) for k, d in enumerate(depths)]) model.aux_trp_blocks = torch.nn.ModuleList([TPBlock(depths, in_planes=1024, out_planes=out_planes, rank=k) for k, d in enumerate(depths)]) model.forward = types.MethodType(DeepLabV3Config.gen_forward(rewards, label_smoothing=0.0, top_k=1), model) return model