Commit
·
3f7c489
0
Parent(s):
birth
Browse files- .gitignore +0 -0
- README.md +83 -0
- dataset.py +228 -0
- freqfusion.py +441 -0
- model.py +1418 -0
- requirements.txt +233 -0
- run_test.sh +3 -0
- test_shadow.py +271 -0
- utils/__init__.py +6 -0
- utils/antialias.py +125 -0
- utils/bundle_submissions.py +104 -0
- utils/dataset_utils.py +46 -0
- utils/dir_utils.py +22 -0
- utils/image_utils.py +204 -0
- utils/loader.py +17 -0
- utils/misc.py +124 -0
- utils/model_utils.py +98 -0
- utils/shadow_mask_evaluate.py +141 -0
- utils/tta.py +205 -0
.gitignore
ADDED
File without changes
|
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# [TEAM ACVLAB][NTIRE 2025 Image Shadow Removal Challenge](https://cvlai.net/ntire/2025/) @ [CVPR 2025](https://cvpr.thecvf.com/)
|
2 |
+
|
3 |
+
## Link to the codes/executables of the solution(s):
|
4 |
+
* [Checkpoints](https://drive.google.com/file/d/1USD5sLvEcgFqIg7BDzc1OuInzSx3GnUN/view?usp=drive_link)
|
5 |
+
* Input / Output file
|
6 |
+
|
7 |
+
## Environments
|
8 |
+
```bash
|
9 |
+
conda create -n ntire_shadow python=3.9 -y
|
10 |
+
|
11 |
+
conda activate ntire_shadow
|
12 |
+
|
13 |
+
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118
|
14 |
+
|
15 |
+
pip install -r requirements.txt
|
16 |
+
|
17 |
+
```
|
18 |
+
|
19 |
+
## Folder Structure
|
20 |
+
```bash
|
21 |
+
test_dir
|
22 |
+
├── Origin <- Put the shadow affected images in this folder
|
23 |
+
│ ├── 0000.png
|
24 |
+
│ ├── 0001.png
|
25 |
+
│ ├── ...
|
26 |
+
├── Depth
|
27 |
+
├── Normal
|
28 |
+
|
29 |
+
|
30 |
+
output_dir
|
31 |
+
├── 0000.png
|
32 |
+
├── 0001.png
|
33 |
+
├──...
|
34 |
+
```
|
35 |
+
|
36 |
+
## How to test?
|
37 |
+
1. Clone [Depth anything v2](https://github.com/DepthAnything/Depth-Anything-V2.git)
|
38 |
+
|
39 |
+
```bash
|
40 |
+
git clone https://github.com/DepthAnything/Depth-Anything-V2.git
|
41 |
+
```
|
42 |
+
2. Download the [pretrain model of depth anything v2](https://huggingface.co/depth-anything/Depth-Anything-V2-Large/resolve/main/depth_anything_v2_vitl.pth?download=true)
|
43 |
+
|
44 |
+
3. Run ```python Depth-Anything-V2/get_depth_normap.py```
|
45 |
+
|
46 |
+
Now folder structure will be
|
47 |
+
```bash
|
48 |
+
test_dir
|
49 |
+
├── Origin
|
50 |
+
│ ├── 0000.png
|
51 |
+
│ ├── 0001.png
|
52 |
+
│ ├── ...
|
53 |
+
├── Depth
|
54 |
+
│ ├── 0000.npy
|
55 |
+
│ ├── 0001.npy
|
56 |
+
│ ├── ...
|
57 |
+
├── Normal
|
58 |
+
│ ├── 0000.npy
|
59 |
+
│ ├── 0001.npy
|
60 |
+
│ ├── ...
|
61 |
+
|
62 |
+
output_dir
|
63 |
+
├── 0000.png
|
64 |
+
├── 0001.png
|
65 |
+
├──...
|
66 |
+
```
|
67 |
+
|
68 |
+
4. Clone [DINOv2](https://github.com/facebookresearch/dinov2.git)
|
69 |
+
```bash
|
70 |
+
git clone https://github.com/facebookresearch/dinov2.git
|
71 |
+
```
|
72 |
+
|
73 |
+
5. Download [shadow removal weight](https://drive.google.com/file/d/1USD5sLvEcgFqIg7BDzc1OuInzSx3GnUN/view?usp=drive_link)
|
74 |
+
|
75 |
+
```bash
|
76 |
+
gdown 1USD5sLvEcgFqIg7BDzc1OuInzSx3GnUN
|
77 |
+
```
|
78 |
+
|
79 |
+
6. Run ```run_test.sh``` to get inference results.
|
80 |
+
|
81 |
+
```bash
|
82 |
+
bash run_test.sh
|
83 |
+
```
|
dataset.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import os
|
3 |
+
from torch.utils.data import Dataset
|
4 |
+
import torch
|
5 |
+
from utils import load_normal, load_ssao, load_img, depthToPoint, process_normal, load_depth, Augment_RGB_torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import random
|
8 |
+
|
9 |
+
augment = Augment_RGB_torch()
|
10 |
+
transforms_aug = [method for method in dir(augment) if callable(getattr(augment, method)) if not method.startswith('_')]
|
11 |
+
|
12 |
+
##################################################################################################
|
13 |
+
class DataLoaderTrain(Dataset):
|
14 |
+
def __init__(self, rgb_dir, img_options=None, target_transform=None, debug=False):
|
15 |
+
super(DataLoaderTrain, self).__init__()
|
16 |
+
|
17 |
+
self.target_transform = target_transform
|
18 |
+
|
19 |
+
gt_dir = 'shadow_free'
|
20 |
+
input_dir = 'origin'
|
21 |
+
depth_dir = 'depth'
|
22 |
+
normal_dir = 'normal'
|
23 |
+
|
24 |
+
clean_files = sorted(os.listdir(os.path.join(rgb_dir, gt_dir))) # shadow free
|
25 |
+
noisy_files = sorted(os.listdir(os.path.join(rgb_dir, input_dir))) # origin
|
26 |
+
depth_files = sorted(os.listdir(os.path.join(rgb_dir, depth_dir))) # depth
|
27 |
+
normal_files = sorted(os.listdir(os.path.join(rgb_dir, normal_dir))) # noraml map
|
28 |
+
|
29 |
+
self.clean_filenames = [os.path.join(rgb_dir, gt_dir, x) for x in clean_files] # shadow free
|
30 |
+
self.noisy_filenames = [os.path.join(rgb_dir, input_dir, x) for x in noisy_files] # origin
|
31 |
+
self.depth_filenames = [os.path.join(rgb_dir, depth_dir, x) for x in depth_files] # depth
|
32 |
+
self.normal_filenames = [os.path.join(rgb_dir, normal_dir, x) for x in normal_files] # noraml map
|
33 |
+
self.img_options = img_options
|
34 |
+
|
35 |
+
if debug:
|
36 |
+
self.tar_size = 100
|
37 |
+
else:
|
38 |
+
self.tar_size = len(self.noisy_filenames)
|
39 |
+
|
40 |
+
def __len__(self):
|
41 |
+
return self.tar_size
|
42 |
+
|
43 |
+
def __getitem__(self, index):
|
44 |
+
tar_index = index % self.tar_size
|
45 |
+
|
46 |
+
clean = np.float32(load_img(self.clean_filenames[tar_index]))
|
47 |
+
noisy = np.float32(load_img(self.noisy_filenames[tar_index]))
|
48 |
+
depth = np.float32(load_depth(self.depth_filenames[tar_index]))
|
49 |
+
normal = np.float32(load_normal(self.normal_filenames[tar_index]))
|
50 |
+
|
51 |
+
point = depthToPoint(60, depth)
|
52 |
+
|
53 |
+
normal = process_normal(normal)
|
54 |
+
|
55 |
+
clean = torch.from_numpy(clean)
|
56 |
+
noisy = torch.from_numpy(noisy)
|
57 |
+
depth = torch.from_numpy(depth)
|
58 |
+
point = torch.from_numpy(point)
|
59 |
+
normal = torch.from_numpy(normal)
|
60 |
+
|
61 |
+
point = point / (2 * point[:,:,2].mean())
|
62 |
+
|
63 |
+
clean = clean.permute(2,0,1)
|
64 |
+
noisy = noisy.permute(2,0,1)
|
65 |
+
point = point.permute(2,0,1)
|
66 |
+
normal = normal.permute(2,0,1)
|
67 |
+
|
68 |
+
clean_filename = os.path.split(self.clean_filenames[tar_index])[-1]
|
69 |
+
noisy_filename = os.path.split(self.noisy_filenames[tar_index])[-1]
|
70 |
+
depth_filename = os.path.split(self.depth_filenames[tar_index])[-1]
|
71 |
+
normal_filename = os.path.split(self.normal_filenames[tar_index])[-1]
|
72 |
+
|
73 |
+
|
74 |
+
augment.rotate = random.randint(-20,20)
|
75 |
+
apply_trans = transforms_aug[random.randint(0, 2)]
|
76 |
+
|
77 |
+
# [0, 1]
|
78 |
+
clean = getattr(augment, apply_trans)(clean)
|
79 |
+
noisy = getattr(augment, apply_trans)(noisy)
|
80 |
+
point = getattr(augment, apply_trans)(point)
|
81 |
+
normal = getattr(augment, apply_trans)(normal)
|
82 |
+
|
83 |
+
|
84 |
+
#Crop Input and Target
|
85 |
+
ps = self.img_options['patch_size']
|
86 |
+
scale = 1#random.uniform(1, 1.5)
|
87 |
+
|
88 |
+
H = noisy.shape[1]
|
89 |
+
W = noisy.shape[2]
|
90 |
+
scaled_ps = (int)(scale * ps)
|
91 |
+
if H - scaled_ps != 0 or W - scaled_ps != 0:
|
92 |
+
r = np.random.randint(0, H - scaled_ps + 1)
|
93 |
+
c = np.random.randint(0, W - scaled_ps + 1)
|
94 |
+
clean = clean [:, r:r + scaled_ps, c:c + scaled_ps]
|
95 |
+
noisy = noisy [:, r:r + scaled_ps, c:c + scaled_ps]
|
96 |
+
point = point [:, r:r + scaled_ps, c:c + scaled_ps]
|
97 |
+
normal = normal [:, r:r + scaled_ps, c:c + scaled_ps]
|
98 |
+
|
99 |
+
# scale back to the patch_size
|
100 |
+
if scale != 1:
|
101 |
+
clean = F.interpolate(clean.unsqueeze(0), size=[ps, ps], mode='bilinear')
|
102 |
+
noisy = F.interpolate(noisy.unsqueeze(0), size=[ps, ps], mode='bilinear')
|
103 |
+
point = F.interpolate(point.unsqueeze(0), size=[ps, ps], mode='nearest')
|
104 |
+
normal = F.interpolate(normal.unsqueeze(0), size=[ps, ps], mode='nearest')
|
105 |
+
return clean.squeeze(0), noisy.squeeze(0), point.squeeze(0), normal.squeeze(0), noisy_filename
|
106 |
+
|
107 |
+
return clean, noisy, point, normal, clean_filename, noisy_filename
|
108 |
+
|
109 |
+
|
110 |
+
##################################################################################################
|
111 |
+
class DataLoaderVal(Dataset):
|
112 |
+
def __init__(self, rgb_dir, target_transform=None, debug=False):
|
113 |
+
super(DataLoaderVal, self).__init__()
|
114 |
+
|
115 |
+
self.target_transform = target_transform
|
116 |
+
|
117 |
+
gt_dir = 'shadow_free'
|
118 |
+
input_dir = 'origin'
|
119 |
+
depth_dir = 'depth'
|
120 |
+
normal_dir = 'normal'
|
121 |
+
|
122 |
+
clean_files = sorted(os.listdir(os.path.join(rgb_dir, gt_dir)))
|
123 |
+
noisy_files = sorted(os.listdir(os.path.join(rgb_dir, input_dir)))
|
124 |
+
depth_files = sorted(os.listdir(os.path.join(rgb_dir, depth_dir)))
|
125 |
+
normal_files = sorted(os.listdir(os.path.join(rgb_dir, normal_dir)))
|
126 |
+
|
127 |
+
self.clean_filenames = [os.path.join(rgb_dir, gt_dir, x) for x in clean_files]
|
128 |
+
self.noisy_filenames = [os.path.join(rgb_dir, input_dir, x) for x in noisy_files]
|
129 |
+
self.depth_filenames = [os.path.join(rgb_dir, depth_dir, x) for x in depth_files]
|
130 |
+
self.normal_filenames = [os.path.join(rgb_dir, normal_dir, x) for x in normal_files]
|
131 |
+
|
132 |
+
if debug:
|
133 |
+
self.tar_size = 10
|
134 |
+
else:
|
135 |
+
self.tar_size = len(self.noisy_filenames)
|
136 |
+
|
137 |
+
def __len__(self):
|
138 |
+
return self.tar_size
|
139 |
+
|
140 |
+
def __getitem__(self, index):
|
141 |
+
tar_index = index % self.tar_size
|
142 |
+
clean = np.float32(load_img(self.clean_filenames[tar_index]))
|
143 |
+
noisy = np.float32(load_img(self.noisy_filenames[tar_index]))
|
144 |
+
depth = np.float32(load_depth(self.depth_filenames[tar_index]))
|
145 |
+
normal = np.float32(load_normal(self.normal_filenames[tar_index]))
|
146 |
+
|
147 |
+
point = depthToPoint(60, depth)
|
148 |
+
normal = process_normal(normal)
|
149 |
+
point = point / (2 * point[:,:,2].mean())
|
150 |
+
|
151 |
+
clean_filename = os.path.split(self.clean_filenames[tar_index])[-1]
|
152 |
+
noisy_filename = os.path.split(self.noisy_filenames[tar_index])[-1]
|
153 |
+
|
154 |
+
clean = torch.from_numpy(clean)
|
155 |
+
noisy = torch.from_numpy(noisy)
|
156 |
+
point = torch.from_numpy(point)
|
157 |
+
normal = torch.from_numpy(normal)
|
158 |
+
|
159 |
+
|
160 |
+
clean = clean.permute(2,0,1)
|
161 |
+
noisy = noisy.permute(2,0,1)
|
162 |
+
point = point.permute(2,0,1)
|
163 |
+
normal = normal.permute(2,0,1)
|
164 |
+
|
165 |
+
|
166 |
+
return clean, noisy, point, normal, clean_filename, noisy_filename
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
##################################################################################################
|
172 |
+
class DataLoaderTest(Dataset):
|
173 |
+
def __init__(self, rgb_dir, target_transform=None, debug=False):
|
174 |
+
super(DataLoaderTest, self).__init__()
|
175 |
+
|
176 |
+
self.target_transform = target_transform
|
177 |
+
|
178 |
+
# gt_dir = 'shadow_free'
|
179 |
+
input_dir = 'origin'
|
180 |
+
depth_dir = 'depth'
|
181 |
+
normal_dir = 'normal'
|
182 |
+
|
183 |
+
# clean_files = sorted(os.listdir(os.path.join(rgb_dir, gt_dir)))
|
184 |
+
noisy_files = sorted(os.listdir(os.path.join(rgb_dir, input_dir)))
|
185 |
+
depth_files = sorted(os.listdir(os.path.join(rgb_dir, depth_dir)))
|
186 |
+
normal_files = sorted(os.listdir(os.path.join(rgb_dir, normal_dir)))
|
187 |
+
|
188 |
+
# self.clean_filenames = [os.path.join(rgb_dir, gt_dir, x) for x in clean_files]
|
189 |
+
self.noisy_filenames = [os.path.join(rgb_dir, input_dir, x) for x in noisy_files]
|
190 |
+
self.depth_filenames = [os.path.join(rgb_dir, depth_dir, x) for x in depth_files]
|
191 |
+
self.normal_filenames = [os.path.join(rgb_dir, normal_dir, x) for x in normal_files]
|
192 |
+
|
193 |
+
if debug:
|
194 |
+
self.tar_size = 10
|
195 |
+
else:
|
196 |
+
self.tar_size = len(self.noisy_filenames)
|
197 |
+
|
198 |
+
def __len__(self):
|
199 |
+
return self.tar_size
|
200 |
+
|
201 |
+
def __getitem__(self, index):
|
202 |
+
tar_index = index % self.tar_size
|
203 |
+
# clean = np.float32(load_img(self.clean_filenames[tar_index]))
|
204 |
+
noisy = np.float32(load_img(self.noisy_filenames[tar_index]))
|
205 |
+
depth = np.float32(load_depth(self.depth_filenames[tar_index]))
|
206 |
+
normal = np.float32(load_normal(self.normal_filenames[tar_index]))
|
207 |
+
|
208 |
+
point = depthToPoint(60, depth)
|
209 |
+
normal = process_normal(normal)
|
210 |
+
point = point / (2 * point[:,:,2].mean())
|
211 |
+
|
212 |
+
# clean_filename = os.path.split(self.clean_filenames[tar_index])[-1]
|
213 |
+
noisy_filename = os.path.split(self.noisy_filenames[tar_index])[-1]
|
214 |
+
|
215 |
+
# clean = torch.from_numpy(clean)
|
216 |
+
noisy = torch.from_numpy(noisy)
|
217 |
+
point = torch.from_numpy(point)
|
218 |
+
normal = torch.from_numpy(normal)
|
219 |
+
|
220 |
+
|
221 |
+
# clean = clean.permute(2,0,1)
|
222 |
+
noisy = noisy.permute(2,0,1)
|
223 |
+
point = point.permute(2,0,1)
|
224 |
+
normal = normal.permute(2,0,1)
|
225 |
+
|
226 |
+
|
227 |
+
return noisy, noisy, point, normal, noisy_filename, noisy_filename
|
228 |
+
|
freqfusion.py
ADDED
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TPAMI 2024:Frequency-aware Feature Fusion for Dense Image Prediction
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from torch.utils.checkpoint import checkpoint
|
7 |
+
import warnings
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
try:
|
11 |
+
from mmcv.ops.carafe import normal_init, xavier_init, carafe
|
12 |
+
except ImportError:
|
13 |
+
|
14 |
+
def xavier_init(module: nn.Module,
|
15 |
+
gain: float = 1,
|
16 |
+
bias: float = 0,
|
17 |
+
distribution: str = 'normal') -> None:
|
18 |
+
assert distribution in ['uniform', 'normal']
|
19 |
+
if hasattr(module, 'weight') and module.weight is not None:
|
20 |
+
if distribution == 'uniform':
|
21 |
+
nn.init.xavier_uniform_(module.weight, gain=gain)
|
22 |
+
else:
|
23 |
+
nn.init.xavier_normal_(module.weight, gain=gain)
|
24 |
+
if hasattr(module, 'bias') and module.bias is not None:
|
25 |
+
nn.init.constant_(module.bias, bias)
|
26 |
+
|
27 |
+
def carafe(x, normed_mask, kernel_size, group=1, up=1):
|
28 |
+
b, c, h, w = x.shape
|
29 |
+
_, m_c, m_h, m_w = normed_mask.shape
|
30 |
+
# print('x', x.shape)
|
31 |
+
# print('normed_mask', normed_mask.shape)
|
32 |
+
# assert m_c == kernel_size ** 2 * up ** 2
|
33 |
+
assert m_h == up * h
|
34 |
+
assert m_w == up * w
|
35 |
+
pad = kernel_size // 2
|
36 |
+
# print(pad)
|
37 |
+
pad_x = F.pad(x, pad=[pad] * 4, mode='reflect')
|
38 |
+
# print(pad_x.shape)
|
39 |
+
unfold_x = F.unfold(pad_x, kernel_size=(kernel_size, kernel_size), stride=1, padding=0)
|
40 |
+
# unfold_x = unfold_x.reshape(b, c, 1, kernel_size, kernel_size, h, w).repeat(1, 1, up ** 2, 1, 1, 1, 1)
|
41 |
+
unfold_x = unfold_x.reshape(b, c * kernel_size * kernel_size, h, w)
|
42 |
+
unfold_x = F.interpolate(unfold_x, scale_factor=up, mode='nearest')
|
43 |
+
# normed_mask = normed_mask.reshape(b, 1, up ** 2, kernel_size, kernel_size, h, w)
|
44 |
+
unfold_x = unfold_x.reshape(b, c, kernel_size * kernel_size, m_h, m_w)
|
45 |
+
normed_mask = normed_mask.reshape(b, 1, kernel_size * kernel_size, m_h, m_w)
|
46 |
+
res = unfold_x * normed_mask
|
47 |
+
# test
|
48 |
+
# res[:, :, 0] = 1
|
49 |
+
# res[:, :, 1] = 2
|
50 |
+
# res[:, :, 2] = 3
|
51 |
+
# res[:, :, 3] = 4
|
52 |
+
res = res.sum(dim=2).reshape(b, c, m_h, m_w)
|
53 |
+
# res = F.pixel_shuffle(res, up)
|
54 |
+
# print(res.shape)
|
55 |
+
# print(res)
|
56 |
+
return res
|
57 |
+
|
58 |
+
def normal_init(module, mean=0, std=1, bias=0):
|
59 |
+
if hasattr(module, 'weight') and module.weight is not None:
|
60 |
+
nn.init.normal_(module.weight, mean, std)
|
61 |
+
if hasattr(module, 'bias') and module.bias is not None:
|
62 |
+
nn.init.constant_(module.bias, bias)
|
63 |
+
|
64 |
+
|
65 |
+
def constant_init(module, val, bias=0):
|
66 |
+
if hasattr(module, 'weight') and module.weight is not None:
|
67 |
+
nn.init.constant_(module.weight, val)
|
68 |
+
if hasattr(module, 'bias') and module.bias is not None:
|
69 |
+
nn.init.constant_(module.bias, bias)
|
70 |
+
|
71 |
+
def resize(input,
|
72 |
+
size=None,
|
73 |
+
scale_factor=None,
|
74 |
+
mode='nearest',
|
75 |
+
align_corners=None,
|
76 |
+
warning=True):
|
77 |
+
if warning:
|
78 |
+
if size is not None and align_corners:
|
79 |
+
input_h, input_w = tuple(int(x) for x in input.shape[2:])
|
80 |
+
output_h, output_w = tuple(int(x) for x in size)
|
81 |
+
if output_h > input_h or output_w > input_w:
|
82 |
+
if ((output_h > 1 and output_w > 1 and input_h > 1
|
83 |
+
and input_w > 1) and (output_h - 1) % (input_h - 1)
|
84 |
+
and (output_w - 1) % (input_w - 1)):
|
85 |
+
warnings.warn(
|
86 |
+
f'When align_corners={align_corners}, '
|
87 |
+
'the output would more aligned if '
|
88 |
+
f'input size {(input_h, input_w)} is `x+1` and '
|
89 |
+
f'out size {(output_h, output_w)} is `nx+1`')
|
90 |
+
return F.interpolate(input, size, scale_factor, mode, align_corners)
|
91 |
+
|
92 |
+
def hamming2D(M, N):
|
93 |
+
"""
|
94 |
+
生成二维Hamming窗
|
95 |
+
|
96 |
+
参数:
|
97 |
+
- M:窗口的行数
|
98 |
+
- N:窗口的列数
|
99 |
+
|
100 |
+
返回:
|
101 |
+
- 二维Hamming窗
|
102 |
+
"""
|
103 |
+
# 生成水平和垂直方向上的Hamming窗
|
104 |
+
# hamming_x = np.blackman(M)
|
105 |
+
# hamming_x = np.kaiser(M)
|
106 |
+
hamming_x = np.hamming(M)
|
107 |
+
hamming_y = np.hamming(N)
|
108 |
+
# 通过外积生成二维Hamming窗
|
109 |
+
hamming_2d = np.outer(hamming_x, hamming_y)
|
110 |
+
return hamming_2d
|
111 |
+
|
112 |
+
class FreqFusion(nn.Module):
|
113 |
+
def __init__(self,
|
114 |
+
hr_channels,
|
115 |
+
lr_channels,
|
116 |
+
scale_factor=1,
|
117 |
+
lowpass_kernel=5,
|
118 |
+
highpass_kernel=3,
|
119 |
+
up_group=1,
|
120 |
+
encoder_kernel=3,
|
121 |
+
encoder_dilation=1,
|
122 |
+
compressed_channels=64,
|
123 |
+
align_corners=False,
|
124 |
+
upsample_mode='nearest',
|
125 |
+
feature_resample=False, # use offset generator or not
|
126 |
+
feature_resample_group=4,
|
127 |
+
comp_feat_upsample=True, # use ALPF & AHPF for init upsampling
|
128 |
+
use_high_pass=True,
|
129 |
+
use_low_pass=True,
|
130 |
+
hr_residual=True,
|
131 |
+
semi_conv=True,
|
132 |
+
hamming_window=True, # for regularization, do not matter really
|
133 |
+
feature_resample_norm=True,
|
134 |
+
**kwargs):
|
135 |
+
super().__init__()
|
136 |
+
self.scale_factor = scale_factor
|
137 |
+
self.lowpass_kernel = lowpass_kernel
|
138 |
+
self.highpass_kernel = highpass_kernel
|
139 |
+
self.up_group = up_group
|
140 |
+
self.encoder_kernel = encoder_kernel
|
141 |
+
self.encoder_dilation = encoder_dilation
|
142 |
+
self.compressed_channels = compressed_channels
|
143 |
+
self.hr_channel_compressor = nn.Conv2d(hr_channels, self.compressed_channels,1)
|
144 |
+
self.lr_channel_compressor = nn.Conv2d(lr_channels, self.compressed_channels,1)
|
145 |
+
self.content_encoder = nn.Conv2d( # ALPF generator
|
146 |
+
self.compressed_channels,
|
147 |
+
lowpass_kernel ** 2 * self.up_group * self.scale_factor * self.scale_factor,
|
148 |
+
self.encoder_kernel,
|
149 |
+
padding=int((self.encoder_kernel - 1) * self.encoder_dilation / 2),
|
150 |
+
dilation=self.encoder_dilation,
|
151 |
+
groups=1)
|
152 |
+
|
153 |
+
self.align_corners = align_corners
|
154 |
+
self.upsample_mode = upsample_mode
|
155 |
+
self.hr_residual = hr_residual
|
156 |
+
self.use_high_pass = use_high_pass
|
157 |
+
self.use_low_pass = use_low_pass
|
158 |
+
self.semi_conv = semi_conv
|
159 |
+
self.feature_resample = feature_resample
|
160 |
+
self.comp_feat_upsample = comp_feat_upsample
|
161 |
+
if self.feature_resample:
|
162 |
+
self.dysampler = LocalSimGuidedSampler(in_channels=compressed_channels, scale=2, style='lp', groups=feature_resample_group, use_direct_scale=True, kernel_size=encoder_kernel, norm=feature_resample_norm)
|
163 |
+
if self.use_high_pass:
|
164 |
+
self.content_encoder2 = nn.Conv2d( # AHPF generator
|
165 |
+
self.compressed_channels,
|
166 |
+
highpass_kernel ** 2 * self.up_group * self.scale_factor * self.scale_factor,
|
167 |
+
self.encoder_kernel,
|
168 |
+
padding=int((self.encoder_kernel - 1) * self.encoder_dilation / 2),
|
169 |
+
dilation=self.encoder_dilation,
|
170 |
+
groups=1)
|
171 |
+
self.hamming_window = hamming_window
|
172 |
+
lowpass_pad=0
|
173 |
+
highpass_pad=0
|
174 |
+
if self.hamming_window:
|
175 |
+
self.register_buffer('hamming_lowpass', torch.FloatTensor(hamming2D(lowpass_kernel + 2 * lowpass_pad, lowpass_kernel + 2 * lowpass_pad))[None, None,])
|
176 |
+
self.register_buffer('hamming_highpass', torch.FloatTensor(hamming2D(highpass_kernel + 2 * highpass_pad, highpass_kernel + 2 * highpass_pad))[None, None,])
|
177 |
+
else:
|
178 |
+
self.register_buffer('hamming_lowpass', torch.FloatTensor([1.0]))
|
179 |
+
self.register_buffer('hamming_highpass', torch.FloatTensor([1.0]))
|
180 |
+
self.init_weights()
|
181 |
+
|
182 |
+
def init_weights(self):
|
183 |
+
for m in self.modules():
|
184 |
+
# print(m)
|
185 |
+
if isinstance(m, nn.Conv2d):
|
186 |
+
xavier_init(m, distribution='uniform')
|
187 |
+
normal_init(self.content_encoder, std=0.001)
|
188 |
+
if self.use_high_pass:
|
189 |
+
normal_init(self.content_encoder2, std=0.001)
|
190 |
+
|
191 |
+
def kernel_normalizer(self, mask, kernel, scale_factor=None, hamming=1):
|
192 |
+
if scale_factor is not None:
|
193 |
+
mask = F.pixel_shuffle(mask, self.scale_factor)
|
194 |
+
n, mask_c, h, w = mask.size()
|
195 |
+
mask_channel = int(mask_c / float(kernel**2)) # group
|
196 |
+
# mask = mask.view(n, mask_channel, -1, h, w)
|
197 |
+
# mask = F.softmax(mask, dim=2, dtype=mask.dtype)
|
198 |
+
# mask = mask.view(n, mask_c, h, w).contiguous()
|
199 |
+
|
200 |
+
mask = mask.view(n, mask_channel, -1, h, w)
|
201 |
+
mask = F.softmax(mask, dim=2, dtype=mask.dtype)
|
202 |
+
mask = mask.view(n, mask_channel, kernel, kernel, h, w)
|
203 |
+
mask = mask.permute(0, 1, 4, 5, 2, 3).view(n, -1, kernel, kernel)
|
204 |
+
# mask = F.pad(mask, pad=[padding] * 4, mode=self.padding_mode) # kernel + 2 * padding
|
205 |
+
mask = mask * hamming
|
206 |
+
mask /= mask.sum(dim=(-1, -2), keepdims=True)
|
207 |
+
# print(hamming)
|
208 |
+
# print(mask.shape)
|
209 |
+
mask = mask.view(n, mask_channel, h, w, -1)
|
210 |
+
mask = mask.permute(0, 1, 4, 2, 3).view(n, -1, h, w).contiguous()
|
211 |
+
return mask
|
212 |
+
|
213 |
+
def forward(self, hr_feat, lr_feat, use_checkpoint=False): # use check_point to save GPU memory
|
214 |
+
if use_checkpoint:
|
215 |
+
return checkpoint(self._forward, hr_feat, lr_feat)
|
216 |
+
else:
|
217 |
+
return self._forward(hr_feat, lr_feat)
|
218 |
+
|
219 |
+
def _forward(self, hr_feat, lr_feat):
|
220 |
+
compressed_hr_feat = self.hr_channel_compressor(hr_feat)
|
221 |
+
compressed_lr_feat = self.lr_channel_compressor(lr_feat)
|
222 |
+
if self.semi_conv:
|
223 |
+
if self.comp_feat_upsample:
|
224 |
+
if self.use_high_pass:
|
225 |
+
mask_hr_hr_feat = self.content_encoder2(compressed_hr_feat) #从hr_feat得到初始高通滤波特征
|
226 |
+
mask_hr_init = self.kernel_normalizer(mask_hr_hr_feat, self.highpass_kernel, hamming=self.hamming_highpass) #kernel归一化得到初始高通滤波
|
227 |
+
compressed_hr_feat = compressed_hr_feat + compressed_hr_feat - carafe(compressed_hr_feat, mask_hr_init, self.highpass_kernel, self.up_group, 1) #利用初始高通滤波对压缩hr_feat的高频增强 (x-x的低通结果=x的高通结果)
|
228 |
+
|
229 |
+
mask_lr_hr_feat = self.content_encoder(compressed_hr_feat) #从hr_feat得到初始低通滤波特征
|
230 |
+
mask_lr_init = self.kernel_normalizer(mask_lr_hr_feat, self.lowpass_kernel, hamming=self.hamming_lowpass) #kernel归一化得到初始低通滤波
|
231 |
+
|
232 |
+
mask_lr_lr_feat_lr = self.content_encoder(compressed_lr_feat) #从hr_feat得到另一部分初始低通滤波特征
|
233 |
+
mask_lr_lr_feat = F.interpolate( #利用初始低通滤波对另一部分初始低通滤波特征上采样
|
234 |
+
carafe(mask_lr_lr_feat_lr, mask_lr_init, self.lowpass_kernel, self.up_group, 2), size=compressed_hr_feat.shape[-2:], mode='nearest')
|
235 |
+
mask_lr = mask_lr_hr_feat + mask_lr_lr_feat #将两部分初始低通滤波特征合在一起
|
236 |
+
|
237 |
+
mask_lr_init = self.kernel_normalizer(mask_lr, self.lowpass_kernel, hamming=self.hamming_lowpass) #得到初步融合的初始低通滤波
|
238 |
+
mask_hr_lr_feat = F.interpolate( #使用初始低通滤波对lr_feat处理,分辨率得到提高
|
239 |
+
carafe(self.content_encoder2(compressed_lr_feat), mask_lr_init, self.lowpass_kernel, self.up_group, 2), size=compressed_hr_feat.shape[-2:], mode='nearest')
|
240 |
+
mask_hr = mask_hr_hr_feat + mask_hr_lr_feat # 最终高通滤波特征
|
241 |
+
else: raise NotImplementedError
|
242 |
+
else:
|
243 |
+
mask_lr = self.content_encoder(compressed_hr_feat) + F.interpolate(self.content_encoder(compressed_lr_feat), size=compressed_hr_feat.shape[-2:], mode='nearest')
|
244 |
+
if self.use_high_pass:
|
245 |
+
mask_hr = self.content_encoder2(compressed_hr_feat) + F.interpolate(self.content_encoder2(compressed_lr_feat), size=compressed_hr_feat.shape[-2:], mode='nearest')
|
246 |
+
else:
|
247 |
+
compressed_x = F.interpolate(compressed_lr_feat, size=compressed_hr_feat.shape[-2:], mode='nearest') + compressed_hr_feat
|
248 |
+
mask_lr = self.content_encoder(compressed_x)
|
249 |
+
if self.use_high_pass:
|
250 |
+
mask_hr = self.content_encoder2(compressed_x)
|
251 |
+
|
252 |
+
mask_lr = self.kernel_normalizer(mask_lr, self.lowpass_kernel, hamming=self.hamming_lowpass)
|
253 |
+
if self.semi_conv:
|
254 |
+
lr_feat = carafe(lr_feat, mask_lr, self.lowpass_kernel, self.up_group, 2)
|
255 |
+
else:
|
256 |
+
lr_feat = resize(
|
257 |
+
input=lr_feat,
|
258 |
+
size=hr_feat.shape[2:],
|
259 |
+
mode=self.upsample_mode,
|
260 |
+
align_corners=None if self.upsample_mode == 'nearest' else self.align_corners)
|
261 |
+
lr_feat = carafe(lr_feat, mask_lr, self.lowpass_kernel, self.up_group, 1)
|
262 |
+
|
263 |
+
if self.use_high_pass:
|
264 |
+
mask_hr = self.kernel_normalizer(mask_hr, self.highpass_kernel, hamming=self.hamming_highpass)
|
265 |
+
hr_feat_hf = hr_feat - carafe(hr_feat, mask_hr, self.highpass_kernel, self.up_group, 1)
|
266 |
+
if self.hr_residual:
|
267 |
+
# print('using hr_residual')
|
268 |
+
hr_feat = hr_feat_hf + hr_feat
|
269 |
+
else:
|
270 |
+
hr_feat = hr_feat_hf
|
271 |
+
|
272 |
+
if self.feature_resample:
|
273 |
+
# print(lr_feat.shape)
|
274 |
+
lr_feat = self.dysampler(hr_x=compressed_hr_feat,
|
275 |
+
lr_x=compressed_lr_feat, feat2sample=lr_feat)
|
276 |
+
|
277 |
+
return mask_lr, hr_feat, lr_feat
|
278 |
+
|
279 |
+
|
280 |
+
|
281 |
+
class LocalSimGuidedSampler(nn.Module):
|
282 |
+
"""
|
283 |
+
offset generator in FreqFusion
|
284 |
+
"""
|
285 |
+
def __init__(self, in_channels, scale=2, style='lp', groups=4, use_direct_scale=True, kernel_size=1, local_window=3, sim_type='cos', norm=True, direction_feat='sim_concat'):
|
286 |
+
super().__init__()
|
287 |
+
assert scale==2
|
288 |
+
assert style=='lp'
|
289 |
+
|
290 |
+
self.scale = scale
|
291 |
+
self.style = style
|
292 |
+
self.groups = groups
|
293 |
+
self.local_window = local_window
|
294 |
+
self.sim_type = sim_type
|
295 |
+
self.direction_feat = direction_feat
|
296 |
+
|
297 |
+
if style == 'pl':
|
298 |
+
assert in_channels >= scale ** 2 and in_channels % scale ** 2 == 0
|
299 |
+
assert in_channels >= groups and in_channels % groups == 0
|
300 |
+
|
301 |
+
if style == 'pl':
|
302 |
+
in_channels = in_channels // scale ** 2
|
303 |
+
out_channels = 2 * groups
|
304 |
+
else:
|
305 |
+
out_channels = 2 * groups * scale ** 2
|
306 |
+
if self.direction_feat == 'sim':
|
307 |
+
self.offset = nn.Conv2d(local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
|
308 |
+
elif self.direction_feat == 'sim_concat':
|
309 |
+
self.offset = nn.Conv2d(in_channels + local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
|
310 |
+
else: raise NotImplementedError
|
311 |
+
normal_init(self.offset, std=0.001)
|
312 |
+
if use_direct_scale:
|
313 |
+
if self.direction_feat == 'sim':
|
314 |
+
self.direct_scale = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
|
315 |
+
elif self.direction_feat == 'sim_concat':
|
316 |
+
self.direct_scale = nn.Conv2d(in_channels + local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
|
317 |
+
else: raise NotImplementedError
|
318 |
+
constant_init(self.direct_scale, val=0.)
|
319 |
+
|
320 |
+
out_channels = 2 * groups
|
321 |
+
if self.direction_feat == 'sim':
|
322 |
+
self.hr_offset = nn.Conv2d(local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
|
323 |
+
elif self.direction_feat == 'sim_concat':
|
324 |
+
self.hr_offset = nn.Conv2d(in_channels + local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
|
325 |
+
else: raise NotImplementedError
|
326 |
+
normal_init(self.hr_offset, std=0.001)
|
327 |
+
|
328 |
+
if use_direct_scale:
|
329 |
+
if self.direction_feat == 'sim':
|
330 |
+
self.hr_direct_scale = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
|
331 |
+
elif self.direction_feat == 'sim_concat':
|
332 |
+
self.hr_direct_scale = nn.Conv2d(in_channels + local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
|
333 |
+
else: raise NotImplementedError
|
334 |
+
constant_init(self.hr_direct_scale, val=0.)
|
335 |
+
|
336 |
+
self.norm = norm
|
337 |
+
if self.norm:
|
338 |
+
self.norm_hr = nn.GroupNorm(in_channels // 8, in_channels)
|
339 |
+
self.norm_lr = nn.GroupNorm(in_channels // 8, in_channels)
|
340 |
+
else:
|
341 |
+
self.norm_hr = nn.Identity()
|
342 |
+
self.norm_lr = nn.Identity()
|
343 |
+
self.register_buffer('init_pos', self._init_pos())
|
344 |
+
|
345 |
+
def _init_pos(self):
|
346 |
+
h = torch.arange((-self.scale + 1) / 2, (self.scale - 1) / 2 + 1) / self.scale
|
347 |
+
return torch.stack(torch.meshgrid([h, h])).transpose(1, 2).repeat(1, self.groups, 1).reshape(1, -1, 1, 1)
|
348 |
+
|
349 |
+
def sample(self, x, offset, scale=None):
|
350 |
+
if scale is None: scale = self.scale
|
351 |
+
B, _, H, W = offset.shape
|
352 |
+
offset = offset.view(B, 2, -1, H, W)
|
353 |
+
coords_h = torch.arange(H) + 0.5
|
354 |
+
coords_w = torch.arange(W) + 0.5
|
355 |
+
coords = torch.stack(torch.meshgrid([coords_w, coords_h])
|
356 |
+
).transpose(1, 2).unsqueeze(1).unsqueeze(0).type(x.dtype).to(x.device)
|
357 |
+
normalizer = torch.tensor([W, H], dtype=x.dtype, device=x.device).view(1, 2, 1, 1, 1)
|
358 |
+
coords = 2 * (coords + offset) / normalizer - 1
|
359 |
+
coords = F.pixel_shuffle(coords.view(B, -1, H, W), scale).view(
|
360 |
+
B, 2, -1, scale * H, scale * W).permute(0, 2, 3, 4, 1).contiguous().flatten(0, 1)
|
361 |
+
return F.grid_sample(x.reshape(B * self.groups, -1, x.size(-2), x.size(-1)), coords, mode='bilinear',
|
362 |
+
align_corners=False, padding_mode="border").view(B, -1, scale * H, scale * W)
|
363 |
+
|
364 |
+
def forward(self, hr_x, lr_x, feat2sample):
|
365 |
+
hr_x = self.norm_hr(hr_x)
|
366 |
+
lr_x = self.norm_lr(lr_x)
|
367 |
+
|
368 |
+
if self.direction_feat == 'sim':
|
369 |
+
hr_sim = compute_similarity(hr_x, self.local_window, dilation=2, sim='cos')
|
370 |
+
lr_sim = compute_similarity(lr_x, self.local_window, dilation=2, sim='cos')
|
371 |
+
elif self.direction_feat == 'sim_concat':
|
372 |
+
hr_sim = torch.cat([hr_x, compute_similarity(hr_x, self.local_window, dilation=2, sim='cos')], dim=1)
|
373 |
+
lr_sim = torch.cat([lr_x, compute_similarity(lr_x, self.local_window, dilation=2, sim='cos')], dim=1)
|
374 |
+
hr_x, lr_x = hr_sim, lr_sim
|
375 |
+
# offset = self.get_offset(hr_x, lr_x)
|
376 |
+
offset = self.get_offset_lp(hr_x, lr_x, hr_sim, lr_sim)
|
377 |
+
return self.sample(feat2sample, offset)
|
378 |
+
|
379 |
+
# def get_offset_lp(self, hr_x, lr_x):
|
380 |
+
def get_offset_lp(self, hr_x, lr_x, hr_sim, lr_sim):
|
381 |
+
if hasattr(self, 'direct_scale'):
|
382 |
+
# offset = (self.offset(lr_x) + F.pixel_unshuffle(self.hr_offset(hr_x), self.scale)) * (self.direct_scale(lr_x) + F.pixel_unshuffle(self.hr_direct_scale(hr_x), self.scale)).sigmoid() + self.init_pos
|
383 |
+
offset = (self.offset(lr_sim) + F.pixel_unshuffle(self.hr_offset(hr_sim), self.scale)) * (self.direct_scale(lr_x) + F.pixel_unshuffle(self.hr_direct_scale(hr_x), self.scale)).sigmoid() + self.init_pos
|
384 |
+
# offset = (self.offset(lr_sim) + F.pixel_unshuffle(self.hr_offset(hr_sim), self.scale)) * (self.direct_scale(lr_sim) + F.pixel_unshuffle(self.hr_direct_scale(hr_sim), self.scale)).sigmoid() + self.init_pos
|
385 |
+
else:
|
386 |
+
offset = (self.offset(lr_x) + F.pixel_unshuffle(self.hr_offset(hr_x), self.scale)) * 0.25 + self.init_pos
|
387 |
+
return offset
|
388 |
+
|
389 |
+
def get_offset(self, hr_x, lr_x):
|
390 |
+
if self.style == 'pl':
|
391 |
+
raise NotImplementedError
|
392 |
+
return self.get_offset_lp(hr_x, lr_x)
|
393 |
+
|
394 |
+
|
395 |
+
def compute_similarity(input_tensor, k=3, dilation=1, sim='cos'):
|
396 |
+
"""
|
397 |
+
计算输入张量中每一点与周围KxK范围内的点的余弦相似度。
|
398 |
+
|
399 |
+
参数:
|
400 |
+
- input_tensor: 输入张量,形状为[B, C, H, W]
|
401 |
+
- k: 范围大小,表示周围KxK范围内的点
|
402 |
+
|
403 |
+
返回:
|
404 |
+
- 输出张量,形状为[B, KxK-1, H, W]
|
405 |
+
"""
|
406 |
+
B, C, H, W = input_tensor.shape
|
407 |
+
# 使用零填充来处理边界情况
|
408 |
+
# padded_input = F.pad(input_tensor, (k // 2, k // 2, k // 2, k // 2), mode='constant', value=0)
|
409 |
+
|
410 |
+
# 展平输入张量中每个点及其周围KxK范围内的点
|
411 |
+
unfold_tensor = F.unfold(input_tensor, k, padding=(k // 2) * dilation, dilation=dilation) # B, CxKxK, HW
|
412 |
+
# print(unfold_tensor.shape)
|
413 |
+
unfold_tensor = unfold_tensor.reshape(B, C, k**2, H, W)
|
414 |
+
|
415 |
+
# 计算余弦相似度
|
416 |
+
if sim == 'cos':
|
417 |
+
similarity = F.cosine_similarity(unfold_tensor[:, :, k * k // 2:k * k // 2 + 1], unfold_tensor[:, :, :], dim=1)
|
418 |
+
elif sim == 'dot':
|
419 |
+
similarity = unfold_tensor[:, :, k * k // 2:k * k // 2 + 1] * unfold_tensor[:, :, :]
|
420 |
+
similarity = similarity.sum(dim=1)
|
421 |
+
else:
|
422 |
+
raise NotImplementedError
|
423 |
+
|
424 |
+
# 移除中心点的余弦相似度,得到[KxK-1]的结果
|
425 |
+
similarity = torch.cat((similarity[:, :k * k // 2], similarity[:, k * k // 2 + 1:]), dim=1)
|
426 |
+
|
427 |
+
# 将结果重塑回[B, KxK-1, H, W]的形状
|
428 |
+
similarity = similarity.view(B, k * k - 1, H, W)
|
429 |
+
return similarity
|
430 |
+
|
431 |
+
|
432 |
+
if __name__ == '__main__':
|
433 |
+
# x = torch.rand(4, 128, 16, 16)
|
434 |
+
# mask = torch.rand(4, 4 * 25, 16, 16)
|
435 |
+
# carafe(x, mask, kernel_size=5, group=1, up=2)
|
436 |
+
|
437 |
+
hr_feat = torch.rand(1, 128, 512, 512)
|
438 |
+
lr_feat = torch.rand(1, 128, 256, 256)
|
439 |
+
model = FreqFusion(hr_channels=128, lr_channels=128)
|
440 |
+
mask_lr, hr_feat, lr_feat = model(hr_feat=hr_feat, lr_feat=lr_feat)
|
441 |
+
print(mask_lr.shape)
|
model.py
ADDED
@@ -0,0 +1,1418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.utils.checkpoint as checkpoint
|
4 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from einops import rearrange, repeat
|
7 |
+
import math
|
8 |
+
from utils import grid_sample
|
9 |
+
|
10 |
+
from freqfusion import FreqFusion
|
11 |
+
|
12 |
+
#########################################
|
13 |
+
|
14 |
+
class SepConv2d(torch.nn.Module):
|
15 |
+
def __init__(self,
|
16 |
+
in_channels,
|
17 |
+
out_channels,
|
18 |
+
kernel_size,
|
19 |
+
stride=1,
|
20 |
+
padding=0,
|
21 |
+
dilation=1,act_layer=nn.ReLU):
|
22 |
+
super(SepConv2d, self).__init__()
|
23 |
+
self.depthwise = torch.nn.Conv2d(in_channels,
|
24 |
+
in_channels,
|
25 |
+
kernel_size=kernel_size,
|
26 |
+
stride=stride,
|
27 |
+
padding=padding,
|
28 |
+
dilation=dilation,
|
29 |
+
groups=in_channels)
|
30 |
+
self.pointwise = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1)
|
31 |
+
self.act_layer = act_layer() if act_layer is not None else nn.Identity()
|
32 |
+
self.in_channels = in_channels
|
33 |
+
self.out_channels = out_channels
|
34 |
+
self.kernel_size = kernel_size
|
35 |
+
self.stride = stride
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
x = self.depthwise(x)
|
39 |
+
x = self.act_layer(x)
|
40 |
+
x = self.pointwise(x)
|
41 |
+
return x
|
42 |
+
|
43 |
+
def flops(self, H, W):
|
44 |
+
flops = 0
|
45 |
+
flops += H*W*self.in_channels*self.kernel_size**2/self.stride**2
|
46 |
+
flops += H*W*self.in_channels*self.out_channels
|
47 |
+
return flops
|
48 |
+
|
49 |
+
##########################################################################
|
50 |
+
## Channel Attention Layer
|
51 |
+
class CALayer(nn.Module):
|
52 |
+
def __init__(self, channel, reduction=16, bias=False):
|
53 |
+
super(CALayer, self).__init__()
|
54 |
+
# global average pooling: feature --> point
|
55 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
56 |
+
# feature channel downscale and upscale --> channel weight
|
57 |
+
self.conv_du = nn.Sequential(
|
58 |
+
nn.Conv2d(channel, channel // reduction, 1, padding=0, bias=bias),
|
59 |
+
nn.ReLU(inplace=True),
|
60 |
+
nn.Conv2d(channel // reduction, channel, 1, padding=0, bias=bias),
|
61 |
+
nn.Sigmoid()
|
62 |
+
)
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
y = self.avg_pool(x)
|
66 |
+
y = self.conv_du(y)
|
67 |
+
return x * y
|
68 |
+
|
69 |
+
def conv(in_channels, out_channels, kernel_size, bias=False, stride = 1):
|
70 |
+
return nn.Conv2d(
|
71 |
+
in_channels, out_channels, kernel_size,
|
72 |
+
padding=(kernel_size//2), bias=bias, stride = stride)
|
73 |
+
|
74 |
+
##########################################################################
|
75 |
+
## Channel Attention Block (CAB)
|
76 |
+
class CAB(nn.Module):
|
77 |
+
def __init__(self, n_feat, kernel_size, reduction, bias, act):
|
78 |
+
super(CAB, self).__init__()
|
79 |
+
modules_body = []
|
80 |
+
modules_body.append(conv(n_feat, n_feat, kernel_size, bias=bias))
|
81 |
+
modules_body.append(act)
|
82 |
+
modules_body.append(conv(n_feat, n_feat, kernel_size, bias=bias))
|
83 |
+
|
84 |
+
self.CA = CALayer(n_feat, reduction, bias=bias)
|
85 |
+
self.body = nn.Sequential(*modules_body)
|
86 |
+
|
87 |
+
def forward(self, x):
|
88 |
+
res = self.body(x)
|
89 |
+
res = self.CA(res)
|
90 |
+
res += x
|
91 |
+
return res
|
92 |
+
|
93 |
+
#########################################
|
94 |
+
######## Embedding for q,k,v ########
|
95 |
+
class ConvProjection(nn.Module):
|
96 |
+
def __init__(self, dim, heads = 8, dim_head = 64, kernel_size=3, q_stride=1, k_stride=1, v_stride=1, dropout = 0.,
|
97 |
+
last_stage=False,bias=True):
|
98 |
+
|
99 |
+
super().__init__()
|
100 |
+
|
101 |
+
inner_dim = dim_head * heads
|
102 |
+
self.heads = heads
|
103 |
+
pad = (kernel_size - q_stride)//2
|
104 |
+
self.to_q = SepConv2d(dim, inner_dim, kernel_size, q_stride, pad, bias)
|
105 |
+
self.to_k = SepConv2d(dim, inner_dim, kernel_size, k_stride, pad, bias)
|
106 |
+
self.to_v = SepConv2d(dim, inner_dim, kernel_size, v_stride, pad, bias)
|
107 |
+
|
108 |
+
def forward(self, x, attn_kv=None):
|
109 |
+
b, n, c, h = *x.shape, self.heads
|
110 |
+
l = int(math.sqrt(n))
|
111 |
+
w = int(math.sqrt(n))
|
112 |
+
|
113 |
+
attn_kv = x if attn_kv is None else attn_kv
|
114 |
+
x = rearrange(x, 'b (l w) c -> b c l w', l=l, w=w)
|
115 |
+
attn_kv = rearrange(attn_kv, 'b (l w) c -> b c l w', l=l, w=w)
|
116 |
+
# print(attn_kv)
|
117 |
+
q = self.to_q(x)
|
118 |
+
q = rearrange(q, 'b (h d) l w -> b h (l w) d', h=h)
|
119 |
+
|
120 |
+
k = self.to_k(attn_kv)
|
121 |
+
v = self.to_v(attn_kv)
|
122 |
+
k = rearrange(k, 'b (h d) l w -> b h (l w) d', h=h)
|
123 |
+
v = rearrange(v, 'b (h d) l w -> b h (l w) d', h=h)
|
124 |
+
return q,k,v
|
125 |
+
|
126 |
+
def flops(self, H, W):
|
127 |
+
flops = 0
|
128 |
+
flops += self.to_q.flops(H, W)
|
129 |
+
flops += self.to_k.flops(H, W)
|
130 |
+
flops += self.to_v.flops(H, W)
|
131 |
+
return flops
|
132 |
+
|
133 |
+
class LinearProjection(nn.Module):
|
134 |
+
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., bias=True):
|
135 |
+
super().__init__()
|
136 |
+
inner_dim = dim_head * heads
|
137 |
+
self.heads = heads
|
138 |
+
self.to_q = nn.Linear(dim, inner_dim, bias = bias)
|
139 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = bias)
|
140 |
+
self.dim = dim
|
141 |
+
self.inner_dim = inner_dim
|
142 |
+
|
143 |
+
def forward(self, x, attn_kv=None):
|
144 |
+
B_, N, C = x.shape
|
145 |
+
attn_kv = x if attn_kv is None else attn_kv
|
146 |
+
q = self.to_q(x).reshape(B_, N, 1, self.heads, C // self.heads).permute(2, 0, 3, 1, 4).contiguous()
|
147 |
+
kv = self.to_kv(attn_kv).reshape(B_, N, 2, self.heads, C // self.heads).permute(2, 0, 3, 1, 4).contiguous()
|
148 |
+
q = q[0]
|
149 |
+
k, v = kv[0], kv[1]
|
150 |
+
return q,k,v
|
151 |
+
|
152 |
+
def flops(self, H, W):
|
153 |
+
flops = H*W*self.dim*self.inner_dim*3
|
154 |
+
return flops
|
155 |
+
|
156 |
+
class LinearProjection_Concat_kv(nn.Module):
|
157 |
+
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., bias=True):
|
158 |
+
super().__init__()
|
159 |
+
inner_dim = dim_head * heads
|
160 |
+
self.heads = heads
|
161 |
+
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = bias)
|
162 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = bias)
|
163 |
+
self.dim = dim
|
164 |
+
self.inner_dim = inner_dim
|
165 |
+
|
166 |
+
def forward(self, x, attn_kv=None):
|
167 |
+
B_, N, C = x.shape
|
168 |
+
attn_kv = x if attn_kv is None else attn_kv
|
169 |
+
qkv_dec = self.to_qkv(x).reshape(B_, N, 3, self.heads, C // self.heads).permute(2, 0, 3, 1, 4).contiguous()
|
170 |
+
kv_enc = self.to_kv(attn_kv).reshape(B_, N, 2, self.heads, C // self.heads).permute(2, 0, 3, 1, 4).contiguous()
|
171 |
+
q, k_d, v_d = qkv_dec[0], qkv_dec[1], qkv_dec[2] # make torchscript happy (cannot use tensor as tuple)
|
172 |
+
k_e, v_e = kv_enc[0], kv_enc[1]
|
173 |
+
k = torch.cat((k_d,k_e),dim=2)
|
174 |
+
v = torch.cat((v_d,v_e),dim=2)
|
175 |
+
return q,k,v
|
176 |
+
|
177 |
+
def flops(self, H, W):
|
178 |
+
flops = H*W*self.dim*self.inner_dim*5
|
179 |
+
return flops
|
180 |
+
|
181 |
+
#########################################
|
182 |
+
|
183 |
+
########### SIA #############
|
184 |
+
class WindowAttention(nn.Module):
|
185 |
+
def __init__(self, dim, win_size, num_heads, token_projection='linear', qkv_bias=True, qk_scale=None, attn_drop=0.,
|
186 |
+
proj_drop=0., se_layer=False):
|
187 |
+
|
188 |
+
super().__init__()
|
189 |
+
self.dim = dim
|
190 |
+
self.win_size = win_size # Wh, Ww
|
191 |
+
self.num_heads = num_heads
|
192 |
+
head_dim = dim // num_heads
|
193 |
+
self.scale = qk_scale or head_dim ** -0.5
|
194 |
+
|
195 |
+
# define a parameter table of relative position bias
|
196 |
+
self.relative_position_bias_table = nn.Parameter(
|
197 |
+
torch.zeros((2 * win_size[0] - 1) * (2 * win_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
198 |
+
|
199 |
+
# get pair-wise relative position index for each token inside the window
|
200 |
+
coords_h = torch.arange(self.win_size[0]) # [0,...,Wh-1]
|
201 |
+
coords_w = torch.arange(self.win_size[1]) # [0,...,Ww-1]
|
202 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
203 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
204 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
205 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
206 |
+
relative_coords[:, :, 0] += self.win_size[0] - 1 # shift to start from 0
|
207 |
+
relative_coords[:, :, 1] += self.win_size[1] - 1
|
208 |
+
relative_coords[:, :, 0] *= 2 * self.win_size[1] - 1
|
209 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
210 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
211 |
+
|
212 |
+
# self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
213 |
+
if token_projection == 'conv':
|
214 |
+
self.qkv = ConvProjection(dim, num_heads, dim // num_heads, bias=qkv_bias)
|
215 |
+
elif token_projection == 'linear_concat':
|
216 |
+
self.qkv = LinearProjection_Concat_kv(dim, num_heads, dim // num_heads, bias=qkv_bias)
|
217 |
+
else:
|
218 |
+
self.qkv = LinearProjection(dim, num_heads, dim // num_heads, bias=qkv_bias)
|
219 |
+
|
220 |
+
self.token_projection = token_projection
|
221 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
222 |
+
self.proj = nn.Linear(dim, dim)
|
223 |
+
self.ll = nn.Identity()
|
224 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
225 |
+
self.sigmoid = nn.Sigmoid()
|
226 |
+
|
227 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
228 |
+
self.softmax = nn.Softmax(dim=-1)
|
229 |
+
|
230 |
+
def forward(self, x, dino_mat, point_feature, normal, attn_kv=None, mask=None):
|
231 |
+
B_, N, C = x.shape
|
232 |
+
|
233 |
+
dino_mat = dino_mat.unsqueeze(2)
|
234 |
+
normalizer = torch.sqrt((dino_mat @ dino_mat.transpose(-2, -1)).squeeze(-2)).detach()
|
235 |
+
normalizer = torch.clamp(normalizer, 1.0e-20, 1.0e10)
|
236 |
+
dino_mat = dino_mat.squeeze(2) / normalizer
|
237 |
+
dino_mat_correlation_map = dino_mat @ dino_mat.transpose(-2, -1).contiguous()
|
238 |
+
dino_mat_correlation_map = torch.clamp(dino_mat_correlation_map, 0.0, 1.0e10)
|
239 |
+
dino_mat_correlation_map = torch.unsqueeze(dino_mat_correlation_map, dim=1)
|
240 |
+
|
241 |
+
point_feature = point_feature.unsqueeze(2)
|
242 |
+
Point = point_feature.repeat(1, 1, self.win_size[0] * self.win_size[1],1)
|
243 |
+
Point = Point - Point.transpose(-2, -3)
|
244 |
+
normal = normal.unsqueeze(2).repeat(1,1,self.win_size[0] * self.win_size[1],1)
|
245 |
+
# print(f'{Point.shape=}')
|
246 |
+
# print(f'{normal.shape=}')
|
247 |
+
Point = Point * normal
|
248 |
+
Point = torch.abs(torch.sum(Point, dim=3))
|
249 |
+
|
250 |
+
plane_correlation_map = 0.5 * (Point + Point.transpose(-1, -2))
|
251 |
+
plane_correlation_map = plane_correlation_map.unsqueeze(1)
|
252 |
+
plane_correlation_map = torch.exp(-plane_correlation_map)
|
253 |
+
|
254 |
+
|
255 |
+
q, k, v = self.qkv(x, attn_kv)
|
256 |
+
q = q * self.scale
|
257 |
+
attn = (q @ k.transpose(-2, -1))
|
258 |
+
|
259 |
+
attn = dino_mat_correlation_map * attn
|
260 |
+
attn = plane_correlation_map * attn
|
261 |
+
|
262 |
+
|
263 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
264 |
+
self.win_size[0] * self.win_size[1], self.win_size[0] * self.win_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
265 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
266 |
+
ratio = attn.size(-1) // relative_position_bias.size(-1)
|
267 |
+
relative_position_bias = repeat(relative_position_bias, 'nH l c -> nH l (c d)', d=ratio)
|
268 |
+
|
269 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
270 |
+
|
271 |
+
if mask is not None:
|
272 |
+
nW = mask.shape[0]
|
273 |
+
mask = repeat(mask, 'nW m n -> nW m (n d)', d=ratio)
|
274 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N * ratio) + mask.unsqueeze(1).unsqueeze(0)
|
275 |
+
attn = attn.view(-1, self.num_heads, N, N * ratio)
|
276 |
+
attn = self.softmax(attn)
|
277 |
+
else:
|
278 |
+
attn = self.softmax(attn)
|
279 |
+
|
280 |
+
attn = self.attn_drop(attn)
|
281 |
+
x = (attn @ v).transpose(1, 2).contiguous().reshape(B_, N, C)
|
282 |
+
x = self.proj(x)
|
283 |
+
x = self.ll(x)
|
284 |
+
x = self.proj_drop(x)
|
285 |
+
return x
|
286 |
+
|
287 |
+
def extra_repr(self) -> str:
|
288 |
+
return f'dim={self.dim}, win_size={self.win_size}, num_heads={self.num_heads}'
|
289 |
+
|
290 |
+
def flops(self, H, W):
|
291 |
+
# calculate flops for 1 window with token length of N
|
292 |
+
# print(N, self.dim)
|
293 |
+
flops = 0
|
294 |
+
N = self.win_size[0] * self.win_size[1]
|
295 |
+
nW = H * W / N
|
296 |
+
# qkv = self.qkv(x)
|
297 |
+
# flops += N * self.dim * 3 * self.dim
|
298 |
+
flops += self.qkv.flops(H, W)
|
299 |
+
# attn = (q @ k.transpose(-2, -1))
|
300 |
+
if self.token_projection != 'linear_concat':
|
301 |
+
flops += nW * self.num_heads * N * (self.dim // self.num_heads) * N
|
302 |
+
# x = (attn @ v)
|
303 |
+
flops += nW * self.num_heads * N * N * (self.dim // self.num_heads)
|
304 |
+
else:
|
305 |
+
flops += nW * self.num_heads * N * (self.dim // self.num_heads) * N * 2
|
306 |
+
# x = (attn @ v)
|
307 |
+
flops += nW * self.num_heads * N * N * 2 * (self.dim // self.num_heads)
|
308 |
+
# x = self.proj(x)
|
309 |
+
flops += nW * N * self.dim * self.dim
|
310 |
+
print("W-MSA:{%.2f}" % (flops / 1e9))
|
311 |
+
return flops
|
312 |
+
|
313 |
+
|
314 |
+
#########################################
|
315 |
+
########### feed-forward network #############
|
316 |
+
class Mlp(nn.Module):
|
317 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
318 |
+
super().__init__()
|
319 |
+
out_features = out_features or in_features
|
320 |
+
hidden_features = hidden_features or in_features
|
321 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
322 |
+
self.act = act_layer()
|
323 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
324 |
+
self.drop = nn.Dropout(drop)
|
325 |
+
self.in_features = in_features
|
326 |
+
self.hidden_features = hidden_features
|
327 |
+
self.out_features = out_features
|
328 |
+
|
329 |
+
def forward(self, x):
|
330 |
+
x = self.fc1(x)
|
331 |
+
x = self.act(x)
|
332 |
+
x = self.drop(x)
|
333 |
+
x = self.fc2(x)
|
334 |
+
x = self.drop(x)
|
335 |
+
return x
|
336 |
+
|
337 |
+
def flops(self, H, W):
|
338 |
+
flops = 0
|
339 |
+
# fc1
|
340 |
+
flops += H*W*self.in_features*self.hidden_features
|
341 |
+
# fc2
|
342 |
+
flops += H*W*self.hidden_features*self.out_features
|
343 |
+
print("MLP:{%.2f}"%(flops/1e9))
|
344 |
+
return flops
|
345 |
+
|
346 |
+
class LeFF(nn.Module):
|
347 |
+
def __init__(self, dim=32, hidden_dim=128, act_layer=nn.GELU,drop = 0.):
|
348 |
+
super().__init__()
|
349 |
+
self.linear1 = nn.Sequential(nn.Linear(dim, hidden_dim),
|
350 |
+
act_layer())
|
351 |
+
self.dwconv = nn.Sequential(nn.Conv2d(hidden_dim,hidden_dim,groups=hidden_dim,kernel_size=3,stride=1,padding=1),
|
352 |
+
act_layer())
|
353 |
+
self.linear2 = nn.Sequential(nn.Linear(hidden_dim, dim))
|
354 |
+
self.dim = dim
|
355 |
+
self.hidden_dim = hidden_dim
|
356 |
+
|
357 |
+
def forward(self, x, img_size=(128,128)):
|
358 |
+
# bs x hw x c
|
359 |
+
bs, hw, c = x.size()
|
360 |
+
# hh = int(math.sqrt(hw))
|
361 |
+
hh = img_size[0]
|
362 |
+
ww = img_size[1]
|
363 |
+
|
364 |
+
x = self.linear1(x)
|
365 |
+
|
366 |
+
# spatial restore
|
367 |
+
x = rearrange(x, ' b (h w) (c) -> b c h w ', h = hh, w = ww)
|
368 |
+
# bs,hidden_dim,32x32
|
369 |
+
|
370 |
+
x = self.dwconv(x)
|
371 |
+
|
372 |
+
# flaten
|
373 |
+
x = rearrange(x, ' b c h w -> b (h w) c', h = hh, w = ww)
|
374 |
+
|
375 |
+
x = self.linear2(x)
|
376 |
+
|
377 |
+
return x
|
378 |
+
|
379 |
+
def flops(self, H, W):
|
380 |
+
flops = 0
|
381 |
+
# fc1
|
382 |
+
flops += H*W*self.dim*self.hidden_dim
|
383 |
+
# dwconv
|
384 |
+
flops += H*W*self.hidden_dim*3*3
|
385 |
+
# fc2
|
386 |
+
flops += H*W*self.hidden_dim*self.dim
|
387 |
+
print("LeFF:{%.2f}"%(flops/1e9))
|
388 |
+
return flops
|
389 |
+
|
390 |
+
#########################################
|
391 |
+
########### window operation#############
|
392 |
+
def window_partition(x, win_size, dilation_rate=1):
|
393 |
+
B, H, W, C = x.shape
|
394 |
+
if dilation_rate !=1:
|
395 |
+
x = x.permute(0,3,1,2).contiguous() # B, C, H, W
|
396 |
+
assert type(dilation_rate) is int, 'dilation_rate should be a int'
|
397 |
+
x = F.unfold(x, kernel_size=win_size,dilation=dilation_rate,padding=4*(dilation_rate-1),stride=win_size) # B, C*Wh*Ww, H/Wh*W/Ww
|
398 |
+
windows = x.permute(0,2,1).contiguous().view(-1, C, win_size, win_size) # B' ,C ,Wh ,Ww
|
399 |
+
windows = windows.permute(0,2,3,1).contiguous() # B' ,Wh ,Ww ,C
|
400 |
+
else:
|
401 |
+
x = x.view(B, H // win_size, win_size, W // win_size, win_size, C)
|
402 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, win_size, win_size, C) # B' ,Wh ,Ww ,C
|
403 |
+
return windows
|
404 |
+
|
405 |
+
def window_reverse(windows, win_size, H, W, dilation_rate=1):
|
406 |
+
# B' ,Wh ,Ww ,C
|
407 |
+
B = int(windows.shape[0] / (H * W / win_size / win_size))
|
408 |
+
x = windows.view(B, H // win_size, W // win_size, win_size, win_size, -1)
|
409 |
+
if dilation_rate !=1:
|
410 |
+
x = windows.permute(0,5,3,4,1,2).contiguous() # B, C*Wh*Ww, H/Wh*W/Ww
|
411 |
+
x = F.fold(x, (H, W), kernel_size=win_size, dilation=dilation_rate, padding=4*(dilation_rate-1),stride=win_size)
|
412 |
+
else:
|
413 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
414 |
+
return x
|
415 |
+
|
416 |
+
#########################################
|
417 |
+
# Downsample Block
|
418 |
+
class Downsample(nn.Module):
|
419 |
+
def __init__(self, in_channel, out_channel):
|
420 |
+
super(Downsample, self).__init__()
|
421 |
+
self.conv = nn.Sequential(
|
422 |
+
nn.Conv2d(in_channel, out_channel, kernel_size=4, stride=2, padding=1)
|
423 |
+
# nn.Conv2d(in_channel * 4, out_channel, kernel_size=3, padding=1)
|
424 |
+
)
|
425 |
+
self.in_channel = in_channel
|
426 |
+
self.out_channel = out_channel
|
427 |
+
|
428 |
+
def forward(self, x, img_size=(128,128)):
|
429 |
+
B, L, C = x.shape
|
430 |
+
H = img_size[0]
|
431 |
+
W = img_size[1]
|
432 |
+
x = x.transpose(1, 2).contiguous().view(B, C, H, W)
|
433 |
+
|
434 |
+
out = self.conv(x).flatten(2).transpose(1,2).contiguous() # B H*W C
|
435 |
+
return out
|
436 |
+
|
437 |
+
# def forward(self, x, img_size=(128,128)):
|
438 |
+
# B, L, C = x.shape
|
439 |
+
# H = img_size[0]
|
440 |
+
# W = img_size[1]
|
441 |
+
# x = x.transpose(1, 2).contiguous().view(B, C, H, W)
|
442 |
+
|
443 |
+
# # new add
|
444 |
+
# x = x.permute(0,2,3,1)
|
445 |
+
|
446 |
+
# x0 = x[:, 0::2, 0::2, :]
|
447 |
+
# x1 = x[:, 0::2, 1::2, :]
|
448 |
+
# x2 = x[:, 1::2, 0::2, :]
|
449 |
+
# x3 = x[:, 1::2, 1::2, :]
|
450 |
+
# x = torch.cat([x0, x1, x2, x3], axis=-1)
|
451 |
+
# x = x.permute(0,3,1,2)
|
452 |
+
|
453 |
+
# out = self.conv(x).flatten(2).transpose(1,2).contiguous() # B H*W C
|
454 |
+
# return out
|
455 |
+
|
456 |
+
def flops(self, H, W):
|
457 |
+
flops = 0
|
458 |
+
# conv
|
459 |
+
flops += H/2*W/2*self.in_channel*self.out_channel*4*4
|
460 |
+
print("Downsample:{%.2f}"%(flops/1e9))
|
461 |
+
return flops
|
462 |
+
|
463 |
+
# Upsample Block
|
464 |
+
class Upsample(nn.Module):
|
465 |
+
def __init__(self, in_channel, out_channel):
|
466 |
+
super(Upsample, self).__init__()
|
467 |
+
self.deconv = nn.Sequential(
|
468 |
+
nn.ConvTranspose2d(in_channel, out_channel, kernel_size=2, stride=2)
|
469 |
+
)
|
470 |
+
|
471 |
+
# self.conv = nn.Sequential(
|
472 |
+
# nn.Conv2d(in_channel, out_channel * 4, kernel_size=3, padding=1)
|
473 |
+
# )
|
474 |
+
|
475 |
+
self.in_channel = in_channel
|
476 |
+
self.out_channel = out_channel
|
477 |
+
|
478 |
+
def forward(self, x, img_size=(128,128)):
|
479 |
+
B, L, C = x.shape
|
480 |
+
H = img_size[0]
|
481 |
+
W = img_size[1]
|
482 |
+
x = x.transpose(1, 2).contiguous().view(B, C, H, W)
|
483 |
+
out = self.deconv(x)
|
484 |
+
|
485 |
+
out = out.flatten(2).transpose(1,2).contiguous() # B H*W C
|
486 |
+
return out
|
487 |
+
|
488 |
+
# def forward(self, x, img_size=(128,128)):
|
489 |
+
# B, L, C = x.shape
|
490 |
+
# H = img_size[0]
|
491 |
+
# W = img_size[1]
|
492 |
+
# x = x.transpose(1, 2).contiguous().view(B, C, H, W)
|
493 |
+
# out = self.conv(x)
|
494 |
+
# # new add
|
495 |
+
# pixel_shuffle = nn.PixelShuffle(2)
|
496 |
+
# out = pixel_shuffle(out)
|
497 |
+
|
498 |
+
# out = out.flatten(2).transpose(1,2).contiguous() # B H*W C
|
499 |
+
# return out
|
500 |
+
|
501 |
+
def flops(self, H, W):
|
502 |
+
flops = 0
|
503 |
+
# conv
|
504 |
+
flops += H*2*W*2*self.in_channel*self.out_channel*2*2
|
505 |
+
print("Upsample:{%.2f}"%(flops/1e9))
|
506 |
+
return flops
|
507 |
+
|
508 |
+
# Input Projection
|
509 |
+
class InputProj(nn.Module):
|
510 |
+
def __init__(self, in_channel=3, out_channel=64, kernel_size=3, stride=1, norm_layer=None,act_layer=nn.LeakyReLU):
|
511 |
+
super().__init__()
|
512 |
+
self.proj = nn.Sequential(
|
513 |
+
nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=stride, padding=kernel_size//2),
|
514 |
+
act_layer(inplace=True)
|
515 |
+
)
|
516 |
+
if norm_layer is not None:
|
517 |
+
self.norm = norm_layer(out_channel)
|
518 |
+
else:
|
519 |
+
self.norm = None
|
520 |
+
self.in_channel = in_channel
|
521 |
+
self.out_channel = out_channel
|
522 |
+
|
523 |
+
def forward(self, x):
|
524 |
+
B, C, H, W = x.shape
|
525 |
+
x = self.proj(x).flatten(2).transpose(1, 2).contiguous() # B H*W C
|
526 |
+
if self.norm is not None:
|
527 |
+
x = self.norm(x)
|
528 |
+
return x
|
529 |
+
|
530 |
+
def flops(self, H, W):
|
531 |
+
flops = 0
|
532 |
+
# conv
|
533 |
+
flops += H*W*self.in_channel*self.out_channel*3*3
|
534 |
+
|
535 |
+
if self.norm is not None:
|
536 |
+
flops += H*W*self.out_channel
|
537 |
+
print("Input_proj:{%.2f}"%(flops/1e9))
|
538 |
+
return flops
|
539 |
+
|
540 |
+
# Output Projection
|
541 |
+
class OutputProj(nn.Module):
|
542 |
+
def __init__(self, in_channel=64, out_channel=3, kernel_size=3, stride=1, norm_layer=None,act_layer=None):
|
543 |
+
super().__init__()
|
544 |
+
self.proj = nn.Sequential(
|
545 |
+
nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=stride, padding=kernel_size//2),
|
546 |
+
)
|
547 |
+
if act_layer is not None:
|
548 |
+
self.proj.add_module(act_layer(inplace=True))
|
549 |
+
if norm_layer is not None:
|
550 |
+
self.norm = norm_layer(out_channel)
|
551 |
+
else:
|
552 |
+
self.norm = None
|
553 |
+
self.in_channel = in_channel
|
554 |
+
self.out_channel = out_channel
|
555 |
+
|
556 |
+
def forward(self, x, img_size=(128,128)):
|
557 |
+
B, L, C = x.shape
|
558 |
+
H = img_size[0]
|
559 |
+
W = img_size[1]
|
560 |
+
# H = int(math.sqrt(L))
|
561 |
+
# W = int(math.sqrt(L))
|
562 |
+
x = x.transpose(1, 2).contiguous().view(B, C, H, W)
|
563 |
+
x = self.proj(x)
|
564 |
+
if self.norm is not None:
|
565 |
+
x = self.norm(x)
|
566 |
+
return x
|
567 |
+
|
568 |
+
def flops(self, H, W):
|
569 |
+
flops = 0
|
570 |
+
# conv
|
571 |
+
flops += H*W*self.in_channel*self.out_channel*3*3
|
572 |
+
|
573 |
+
if self.norm is not None:
|
574 |
+
flops += H*W*self.out_channel
|
575 |
+
print("Output_proj:{%.2f}"%(flops/1e9))
|
576 |
+
return flops
|
577 |
+
|
578 |
+
|
579 |
+
#########################################
|
580 |
+
########### CA Transformer #############
|
581 |
+
class CATransformerBlock(nn.Module):
|
582 |
+
def __init__(self, dim, input_resolution, num_heads, win_size=10, shift_size=0,
|
583 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
584 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm, token_projection='linear', token_mlp='leff',
|
585 |
+
se_layer=False):
|
586 |
+
super().__init__()
|
587 |
+
self.dim = dim
|
588 |
+
self.input_resolution = input_resolution
|
589 |
+
self.num_heads = num_heads
|
590 |
+
self.win_size = win_size
|
591 |
+
self.shift_size = shift_size
|
592 |
+
self.mlp_ratio = mlp_ratio
|
593 |
+
self.token_mlp = token_mlp
|
594 |
+
if min(self.input_resolution) <= self.win_size:
|
595 |
+
self.shift_size = 0
|
596 |
+
self.win_size = min(self.input_resolution)
|
597 |
+
assert 0 <= self.shift_size < self.win_size, "shift_size must in 0-win_size"
|
598 |
+
|
599 |
+
self.norm1 = norm_layer(dim)
|
600 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
601 |
+
self.norm2 = norm_layer(dim)
|
602 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
603 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer,
|
604 |
+
drop=drop) if token_mlp == 'ffn' else LeFF(dim, mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
605 |
+
self.CAB = CAB(dim, kernel_size=3, reduction=4, bias=False, act=nn.PReLU())
|
606 |
+
|
607 |
+
|
608 |
+
def extra_repr(self) -> str:
|
609 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
610 |
+
f"win_size={self.win_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
|
611 |
+
|
612 |
+
def forward(self, x, dino_mat, point, normal, mask=None, img_size=(128, 128)):
|
613 |
+
B, L, C = x.shape
|
614 |
+
H = img_size[0]
|
615 |
+
W = img_size[1]
|
616 |
+
assert L == W * H, \
|
617 |
+
f"Input image size ({H}*{W} doesn't match model ({L})."
|
618 |
+
|
619 |
+
shortcut = x
|
620 |
+
x = self.norm1(x)
|
621 |
+
|
622 |
+
# spatial restore
|
623 |
+
x = rearrange(x, ' b (h w) (c) -> b c h w ', h=H, w=W)
|
624 |
+
# bs,hidden_dim,32x32
|
625 |
+
|
626 |
+
x = self.CAB(x)
|
627 |
+
|
628 |
+
# flaten
|
629 |
+
x = rearrange(x, ' b c h w -> b (h w) c', h=H, w=W)
|
630 |
+
x = x.view(B, H * W, C)
|
631 |
+
|
632 |
+
# FFN
|
633 |
+
x = shortcut + self.drop_path(x)
|
634 |
+
x = x + self.drop_path(self.mlp(self.norm2(x), img_size=img_size))
|
635 |
+
|
636 |
+
return x
|
637 |
+
|
638 |
+
def flops(self):
|
639 |
+
flops = 0
|
640 |
+
H, W = self.input_resolution
|
641 |
+
# norm1
|
642 |
+
flops += self.dim * H * W
|
643 |
+
# W-MSA/SW-MSA
|
644 |
+
flops += self.attn.flops(H, W)
|
645 |
+
# norm2
|
646 |
+
flops += self.dim * H * W
|
647 |
+
# mlp
|
648 |
+
flops += self.mlp.flops(H, W)
|
649 |
+
print("LeWin:{%.2f}" % (flops / 1e9))
|
650 |
+
return flops
|
651 |
+
|
652 |
+
#########################################
|
653 |
+
########### SIM Transformer #############
|
654 |
+
class SIMTransformerBlock(nn.Module):
|
655 |
+
def __init__(self, dim, input_resolution, num_heads, win_size=10, shift_size=0,
|
656 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
657 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm,token_projection='linear',token_mlp='leff',se_layer=False):
|
658 |
+
super().__init__()
|
659 |
+
self.dim = dim
|
660 |
+
self.input_resolution = input_resolution
|
661 |
+
self.num_heads = num_heads
|
662 |
+
self.win_size = win_size
|
663 |
+
self.shift_size = shift_size
|
664 |
+
self.mlp_ratio = mlp_ratio
|
665 |
+
self.token_mlp = token_mlp
|
666 |
+
if min(self.input_resolution) <= self.win_size:
|
667 |
+
self.shift_size = 0
|
668 |
+
self.win_size = min(self.input_resolution)
|
669 |
+
assert 0 <= self.shift_size < self.win_size, "shift_size must in 0-win_size"
|
670 |
+
|
671 |
+
self.norm1 = norm_layer(dim)
|
672 |
+
self.attn = WindowAttention(
|
673 |
+
dim, win_size=to_2tuple(self.win_size), num_heads=num_heads,
|
674 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,
|
675 |
+
token_projection=token_projection,se_layer=se_layer)
|
676 |
+
|
677 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
678 |
+
self.norm2 = norm_layer(dim)
|
679 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
680 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,act_layer=act_layer, drop=drop) if token_mlp=='ffn' else LeFF(dim,mlp_hidden_dim,act_layer=act_layer, drop=drop)
|
681 |
+
self.CAB = CAB(dim, kernel_size=3, reduction=4, bias=False, act=nn.PReLU())
|
682 |
+
|
683 |
+
|
684 |
+
def extra_repr(self) -> str:
|
685 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
686 |
+
f"win_size={self.win_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
|
687 |
+
|
688 |
+
def forward(self, x, dino_mat, point, normal, mask=None, img_size = (128, 128)):
|
689 |
+
B, L, C = x.shape
|
690 |
+
H = img_size[0]
|
691 |
+
W = img_size[1]
|
692 |
+
assert L == W * H, \
|
693 |
+
f"Input image size ({H}*{W} doesn't match model ({L})."
|
694 |
+
|
695 |
+
C_dino_mat = dino_mat.shape[1]
|
696 |
+
C_point = point.shape[1]
|
697 |
+
C_normal = normal.shape[1]
|
698 |
+
|
699 |
+
if mask != None:
|
700 |
+
input_mask = F.interpolate(mask, size=(H,W)).permute(0,2,3,1).contiguous()
|
701 |
+
input_mask_windows = window_partition(input_mask, self.win_size) # nW, win_size, win_size, 1
|
702 |
+
attn_mask = input_mask_windows.view(-1, self.win_size * self.win_size) # nW, win_size*win_size
|
703 |
+
attn_mask = attn_mask.unsqueeze(2)*attn_mask.unsqueeze(1) # nW, win_size*win_size, win_size*win_size
|
704 |
+
attn_mask = attn_mask.masked_fill(attn_mask!=0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
705 |
+
else:
|
706 |
+
attn_mask = None
|
707 |
+
|
708 |
+
## shift mask
|
709 |
+
if self.shift_size > 0:
|
710 |
+
# calculate attention mask for SW-MSA
|
711 |
+
shift_mask = torch.zeros((1, H, W, 1)).type_as(x)
|
712 |
+
h_slices = (slice(0, -self.win_size),
|
713 |
+
slice(-self.win_size, -self.shift_size),
|
714 |
+
slice(-self.shift_size, None))
|
715 |
+
w_slices = (slice(0, -self.win_size),
|
716 |
+
slice(-self.win_size, -self.shift_size),
|
717 |
+
slice(-self.shift_size, None))
|
718 |
+
cnt = 0
|
719 |
+
for h in h_slices:
|
720 |
+
for w in w_slices:
|
721 |
+
shift_mask[:, h, w, :] = cnt
|
722 |
+
cnt += 1
|
723 |
+
shift_mask_windows = window_partition(shift_mask, self.win_size) # nW, win_size, win_size, 1
|
724 |
+
shift_mask_windows = shift_mask_windows.view(-1, self.win_size * self.win_size) # nW, win_size*win_size
|
725 |
+
shift_attn_mask = shift_mask_windows.unsqueeze(1) - shift_mask_windows.unsqueeze(2) # nW, win_size*win_size, win_size*win_size
|
726 |
+
shift_attn_mask = shift_attn_mask.masked_fill(shift_attn_mask != 0, float(-100.0)).masked_fill(shift_attn_mask == 0, float(0.0))
|
727 |
+
attn_mask = attn_mask + shift_attn_mask if attn_mask is not None else shift_attn_mask
|
728 |
+
|
729 |
+
shortcut = x
|
730 |
+
x = self.norm1(x)
|
731 |
+
|
732 |
+
|
733 |
+
x = x.view(B, H, W, C)
|
734 |
+
dino_mat = dino_mat.permute(0, 2, 3, 1).contiguous()
|
735 |
+
point = point.permute(0, 2, 3, 1).contiguous()
|
736 |
+
normal = normal.permute(0, 2, 3, 1).contiguous()
|
737 |
+
|
738 |
+
# cyclic shift
|
739 |
+
if self.shift_size > 0:
|
740 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
741 |
+
shifted_dino_mat = torch.roll(dino_mat, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
742 |
+
shifted_point = torch.roll(point, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
743 |
+
shifted_normal = torch.roll(normal, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
744 |
+
else:
|
745 |
+
shifted_x = x
|
746 |
+
shifted_dino_mat = dino_mat
|
747 |
+
shifted_point = point
|
748 |
+
shifted_normal = normal
|
749 |
+
|
750 |
+
x_windows = window_partition(shifted_x, self.win_size) # nW*B, win_size, win_size, C N*C->C
|
751 |
+
x_windows = x_windows.view(-1, self.win_size * self.win_size, C) # nW*B, win_size*win_size, C
|
752 |
+
|
753 |
+
|
754 |
+
dino_mat_windows = window_partition(shifted_dino_mat, self.win_size) # nW*B, win_size, win_size, C N*C->C
|
755 |
+
dino_mat_windows = dino_mat_windows.view(-1, self.win_size * self.win_size, C_dino_mat) # nW*B, win_size*win_size, C
|
756 |
+
|
757 |
+
point_windows = window_partition(shifted_point, self.win_size) # nW*B, win_size, win_size, C N*C->C
|
758 |
+
point_windows = point_windows.view(-1, self.win_size * self.win_size, C_point) # nW*B, win_size*win_size, C
|
759 |
+
|
760 |
+
normal_windows = window_partition(shifted_normal, self.win_size) # nW*B, win_size, win_size, C N*C->C
|
761 |
+
normal_windows = normal_windows.view(-1, self.win_size * self.win_size, C_normal) # nW*B, win_size*win_size, C
|
762 |
+
|
763 |
+
# W-MSA/SW-MSA
|
764 |
+
attn_windows = self.attn(x_windows, dino_mat_windows, point_windows, normal_windows, mask=attn_mask) # nW*B, win_size*win_size, C
|
765 |
+
|
766 |
+
|
767 |
+
# merge windows
|
768 |
+
attn_windows = attn_windows.view(-1, self.win_size, self.win_size, C)
|
769 |
+
|
770 |
+
|
771 |
+
shifted_x = window_reverse(attn_windows, self.win_size, H, W) # B H' W' C
|
772 |
+
|
773 |
+
# reverse cyclic shift
|
774 |
+
if self.shift_size > 0:
|
775 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
776 |
+
else:
|
777 |
+
x = shifted_x
|
778 |
+
x = x.view(B, H * W, C)
|
779 |
+
|
780 |
+
x = rearrange(x, ' b (h w) (c) -> b c h w ', h=H, w=W)
|
781 |
+
# bs,hidden_dim,32x32
|
782 |
+
|
783 |
+
x = self.CAB(x)
|
784 |
+
|
785 |
+
x = rearrange(x, ' b c h w -> b (h w) c', h=H, w=W)
|
786 |
+
|
787 |
+
# FFN
|
788 |
+
x = shortcut + self.drop_path(x)
|
789 |
+
x = x + self.drop_path(self.mlp(self.norm2(x), img_size=img_size))
|
790 |
+
del attn_mask
|
791 |
+
return x
|
792 |
+
|
793 |
+
def flops(self):
|
794 |
+
flops = 0
|
795 |
+
H, W = self.input_resolution
|
796 |
+
# norm1
|
797 |
+
flops += self.dim * H * W
|
798 |
+
# W-MSA/SW-MSA
|
799 |
+
flops += self.attn.flops(H, W)
|
800 |
+
# norm2
|
801 |
+
flops += self.dim * H * W
|
802 |
+
# mlp
|
803 |
+
flops += self.mlp.flops(H,W)
|
804 |
+
print("LeWin:{%.2f}"%(flops/1e9))
|
805 |
+
return flops
|
806 |
+
|
807 |
+
|
808 |
+
#########################################
|
809 |
+
########### Basic layer of ShadowFormer ################
|
810 |
+
class BasicShadowFormer(nn.Module):
|
811 |
+
def __init__(self, dim, output_dim, input_resolution, depth, num_heads, win_size,
|
812 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
|
813 |
+
drop_path=0., norm_layer=nn.LayerNorm, use_checkpoint=False,
|
814 |
+
token_projection='linear',token_mlp='ffn',se_layer=False,cab=False):
|
815 |
+
|
816 |
+
super().__init__()
|
817 |
+
self.dim = dim
|
818 |
+
self.input_resolution = input_resolution
|
819 |
+
self.depth = depth
|
820 |
+
self.use_checkpoint = use_checkpoint
|
821 |
+
# build blocks
|
822 |
+
if cab:
|
823 |
+
self.blocks = nn.ModuleList([
|
824 |
+
CATransformerBlock(dim=dim, input_resolution=input_resolution,
|
825 |
+
num_heads=num_heads, win_size=win_size,
|
826 |
+
shift_size=0 if (i % 2 == 0) else win_size // 2,
|
827 |
+
mlp_ratio=mlp_ratio,
|
828 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
829 |
+
drop=drop, attn_drop=attn_drop,
|
830 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
831 |
+
norm_layer=norm_layer, token_projection=token_projection, token_mlp=token_mlp,
|
832 |
+
se_layer=se_layer)
|
833 |
+
for i in range(depth)])
|
834 |
+
else:
|
835 |
+
self.blocks = nn.ModuleList([
|
836 |
+
SIMTransformerBlock(dim=dim, input_resolution=input_resolution,
|
837 |
+
num_heads=num_heads, win_size=win_size,
|
838 |
+
shift_size=0 if (i % 2 == 0) else win_size // 2,
|
839 |
+
mlp_ratio=mlp_ratio,
|
840 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
841 |
+
drop=drop, attn_drop=attn_drop,
|
842 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
843 |
+
norm_layer=norm_layer,token_projection=token_projection,token_mlp=token_mlp,se_layer=se_layer)
|
844 |
+
for i in range(depth)])
|
845 |
+
|
846 |
+
def extra_repr(self) -> str:
|
847 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
848 |
+
|
849 |
+
def forward(self, x, dino_mat=None, point=None, normal=None, mask=None, img_size=(128,128)):
|
850 |
+
for blk in self.blocks:
|
851 |
+
if self.use_checkpoint:
|
852 |
+
x = checkpoint.checkpoint(blk, x)
|
853 |
+
else:
|
854 |
+
x = blk(x, dino_mat, point, normal, mask, img_size)
|
855 |
+
return x
|
856 |
+
|
857 |
+
def flops(self):
|
858 |
+
flops = 0
|
859 |
+
for blk in self.blocks:
|
860 |
+
flops += blk.flops()
|
861 |
+
return flops
|
862 |
+
|
863 |
+
class ShadowFormer(nn.Module):
|
864 |
+
def __init__(self, img_size=256, in_chans=3,
|
865 |
+
embed_dim=32, depths=[2, 2, 2, 2, 2, 2, 2, 2, 2], num_heads=[1, 2, 4, 8, 16, 16, 8, 4, 2],
|
866 |
+
win_size=8, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
867 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
|
868 |
+
norm_layer=nn.LayerNorm, patch_norm=True,
|
869 |
+
use_checkpoint=False, token_projection='linear', token_mlp='leff', se_layer=True,
|
870 |
+
dowsample=Downsample, upsample=Upsample, **kwargs):
|
871 |
+
super().__init__()
|
872 |
+
|
873 |
+
self.num_enc_layers = len(depths)//2
|
874 |
+
self.num_dec_layers = len(depths)//2
|
875 |
+
self.embed_dim = embed_dim
|
876 |
+
self.patch_norm = patch_norm
|
877 |
+
self.mlp_ratio = mlp_ratio
|
878 |
+
self.token_projection = token_projection
|
879 |
+
self.mlp = token_mlp
|
880 |
+
self.win_size =win_size
|
881 |
+
self.reso = img_size
|
882 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
883 |
+
self.DINO_channel = 1024
|
884 |
+
|
885 |
+
# stochastic depth
|
886 |
+
enc_dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths[:self.num_enc_layers]))]
|
887 |
+
conv_dpr = [drop_path_rate]*depths[4]
|
888 |
+
dec_dpr = enc_dpr[::-1]
|
889 |
+
|
890 |
+
# build layers
|
891 |
+
|
892 |
+
# Input/Output
|
893 |
+
self.input_proj = InputProj(in_channel=4, out_channel=embed_dim, kernel_size=3, stride=1, act_layer=nn.LeakyReLU)
|
894 |
+
self.output_proj = OutputProj(in_channel=2*embed_dim, out_channel=in_chans, kernel_size=3, stride=1)
|
895 |
+
|
896 |
+
# Encoder
|
897 |
+
self.encoderlayer_0 = BasicShadowFormer(dim=embed_dim,
|
898 |
+
output_dim=embed_dim,
|
899 |
+
input_resolution=(img_size,
|
900 |
+
img_size),
|
901 |
+
depth=depths[0],
|
902 |
+
num_heads=num_heads[0],
|
903 |
+
win_size=win_size,
|
904 |
+
mlp_ratio=self.mlp_ratio,
|
905 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
906 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
907 |
+
drop_path=enc_dpr[sum(depths[:0]):sum(depths[:1])],
|
908 |
+
norm_layer=norm_layer,
|
909 |
+
use_checkpoint=use_checkpoint,
|
910 |
+
token_projection=token_projection,token_mlp=token_mlp,se_layer=se_layer,cab=True)
|
911 |
+
self.dowsample_0 = dowsample(embed_dim, embed_dim*2)
|
912 |
+
self.encoderlayer_1 = BasicShadowFormer(dim=embed_dim*2,
|
913 |
+
output_dim=embed_dim*2,
|
914 |
+
input_resolution=(img_size // 2,
|
915 |
+
img_size // 2),
|
916 |
+
depth=depths[1],
|
917 |
+
num_heads=num_heads[1],
|
918 |
+
win_size=win_size,
|
919 |
+
mlp_ratio=self.mlp_ratio,
|
920 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
921 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
922 |
+
drop_path=enc_dpr[sum(depths[:1]):sum(depths[:2])],
|
923 |
+
norm_layer=norm_layer,
|
924 |
+
use_checkpoint=use_checkpoint,
|
925 |
+
token_projection=token_projection,token_mlp=token_mlp,se_layer=se_layer, cab=True)
|
926 |
+
self.dowsample_1 = dowsample(embed_dim*2, embed_dim*4)
|
927 |
+
self.encoderlayer_2 = BasicShadowFormer(dim=embed_dim*4,
|
928 |
+
output_dim=embed_dim*4,
|
929 |
+
input_resolution=(img_size // (2 ** 2),
|
930 |
+
img_size // (2 ** 2)),
|
931 |
+
depth=depths[2],
|
932 |
+
num_heads=num_heads[2],
|
933 |
+
win_size=win_size,
|
934 |
+
mlp_ratio=self.mlp_ratio,
|
935 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
936 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
937 |
+
drop_path=enc_dpr[sum(depths[:2]):sum(depths[:3])],
|
938 |
+
norm_layer=norm_layer,
|
939 |
+
use_checkpoint=use_checkpoint,
|
940 |
+
token_projection=token_projection,token_mlp=token_mlp,se_layer=se_layer)
|
941 |
+
self.dowsample_2 = dowsample(embed_dim*4, embed_dim*8)
|
942 |
+
|
943 |
+
# Bottleneck
|
944 |
+
channel_conv = embed_dim*16
|
945 |
+
# channel_conv = embed_dim*8 if self.add_shadow_detect_dino_conact else embed_dim*4
|
946 |
+
self.conv = BasicShadowFormer(dim=channel_conv,
|
947 |
+
output_dim=channel_conv,
|
948 |
+
input_resolution=(img_size // (2 ** 3),
|
949 |
+
img_size // (2 ** 3)),
|
950 |
+
depth=depths[4],
|
951 |
+
num_heads=num_heads[4],
|
952 |
+
win_size=win_size,
|
953 |
+
mlp_ratio=self.mlp_ratio,
|
954 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
955 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
956 |
+
drop_path=conv_dpr,
|
957 |
+
norm_layer=norm_layer,
|
958 |
+
use_checkpoint=use_checkpoint,
|
959 |
+
token_projection=token_projection,token_mlp=token_mlp,se_layer=se_layer)
|
960 |
+
|
961 |
+
# # Decoder
|
962 |
+
self.upsample_0 = upsample(channel_conv, embed_dim*4)
|
963 |
+
channel_0 = embed_dim*8
|
964 |
+
self.decoderlayer_0 = BasicShadowFormer(dim=channel_0,
|
965 |
+
output_dim=channel_0,
|
966 |
+
input_resolution=(img_size // (2 ** 2),
|
967 |
+
img_size // (2 ** 2)),
|
968 |
+
depth=depths[6],
|
969 |
+
num_heads=num_heads[6],
|
970 |
+
win_size=win_size,
|
971 |
+
mlp_ratio=self.mlp_ratio,
|
972 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
973 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
974 |
+
drop_path=dec_dpr[sum(depths[5:6]):sum(depths[5:7])],
|
975 |
+
norm_layer=norm_layer,
|
976 |
+
use_checkpoint=use_checkpoint,
|
977 |
+
token_projection=token_projection,token_mlp=token_mlp,se_layer=se_layer)
|
978 |
+
self.upsample_1 = upsample(channel_0, embed_dim*2)
|
979 |
+
channel_1 = embed_dim*4
|
980 |
+
self.decoderlayer_1 = BasicShadowFormer(dim=channel_1,
|
981 |
+
output_dim=channel_1,
|
982 |
+
input_resolution=(img_size // 2,
|
983 |
+
img_size // 2),
|
984 |
+
depth=depths[7],
|
985 |
+
num_heads=num_heads[7],
|
986 |
+
win_size=win_size,
|
987 |
+
mlp_ratio=self.mlp_ratio,
|
988 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
989 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
990 |
+
drop_path=dec_dpr[sum(depths[5:7]):sum(depths[5:8])],
|
991 |
+
norm_layer=norm_layer,
|
992 |
+
use_checkpoint=use_checkpoint,
|
993 |
+
token_projection=token_projection,token_mlp=token_mlp,se_layer=se_layer, cab=True)
|
994 |
+
self.upsample_2 = upsample(channel_1, embed_dim)
|
995 |
+
self.decoderlayer_2 = BasicShadowFormer(dim=embed_dim*2,
|
996 |
+
output_dim=embed_dim*2,
|
997 |
+
input_resolution=(img_size,
|
998 |
+
img_size),
|
999 |
+
depth=depths[8],
|
1000 |
+
num_heads=num_heads[8],
|
1001 |
+
win_size=win_size,
|
1002 |
+
mlp_ratio=self.mlp_ratio,
|
1003 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
1004 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
1005 |
+
drop_path=dec_dpr[sum(depths[5:8]):sum(depths[5:9])],
|
1006 |
+
norm_layer=norm_layer,
|
1007 |
+
use_checkpoint=use_checkpoint,
|
1008 |
+
token_projection=token_projection,token_mlp=token_mlp,se_layer=se_layer,cab=True)
|
1009 |
+
|
1010 |
+
self.Conv = nn.Conv2d(self.DINO_channel * 4, embed_dim * 8, kernel_size=1)
|
1011 |
+
self.relu = nn.LeakyReLU()
|
1012 |
+
self.apply(self._init_weights)
|
1013 |
+
|
1014 |
+
|
1015 |
+
def _init_weights(self, m):
|
1016 |
+
if isinstance(m, nn.Linear):
|
1017 |
+
trunc_normal_(m.weight, std=.02)
|
1018 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
1019 |
+
nn.init.constant_(m.bias, 0)
|
1020 |
+
elif isinstance(m, nn.LayerNorm):
|
1021 |
+
nn.init.constant_(m.bias, 0)
|
1022 |
+
nn.init.constant_(m.weight, 1.0)
|
1023 |
+
|
1024 |
+
@torch.jit.ignore
|
1025 |
+
def no_weight_decay(self):
|
1026 |
+
return {'absolute_pos_embed'}
|
1027 |
+
|
1028 |
+
@torch.jit.ignore
|
1029 |
+
def no_weight_decay_keywords(self):
|
1030 |
+
return {'relative_position_bias_table'}
|
1031 |
+
|
1032 |
+
def extra_repr(self) -> str:
|
1033 |
+
return f"embed_dim={self.embed_dim}, token_projection={self.token_projection}, token_mlp={self.mlp}, win_size={self.win_size}"
|
1034 |
+
|
1035 |
+
def forward(self, x, DINO_Mat_features=None, point=None, normal=None, mask=None):
|
1036 |
+
point_feature=None
|
1037 |
+
dino_mat =None
|
1038 |
+
dino_mat1=None
|
1039 |
+
|
1040 |
+
self.img_size = torch.tensor((x.shape[2], x.shape[3]))
|
1041 |
+
point_feature1 = grid_sample(point, self.img_size // 2)
|
1042 |
+
point_feature2 = grid_sample(point, self.img_size // 4)
|
1043 |
+
point_feature3 = grid_sample(point, self.img_size // 8)
|
1044 |
+
normal1= grid_sample(normal, self.img_size // 2)
|
1045 |
+
normal2= grid_sample(normal, self.img_size // 4)
|
1046 |
+
normal3= grid_sample(normal, self.img_size // 8)
|
1047 |
+
|
1048 |
+
patch_features_0 = DINO_Mat_features[0]
|
1049 |
+
patch_features_1 = DINO_Mat_features[1]
|
1050 |
+
patch_features_2 = DINO_Mat_features[2]
|
1051 |
+
patch_features_3 = DINO_Mat_features[3]
|
1052 |
+
patch_feature_all = torch.cat((patch_features_0, patch_features_1,
|
1053 |
+
patch_features_2, patch_features_3), dim=1)
|
1054 |
+
|
1055 |
+
# Get concatenate DINO Feature
|
1056 |
+
dino_mat_cat = self.Conv(patch_feature_all)
|
1057 |
+
dino_mat_cat = self.relu(dino_mat_cat)
|
1058 |
+
B, C, W, H = dino_mat_cat.shape
|
1059 |
+
dino_mat_cat_flat = dino_mat_cat.view(B, C, W * H).permute(0,2,1)
|
1060 |
+
|
1061 |
+
|
1062 |
+
dino_mat2 = F.upsample_bilinear(DINO_Mat_features[-1], scale_factor=2)
|
1063 |
+
dino_mat3 = DINO_Mat_features[-1]
|
1064 |
+
|
1065 |
+
# RGBD
|
1066 |
+
xi = torch.cat((x, point[:,2,:].unsqueeze(1)), dim=1)
|
1067 |
+
|
1068 |
+
y = self.input_proj(xi)
|
1069 |
+
y = self.pos_drop(y)
|
1070 |
+
|
1071 |
+
# Encoder
|
1072 |
+
self.img_size = (int(self.img_size[0]), int(self.img_size[1]))
|
1073 |
+
conv0 = self.encoderlayer_0(y, dino_mat, point_feature, normal, mask, img_size = self.img_size)
|
1074 |
+
pool0 = self.dowsample_0(conv0, img_size = self.img_size)
|
1075 |
+
|
1076 |
+
self.img_size = (int(self.img_size[0]/2), int(self.img_size[1]/2))
|
1077 |
+
conv1 = self.encoderlayer_1(pool0, dino_mat1, point_feature1, normal1, img_size = self.img_size)
|
1078 |
+
pool1 = self.dowsample_1(conv1, img_size = self.img_size)
|
1079 |
+
|
1080 |
+
self.img_size = (int(self.img_size[0] / 2), int(self.img_size[1] / 2))
|
1081 |
+
conv2 = self.encoderlayer_2(pool1, dino_mat2, point_feature2, normal2, img_size = self.img_size)
|
1082 |
+
pool2 = self.dowsample_2(conv2, img_size = self.img_size)
|
1083 |
+
|
1084 |
+
# Bottleneck
|
1085 |
+
self.img_size = (int(self.img_size[0] / 2), int(self.img_size[1] / 2))
|
1086 |
+
pool2 = torch.cat([pool2, dino_mat_cat_flat],-1)
|
1087 |
+
conv3 = self.conv(pool2, dino_mat3, point_feature3, normal3, img_size = self.img_size)
|
1088 |
+
print(f'{conv3.shape=}')
|
1089 |
+
|
1090 |
+
#Decoder
|
1091 |
+
up0 = self.upsample_0(conv3, img_size = self.img_size)
|
1092 |
+
self.img_size = (int(self.img_size[0] * 2), int(self.img_size[1] * 2))
|
1093 |
+
print(f'{conv2.shape=}, {up0.shape=}') # conv2.shape=torch.Size([1, 4096, 128]), up0.shape=torch.Size([1, 4096, 128])
|
1094 |
+
deconv0 = torch.cat([up0,conv2],-1)
|
1095 |
+
deconv0 = self.decoderlayer_0(deconv0, dino_mat2, point_feature2, normal2, img_size = self.img_size)
|
1096 |
+
print(f'{deconv0.shape=}')
|
1097 |
+
|
1098 |
+
up1 = self.upsample_1(deconv0, img_size = self.img_size)
|
1099 |
+
self.img_size = (int(self.img_size[0] * 2), int(self.img_size[1] * 2))
|
1100 |
+
print(f'{conv1.shape=}, {up1.shape=}') # conv1.shape=torch.Size([1, 16384, 64]), up1.shape=torch.Size([1, 16384, 64])
|
1101 |
+
deconv1 = torch.cat([up1,conv1],-1)
|
1102 |
+
deconv1 = self.decoderlayer_1(deconv1, dino_mat1, point_feature1, normal1, img_size = self.img_size)
|
1103 |
+
print(f'{deconv1.shape=}')
|
1104 |
+
|
1105 |
+
up2 = self.upsample_2(deconv1, img_size = self.img_size)
|
1106 |
+
self.img_size = (int(self.img_size[0] * 2), int(self.img_size[1] * 2))
|
1107 |
+
print(f'{conv0.shape=}, {up2.shape=}') # conv0.shape=torch.Size([1, 65536, 32]), up2.shape=torch.Size([1, 65536, 32])
|
1108 |
+
deconv2 = torch.cat([up2,conv0],-1)
|
1109 |
+
deconv2 = self.decoderlayer_2(deconv2, dino_mat, point_feature, normal, mask, img_size = self.img_size)
|
1110 |
+
|
1111 |
+
# Output Projection
|
1112 |
+
y = self.output_proj(deconv2, img_size = self.img_size) + x
|
1113 |
+
return y
|
1114 |
+
|
1115 |
+
|
1116 |
+
|
1117 |
+
class ShadowFormerFreq(nn.Module):
|
1118 |
+
def __init__(self, img_size=256, in_chans=3,
|
1119 |
+
embed_dim=32, depths=[2, 2, 2, 2, 2, 2, 2, 2, 2], num_heads=[1, 2, 4, 8, 16, 16, 8, 4, 2],
|
1120 |
+
win_size=8, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
1121 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
|
1122 |
+
norm_layer=nn.LayerNorm, patch_norm=True,
|
1123 |
+
use_checkpoint=False, token_projection='linear', token_mlp='leff', se_layer=True,
|
1124 |
+
dowsample=Downsample, upsample=Upsample, **kwargs):
|
1125 |
+
super().__init__()
|
1126 |
+
|
1127 |
+
self.num_enc_layers = len(depths)//2
|
1128 |
+
self.num_dec_layers = len(depths)//2
|
1129 |
+
self.embed_dim = embed_dim
|
1130 |
+
self.patch_norm = patch_norm
|
1131 |
+
self.mlp_ratio = mlp_ratio
|
1132 |
+
self.token_projection = token_projection
|
1133 |
+
self.mlp = token_mlp
|
1134 |
+
self.win_size =win_size
|
1135 |
+
self.reso = img_size
|
1136 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
1137 |
+
self.DINO_channel = 1024
|
1138 |
+
|
1139 |
+
# stochastic depth
|
1140 |
+
enc_dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths[:self.num_enc_layers]))]
|
1141 |
+
conv_dpr = [drop_path_rate]*depths[4]
|
1142 |
+
dec_dpr = enc_dpr[::-1]
|
1143 |
+
|
1144 |
+
# build layers
|
1145 |
+
|
1146 |
+
# Input/Output
|
1147 |
+
self.input_proj = InputProj(in_channel=4, out_channel=embed_dim, kernel_size=3, stride=1, act_layer=nn.LeakyReLU)
|
1148 |
+
self.output_proj = OutputProj(in_channel=2*embed_dim, out_channel=in_chans, kernel_size=3, stride=1)
|
1149 |
+
|
1150 |
+
# Encoder
|
1151 |
+
self.encoderlayer_0 = BasicShadowFormer(dim=embed_dim,
|
1152 |
+
output_dim=embed_dim,
|
1153 |
+
input_resolution=(img_size,
|
1154 |
+
img_size),
|
1155 |
+
depth=depths[0],
|
1156 |
+
num_heads=num_heads[0],
|
1157 |
+
win_size=win_size,
|
1158 |
+
mlp_ratio=self.mlp_ratio,
|
1159 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
1160 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
1161 |
+
drop_path=enc_dpr[sum(depths[:0]):sum(depths[:1])],
|
1162 |
+
norm_layer=norm_layer,
|
1163 |
+
use_checkpoint=use_checkpoint,
|
1164 |
+
token_projection=token_projection,token_mlp=token_mlp,se_layer=se_layer,cab=True)
|
1165 |
+
self.dowsample_0 = dowsample(embed_dim, embed_dim*2)
|
1166 |
+
self.encoderlayer_1 = BasicShadowFormer(dim=embed_dim*2,
|
1167 |
+
output_dim=embed_dim*2,
|
1168 |
+
input_resolution=(img_size // 2,
|
1169 |
+
img_size // 2),
|
1170 |
+
depth=depths[1],
|
1171 |
+
num_heads=num_heads[1],
|
1172 |
+
win_size=win_size,
|
1173 |
+
mlp_ratio=self.mlp_ratio,
|
1174 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
1175 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
1176 |
+
drop_path=enc_dpr[sum(depths[:1]):sum(depths[:2])],
|
1177 |
+
norm_layer=norm_layer,
|
1178 |
+
use_checkpoint=use_checkpoint,
|
1179 |
+
token_projection=token_projection,token_mlp=token_mlp,se_layer=se_layer, cab=True)
|
1180 |
+
self.dowsample_1 = dowsample(embed_dim*2, embed_dim*4)
|
1181 |
+
self.encoderlayer_2 = BasicShadowFormer(dim=embed_dim*4,
|
1182 |
+
output_dim=embed_dim*4,
|
1183 |
+
input_resolution=(img_size // (2 ** 2),
|
1184 |
+
img_size // (2 ** 2)),
|
1185 |
+
depth=depths[2],
|
1186 |
+
num_heads=num_heads[2],
|
1187 |
+
win_size=win_size,
|
1188 |
+
mlp_ratio=self.mlp_ratio,
|
1189 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
1190 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
1191 |
+
drop_path=enc_dpr[sum(depths[:2]):sum(depths[:3])],
|
1192 |
+
norm_layer=norm_layer,
|
1193 |
+
use_checkpoint=use_checkpoint,
|
1194 |
+
token_projection=token_projection,token_mlp=token_mlp,se_layer=se_layer)
|
1195 |
+
self.dowsample_2 = dowsample(embed_dim*4, embed_dim*8)
|
1196 |
+
|
1197 |
+
# Bottleneck
|
1198 |
+
channel_conv = embed_dim*16
|
1199 |
+
# channel_conv = embed_dim*8 if self.add_shadow_detect_dino_conact else embed_dim*4
|
1200 |
+
self.conv = BasicShadowFormer(dim=channel_conv,
|
1201 |
+
output_dim=channel_conv,
|
1202 |
+
input_resolution=(img_size // (2 ** 3),
|
1203 |
+
img_size // (2 ** 3)),
|
1204 |
+
depth=depths[4],
|
1205 |
+
num_heads=num_heads[4],
|
1206 |
+
win_size=win_size,
|
1207 |
+
mlp_ratio=self.mlp_ratio,
|
1208 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
1209 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
1210 |
+
drop_path=conv_dpr,
|
1211 |
+
norm_layer=norm_layer,
|
1212 |
+
use_checkpoint=use_checkpoint,
|
1213 |
+
token_projection=token_projection,token_mlp=token_mlp,se_layer=se_layer)
|
1214 |
+
|
1215 |
+
# # Decoder
|
1216 |
+
self.upsample_0 = upsample(channel_conv, embed_dim*4)
|
1217 |
+
channel_0 = embed_dim*8
|
1218 |
+
self.decoderlayer_0 = BasicShadowFormer(dim=channel_0,
|
1219 |
+
output_dim=channel_0,
|
1220 |
+
input_resolution=(img_size // (2 ** 2),
|
1221 |
+
img_size // (2 ** 2)),
|
1222 |
+
depth=depths[6],
|
1223 |
+
num_heads=num_heads[6],
|
1224 |
+
win_size=win_size,
|
1225 |
+
mlp_ratio=self.mlp_ratio,
|
1226 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
1227 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
1228 |
+
drop_path=dec_dpr[sum(depths[5:6]):sum(depths[5:7])],
|
1229 |
+
norm_layer=norm_layer,
|
1230 |
+
use_checkpoint=use_checkpoint,
|
1231 |
+
token_projection=token_projection,token_mlp=token_mlp,se_layer=se_layer)
|
1232 |
+
self.upsample_1 = upsample(channel_0, embed_dim*2)
|
1233 |
+
channel_1 = embed_dim*4
|
1234 |
+
self.decoderlayer_1 = BasicShadowFormer(dim=channel_1,
|
1235 |
+
output_dim=channel_1,
|
1236 |
+
input_resolution=(img_size // 2,
|
1237 |
+
img_size // 2),
|
1238 |
+
depth=depths[7],
|
1239 |
+
num_heads=num_heads[7],
|
1240 |
+
win_size=win_size,
|
1241 |
+
mlp_ratio=self.mlp_ratio,
|
1242 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
1243 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
1244 |
+
drop_path=dec_dpr[sum(depths[5:7]):sum(depths[5:8])],
|
1245 |
+
norm_layer=norm_layer,
|
1246 |
+
use_checkpoint=use_checkpoint,
|
1247 |
+
token_projection=token_projection,token_mlp=token_mlp,se_layer=se_layer, cab=True)
|
1248 |
+
self.upsample_2 = upsample(channel_1, embed_dim)
|
1249 |
+
self.decoderlayer_2 = BasicShadowFormer(dim=embed_dim*2,
|
1250 |
+
output_dim=embed_dim*2,
|
1251 |
+
input_resolution=(img_size,
|
1252 |
+
img_size),
|
1253 |
+
depth=depths[8],
|
1254 |
+
num_heads=num_heads[8],
|
1255 |
+
win_size=win_size,
|
1256 |
+
mlp_ratio=self.mlp_ratio,
|
1257 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
1258 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
1259 |
+
drop_path=dec_dpr[sum(depths[5:8]):sum(depths[5:9])],
|
1260 |
+
norm_layer=norm_layer,
|
1261 |
+
use_checkpoint=use_checkpoint,
|
1262 |
+
token_projection=token_projection,token_mlp=token_mlp,se_layer=se_layer,cab=True)
|
1263 |
+
|
1264 |
+
self.Conv = nn.Conv2d(self.DINO_channel * 4, embed_dim * 8, kernel_size=1)
|
1265 |
+
self.relu = nn.LeakyReLU()
|
1266 |
+
self.apply(self._init_weights)
|
1267 |
+
|
1268 |
+
self.freqfusion1 = FreqFusion(hr_channels=256,
|
1269 |
+
lr_channels=512)
|
1270 |
+
|
1271 |
+
self.freqfusion2 = FreqFusion(hr_channels=128,
|
1272 |
+
lr_channels=256)
|
1273 |
+
|
1274 |
+
self.freqfusion3 = FreqFusion(hr_channels=64,
|
1275 |
+
lr_channels=128)
|
1276 |
+
|
1277 |
+
def _init_weights(self, m):
|
1278 |
+
if isinstance(m, nn.Linear):
|
1279 |
+
trunc_normal_(m.weight, std=.02)
|
1280 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
1281 |
+
nn.init.constant_(m.bias, 0)
|
1282 |
+
elif isinstance(m, nn.LayerNorm):
|
1283 |
+
nn.init.constant_(m.bias, 0)
|
1284 |
+
nn.init.constant_(m.weight, 1.0)
|
1285 |
+
|
1286 |
+
@torch.jit.ignore
|
1287 |
+
def no_weight_decay(self):
|
1288 |
+
return {'absolute_pos_embed'}
|
1289 |
+
|
1290 |
+
@torch.jit.ignore
|
1291 |
+
def no_weight_decay_keywords(self):
|
1292 |
+
return {'relative_position_bias_table'}
|
1293 |
+
|
1294 |
+
def extra_repr(self) -> str:
|
1295 |
+
return f"embed_dim={self.embed_dim}, token_projection={self.token_projection}, token_mlp={self.mlp}, win_size={self.win_size}"
|
1296 |
+
|
1297 |
+
def forward(self, x, DINO_Mat_features=None, point=None, normal=None, mask=None):
|
1298 |
+
point_feature=None
|
1299 |
+
dino_mat =None
|
1300 |
+
dino_mat1=None
|
1301 |
+
|
1302 |
+
self.img_size = torch.tensor((x.shape[2], x.shape[3]))
|
1303 |
+
point_feature1 = grid_sample(point, self.img_size // 2)
|
1304 |
+
point_feature2 = grid_sample(point, self.img_size // 4)
|
1305 |
+
point_feature3 = grid_sample(point, self.img_size // 8)
|
1306 |
+
normal1= grid_sample(normal, self.img_size // 2)
|
1307 |
+
normal2= grid_sample(normal, self.img_size // 4)
|
1308 |
+
normal3= grid_sample(normal, self.img_size // 8)
|
1309 |
+
|
1310 |
+
patch_features_0 = DINO_Mat_features[0]
|
1311 |
+
patch_features_1 = DINO_Mat_features[1]
|
1312 |
+
patch_features_2 = DINO_Mat_features[2]
|
1313 |
+
patch_features_3 = DINO_Mat_features[3]
|
1314 |
+
patch_feature_all = torch.cat((patch_features_0, patch_features_1,
|
1315 |
+
patch_features_2, patch_features_3), dim=1)
|
1316 |
+
|
1317 |
+
# Get concatenate DINO Feature
|
1318 |
+
dino_mat_cat = self.Conv(patch_feature_all)
|
1319 |
+
dino_mat_cat = self.relu(dino_mat_cat)
|
1320 |
+
B, C, W, H = dino_mat_cat.shape
|
1321 |
+
dino_mat_cat_flat = dino_mat_cat.view(B, C, W * H).permute(0,2,1)
|
1322 |
+
|
1323 |
+
|
1324 |
+
dino_mat2 = F.upsample_bilinear(DINO_Mat_features[-1], scale_factor=2)
|
1325 |
+
dino_mat3 = DINO_Mat_features[-1]
|
1326 |
+
|
1327 |
+
# RGBD
|
1328 |
+
xi = torch.cat((x, point[:,2,:].unsqueeze(1)), dim=1)
|
1329 |
+
|
1330 |
+
y = self.input_proj(xi)
|
1331 |
+
y = self.pos_drop(y)
|
1332 |
+
|
1333 |
+
# Encoder
|
1334 |
+
self.img_size = (int(self.img_size[0]), int(self.img_size[1]))
|
1335 |
+
conv0 = self.encoderlayer_0(y, dino_mat, point_feature, normal, mask, img_size = self.img_size)
|
1336 |
+
pool0 = self.dowsample_0(conv0, img_size = self.img_size)
|
1337 |
+
|
1338 |
+
self.img_size = (int(self.img_size[0]/2), int(self.img_size[1]/2))
|
1339 |
+
conv1 = self.encoderlayer_1(pool0, dino_mat1, point_feature1, normal1, img_size = self.img_size)
|
1340 |
+
pool1 = self.dowsample_1(conv1, img_size = self.img_size)
|
1341 |
+
|
1342 |
+
self.img_size = (int(self.img_size[0] / 2), int(self.img_size[1] / 2))
|
1343 |
+
conv2 = self.encoderlayer_2(pool1, dino_mat2, point_feature2, normal2, img_size = self.img_size)
|
1344 |
+
pool2 = self.dowsample_2(conv2, img_size = self.img_size)
|
1345 |
+
|
1346 |
+
# Bottleneck
|
1347 |
+
self.img_size = (int(self.img_size[0] / 2), int(self.img_size[1] / 2))
|
1348 |
+
pool2 = torch.cat([pool2, dino_mat_cat_flat],-1)
|
1349 |
+
conv3 = self.conv(pool2, dino_mat3, point_feature3, normal3, img_size = self.img_size)
|
1350 |
+
# print(f'{conv3.shape=}') # conv3.shape=torch.Size([1, 1024, 512]) 1, 32, 32, 512
|
1351 |
+
# conv3_B_C_H_W = conv3.view(conv3.shape[0], 32, 32, 512).permute(0, 3, 1, 2)
|
1352 |
+
conv3_B_C_H_W = conv3.view(conv3.shape[0], int(conv3.shape[1]**0.5), int(conv3.shape[1]**0.5), 512).permute(0, 3, 1, 2)
|
1353 |
+
# print(f'{conv3_B_C_H_W.shape=}') # 1, 512, 32, 32
|
1354 |
+
|
1355 |
+
#Decoder
|
1356 |
+
up0 = self.upsample_0(conv3, img_size = self.img_size)
|
1357 |
+
self.img_size = (int(self.img_size[0] * 2), int(self.img_size[1] * 2))
|
1358 |
+
# print(f'1.{conv2.shape=}, {up0.shape=}') # conv2.shape=torch.Size([1, 4096, 128]), up0.shape=torch.Size([1, 4096, 128])
|
1359 |
+
deconv0 = torch.cat([up0,conv2],-1)
|
1360 |
+
deconv0 = self.decoderlayer_0(deconv0, dino_mat2, point_feature2, normal2, img_size = self.img_size)
|
1361 |
+
# print(f'1.{deconv0.shape=}') # deconv0.shape=torch.Size([1, 4096, 256]) 1, 64, 64, 256
|
1362 |
+
deconv0_B_C_H_W = deconv0.view(deconv0.shape[0], int(deconv0.shape[1]**0.5), int(deconv0.shape[1]**0.5), 256).permute(0, 3, 1, 2)
|
1363 |
+
# print(f'1.{deconv0_B_C_H_W.shape=}') # 1, 256, 64, 64
|
1364 |
+
|
1365 |
+
_, deconv0_B_C_H_W, lr_feat = self.freqfusion1(hr_feat=deconv0_B_C_H_W, lr_feat=conv3_B_C_H_W) # 1, 256, 64, 64 & 1, 512, 32, 32
|
1366 |
+
# print(f'1.{deconv0.shape=}, {lr_feat.shape=}') # deconv0.shape=torch.Size([1, 256, 64, 64]), lr_feat.shape=torch.Size([1, 512, 64, 64])
|
1367 |
+
|
1368 |
+
deconv0 = deconv0_B_C_H_W.view(deconv0_B_C_H_W.shape[0], 256, -1).permute(0, 2, 1)
|
1369 |
+
|
1370 |
+
|
1371 |
+
# print(f'1.{deconv0.shape=}') # conv2.shape=torch.Size([1, 4096, 256]) 1, 64, 64, 256
|
1372 |
+
|
1373 |
+
deconv0_B_C_H_W = deconv0.view(deconv0.shape[0], int(deconv0.shape[1]**0.5), int(deconv0.shape[1]**0.5), 256).permute(0, 3, 1, 2) # 1, 256, 64, 64
|
1374 |
+
# print(f'2.{deconv0_B_C_H_W.shape=}') # 1, 256, 64, 64
|
1375 |
+
|
1376 |
+
up1 = self.upsample_1(deconv0, img_size = self.img_size)
|
1377 |
+
self.img_size = (int(self.img_size[0] * 2), int(self.img_size[1] * 2))
|
1378 |
+
# print(f'2.{conv1.shape=}, {up1.shape=}') # conv1.shape=torch.Size([1, 16384, 64]), up1.shape=torch.Size([1, 16384, 64]) 1, 128, 128, 64
|
1379 |
+
deconv1 = torch.cat([up1,conv1],-1) # 1, 16384, 128
|
1380 |
+
deconv1 = self.decoderlayer_1(deconv1, dino_mat1, point_feature1, normal1, img_size = self.img_size)
|
1381 |
+
# print(f'2.{deconv1.shape=}') # 1, 16384, 128 1, 128, 128, 128
|
1382 |
+
deconv1_B_C_H_W = deconv1.view(deconv1.shape[0], int(deconv1.shape[1]**0.5), int(deconv1.shape[1]**0.5), 128).permute(0, 3, 1, 2)
|
1383 |
+
# print(f'2.{deconv1_B_C_H_W.shape=}') # 1, 128, 128, 128
|
1384 |
+
|
1385 |
+
_, deconv1_B_C_H_W, lr_feat = self.freqfusion2(hr_feat=deconv1_B_C_H_W, lr_feat=deconv0_B_C_H_W) # 1, 128, 128, 128 & 1, 256, 64, 64
|
1386 |
+
|
1387 |
+
# print(f'2.{deconv1_B_C_H_W.shape=}, {lr_feat.shape=}') # hr_feat.shape=torch.Size([1, 128, 128, 128]), lr_feat.shape=torch.Size([1, 256, 128, 128])
|
1388 |
+
|
1389 |
+
deconv1 = deconv1_B_C_H_W.view(deconv1_B_C_H_W.shape[0], 128, -1).permute(0, 2, 1)
|
1390 |
+
# print()
|
1391 |
+
# print(f'3.{deconv1.shape=}') # deconv1.shape=torch.Size([1, 16384, 128]) 1, 128, 128, 128
|
1392 |
+
|
1393 |
+
deconv1_B_C_H_W = deconv1.view(deconv1.shape[0], int(deconv1.shape[1]**0.5), int(deconv1.shape[1]**0.5), 128).permute(0, 3, 1, 2) # 1, 128, 128, 128
|
1394 |
+
|
1395 |
+
up2 = self.upsample_2(deconv1, img_size = self.img_size)
|
1396 |
+
self.img_size = (int(self.img_size[0] * 2), int(self.img_size[1] * 2))
|
1397 |
+
# print(f'3.{conv0.shape=}, {up2.shape=}') # conv0.shape=torch.Size([1, 65536, 32]), up2.shape=torch.Size([1, 65536, 32]) 1, 256, 256, 32
|
1398 |
+
deconv2 = torch.cat([up2,conv0],-1) # 1, 256, 256, 64
|
1399 |
+
# print(f'3.{deconv2.shape=}') # 1, 65536, 64 1, 256, 256, 64
|
1400 |
+
deconv2 = self.decoderlayer_2(deconv2, dino_mat, point_feature, normal, mask, img_size = self.img_size)
|
1401 |
+
# print(f'3.{deconv2.shape=}') # 1, 65536, 64 1, 256, 256, 64
|
1402 |
+
|
1403 |
+
deconv2_B_C_H_W = deconv2.view(deconv2.shape[0], int(deconv2.shape[1]**0.5), int(deconv2.shape[1]**0.5), 64).permute(0, 3, 1, 2)
|
1404 |
+
# print(f'3.{deconv2_B_C_H_W.shape=}')
|
1405 |
+
|
1406 |
+
_, deconv2_B_C_H_W, lr_feat = self.freqfusion3(hr_feat=deconv2_B_C_H_W, lr_feat=deconv1_B_C_H_W) # 1, 64, 256, 256 & 1, 128, 128, 128
|
1407 |
+
|
1408 |
+
# print('*'*5, f'3.{deconv2_B_C_H_W.shape=}, {lr_feat.shape=}')
|
1409 |
+
|
1410 |
+
deconv2 = deconv2_B_C_H_W.view(deconv2_B_C_H_W.shape[0], 64, -1).permute(0, 2, 1)
|
1411 |
+
# print(f'4.{deconv2.shape=}')
|
1412 |
+
|
1413 |
+
# Output Projection
|
1414 |
+
# print(f'4.{deconv2.shape=}')
|
1415 |
+
# print(f'4.{x.shape=}')
|
1416 |
+
y = self.output_proj(deconv2, img_size = self.img_size) + x
|
1417 |
+
return y
|
1418 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==1.4.0
|
2 |
+
addict==2.4.0
|
3 |
+
aiofiles==23.2.1
|
4 |
+
aiohttp==3.8.5
|
5 |
+
aiosignal==1.3.1
|
6 |
+
altair==5.1.0
|
7 |
+
annotated-types==0.5.0
|
8 |
+
ansi2html==1.8.0
|
9 |
+
antlr4-python3-runtime==4.9.3
|
10 |
+
anyio==3.7.1
|
11 |
+
asttokens==2.4.1
|
12 |
+
async-timeout==4.0.3
|
13 |
+
attrs==23.1.0
|
14 |
+
blinker==1.6.2
|
15 |
+
boto3==1.28.62
|
16 |
+
botocore==1.31.62
|
17 |
+
bottle==0.12.25
|
18 |
+
Brotli
|
19 |
+
cachetools==5.3.1
|
20 |
+
cattrs==23.1.2
|
21 |
+
certifi
|
22 |
+
cffi
|
23 |
+
chainmap==1.0.3
|
24 |
+
chardet==5.2.0
|
25 |
+
charset-normalizer
|
26 |
+
click==8.1.7
|
27 |
+
cloudpickle==2.2.1
|
28 |
+
cmake==3.27.0
|
29 |
+
colorama
|
30 |
+
combomethod==1.0.12
|
31 |
+
comm==0.1.4
|
32 |
+
common==0.1.2
|
33 |
+
ConfigArgParse==1.7
|
34 |
+
contourpy==1.1.0
|
35 |
+
cryptography
|
36 |
+
cycler==0.11.0
|
37 |
+
Cython==3.0.5
|
38 |
+
dash==2.14.1
|
39 |
+
dash-core-components==2.0.0
|
40 |
+
dash-html-components==2.0.0
|
41 |
+
dash-table==5.0.0
|
42 |
+
data==0.4
|
43 |
+
debugpy==1.8.1
|
44 |
+
decorator==5.1.1
|
45 |
+
dual==0.0.10
|
46 |
+
dynamo3==0.4.10
|
47 |
+
easydict==1.10
|
48 |
+
efficientnet-pytorch==0.7.1
|
49 |
+
einops==0.3.2
|
50 |
+
exceptiongroup==1.1.3
|
51 |
+
executing==2.0.1
|
52 |
+
fastapi==0.103.0
|
53 |
+
fastjsonschema==2.18.1
|
54 |
+
ffmpy==0.3.1
|
55 |
+
filelock==3.12.2
|
56 |
+
Flask==2.3.3
|
57 |
+
Flask-Cors==4.0.0
|
58 |
+
flywheel==0.5.4
|
59 |
+
fonttools==4.42.0
|
60 |
+
frozenlist==1.4.0
|
61 |
+
fsspec==2023.6.0
|
62 |
+
funcsigs==1.0.2
|
63 |
+
future
|
64 |
+
fvcore
|
65 |
+
google-auth==2.22.0
|
66 |
+
google-auth-oauthlib==1.0.0
|
67 |
+
gradio
|
68 |
+
gradio_client
|
69 |
+
grpcio==1.57.0
|
70 |
+
h11==0.14.0
|
71 |
+
h5py==3.9.0
|
72 |
+
httpcore==0.17.3
|
73 |
+
httpx==0.24.1
|
74 |
+
huggingface-hub==0.16.4
|
75 |
+
idna
|
76 |
+
imageio==2.31.1
|
77 |
+
importlib-metadata==6.8.0
|
78 |
+
importlib-resources==6.0.1
|
79 |
+
iopath==0.1.9
|
80 |
+
ipython==8.17.2
|
81 |
+
ipywidgets==8.1.1
|
82 |
+
itsdangerous==2.1.2
|
83 |
+
jedi==0.19.1
|
84 |
+
Jinja2==3.1.2
|
85 |
+
jmespath==1.0.1
|
86 |
+
joblib==1.3.2
|
87 |
+
jsonschema==4.19.0
|
88 |
+
jsonschema-specifications==2023.7.1
|
89 |
+
jupyter_core==5.5.0
|
90 |
+
jupyterlab-widgets==3.0.9
|
91 |
+
kiwisolver==1.4.4
|
92 |
+
kornia==0.7.0
|
93 |
+
lazy_loader==0.3
|
94 |
+
lightning-utilities==0.9.0
|
95 |
+
lit==16.0.6
|
96 |
+
Markdown==3.4.4
|
97 |
+
markdown-it-py==3.0.0
|
98 |
+
MarkupSafe==2.1.3
|
99 |
+
matplotlib==3.3.4
|
100 |
+
matplotlib-inline==0.1.6
|
101 |
+
mdurl==0.1.2
|
102 |
+
mpmath==1.3.0
|
103 |
+
multidict==6.0.4
|
104 |
+
mypy-extensions==1.0.0
|
105 |
+
natsort==8.4.0
|
106 |
+
nbformat==5.7.0
|
107 |
+
ndim
|
108 |
+
nest-asyncio==1.5.8
|
109 |
+
networkx==3.1
|
110 |
+
ntplib==0.4.0
|
111 |
+
nulltype==2.3.1
|
112 |
+
numpy
|
113 |
+
nvidia-cublas-cu11==11.10.3.66
|
114 |
+
nvidia-cuda-cupti-cu11==11.7.101
|
115 |
+
nvidia-cuda-nvrtc-cu11==11.7.99
|
116 |
+
nvidia-cuda-runtime-cu11==11.7.99
|
117 |
+
nvidia-cudnn-cu11==8.5.0.96
|
118 |
+
nvidia-cufft-cu11==10.9.0.58
|
119 |
+
nvidia-curand-cu11==10.2.10.91
|
120 |
+
nvidia-cusolver-cu11==11.4.0.1
|
121 |
+
nvidia-cusparse-cu11==11.7.4.91
|
122 |
+
nvidia-nccl-cu11==2.14.3
|
123 |
+
nvidia-nvtx-cu11==11.7.91
|
124 |
+
oauthlib==3.2.2
|
125 |
+
omegaconf==2.3.0
|
126 |
+
open3d==0.17.0
|
127 |
+
opencv-python==4.8.0.74
|
128 |
+
options==1.4.10
|
129 |
+
orjson==3.9.5
|
130 |
+
packaging==23.1
|
131 |
+
|
132 |
+
pandas==2.0.3
|
133 |
+
parso==0.8.3
|
134 |
+
peewee==3.16.3
|
135 |
+
pexpect==4.8.0
|
136 |
+
Pillow==10.0.0
|
137 |
+
platformdirs==3.10.0
|
138 |
+
plotly==5.18.0
|
139 |
+
portalocker
|
140 |
+
progressbar2==4.2.0
|
141 |
+
prompt-toolkit==3.0.39
|
142 |
+
protobuf==4.24.2
|
143 |
+
prox==0.0.17
|
144 |
+
ptflops==0.7.2.2
|
145 |
+
ptyprocess==0.7.0
|
146 |
+
pure-eval==0.2.2
|
147 |
+
py-machineid==0.4.3
|
148 |
+
pyasn1==0.5.0
|
149 |
+
pyasn1-modules==0.3.0
|
150 |
+
pybind11==2.11.1
|
151 |
+
pycparser
|
152 |
+
pydantic==2.3.0
|
153 |
+
pydantic_core==2.6.3
|
154 |
+
|
155 |
+
pyDeprecate==0.3.2
|
156 |
+
pydub==0.25.1
|
157 |
+
Pygments==2.16.1
|
158 |
+
PyNaCl==1.5.0
|
159 |
+
pyOpenSSL
|
160 |
+
pyparsing==3.0.9
|
161 |
+
pyquaternion==0.9.9
|
162 |
+
pyre-extensions==0.0.29
|
163 |
+
PySocks
|
164 |
+
python-dateutil==2.8.2
|
165 |
+
python-geoip-python3==1.3
|
166 |
+
|
167 |
+
python-multipart==0.0.6
|
168 |
+
python-utils==3.7.0
|
169 |
+
|
170 |
+
pytz==2023.3
|
171 |
+
PyWavelets==1.4.1
|
172 |
+
PyYAML==6.0.1
|
173 |
+
referencing==0.30.2
|
174 |
+
requests
|
175 |
+
requests-cache
|
176 |
+
requests-oauthlib==1.3.1
|
177 |
+
retrying==1.3.4
|
178 |
+
rich==13.5.2
|
179 |
+
rich-argparse==1.3.0
|
180 |
+
rpds-py==0.10.0
|
181 |
+
rsa==4.9
|
182 |
+
s3transfer==0.7.0
|
183 |
+
safetensors==0.3.1
|
184 |
+
scikit-image==0.21.0
|
185 |
+
scikit-learn==1.3.0
|
186 |
+
scipy==1.11.1
|
187 |
+
seaborn==0.12.2
|
188 |
+
semantic-version==2.10.0
|
189 |
+
six==1.12.0
|
190 |
+
|
191 |
+
sniffio==1.3.0
|
192 |
+
stack-data==0.6.3
|
193 |
+
starlette==0.27.0
|
194 |
+
sympy==1.12
|
195 |
+
tabulate
|
196 |
+
tenacity==8.2.3
|
197 |
+
tensorboard==2.14.0
|
198 |
+
tensorboard-data-server==0.7.1
|
199 |
+
|
200 |
+
termcolor
|
201 |
+
thop==0.1.1.post2209072238
|
202 |
+
threadpoolctl==3.2.0
|
203 |
+
tifffile==2023.7.18
|
204 |
+
tight==0.1.0
|
205 |
+
timm==0.9.5
|
206 |
+
tomli==2.0.1
|
207 |
+
tomli_w==1.0.0
|
208 |
+
toolz==0.12.0
|
209 |
+
gdown
|
210 |
+
|
211 |
+
torchmetrics==1.1.1
|
212 |
+
torchstat==0.0.7
|
213 |
+
torchsummary==1.5.1
|
214 |
+
|
215 |
+
tqdm==4.65.0
|
216 |
+
traitlets==5.13.0
|
217 |
+
triton==2.0.0
|
218 |
+
typing-inspect==0.9.0
|
219 |
+
typing_extensions
|
220 |
+
tzdata==2023.3
|
221 |
+
url-normalize==1.4.3
|
222 |
+
urllib3==1.26.16
|
223 |
+
uvicorn==0.23.2
|
224 |
+
wcwidth==0.2.9
|
225 |
+
websockets==11.0.3
|
226 |
+
Werkzeug==2.3.7
|
227 |
+
widgetsnbextension==4.0.9
|
228 |
+
wrapt==1.15.0
|
229 |
+
x21
|
230 |
+
xformers==0.0.20
|
231 |
+
yacs
|
232 |
+
yarl==1.9.2
|
233 |
+
zipp==3.16.2
|
run_test.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node 1 --master_port 29508 ./test_shadow.py --save_images
|
test_shadow.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import os
|
3 |
+
import argparse
|
4 |
+
from tqdm import tqdm
|
5 |
+
from torch.utils.data.distributed import DistributedSampler
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch
|
8 |
+
from torch.utils.data import DataLoader
|
9 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import random
|
12 |
+
# from utils.loader import get_validation_data
|
13 |
+
from utils.loader import get_test_data
|
14 |
+
import utils
|
15 |
+
import cv2
|
16 |
+
import torch.distributed as dist
|
17 |
+
from skimage.metrics import peak_signal_noise_ratio as psnr_loss
|
18 |
+
from skimage.metrics import structural_similarity as ssim_loss
|
19 |
+
parser = argparse.ArgumentParser(description='RGB denoising evaluation on the validation set of SIDD')
|
20 |
+
parser.add_argument('--input_dir', default='test_dir',
|
21 |
+
type=str, help='Directory of validation images')
|
22 |
+
parser.add_argument('--result_dir', default='./output_dir',
|
23 |
+
type=str, help='Directory for results')
|
24 |
+
parser.add_argument('--weights', default='ACVLab_shadow.pth'
|
25 |
+
,type=str, help='Path to weights')
|
26 |
+
# parser.add_argument('--arch', default='ShadowFormer', type=str, help='arch')
|
27 |
+
parser.add_argument('--arch', type=str, default='ShadowFormerFreq', help='archtechture')
|
28 |
+
parser.add_argument('--batch_size', default=1, type=int, help='Batch size for dataloader')
|
29 |
+
parser.add_argument('--save_images', action='store_true', default=False, help='Save denoised images in result directory')
|
30 |
+
parser.add_argument('--cal_metrics', action='store_true', default=False, help='Measure denoised images with GT')
|
31 |
+
parser.add_argument('--embed_dim', type=int, default=32, help='number of data loading workers')
|
32 |
+
parser.add_argument('--win_size', type=int, default=16, help='number of data loading workers')
|
33 |
+
parser.add_argument('--token_projection', type=str, default='linear', help='linear/conv token projection')
|
34 |
+
parser.add_argument('--token_mlp', type=str,default='leff', help='ffn/leff token mlp')
|
35 |
+
|
36 |
+
parser.add_argument('--train_ps', type=int, default=256, help='patch size of training sample')
|
37 |
+
parser.add_argument("--local-rank", type=int)
|
38 |
+
|
39 |
+
args = parser.parse_args()
|
40 |
+
|
41 |
+
local_rank = args.local_rank
|
42 |
+
torch.cuda.set_device(local_rank)
|
43 |
+
dist.init_process_group(backend='nccl')
|
44 |
+
device = torch.device("cuda", local_rank)
|
45 |
+
|
46 |
+
|
47 |
+
class SlidingWindowInference:
|
48 |
+
def __init__(self, window_size=512, overlap=64, img_multiple_of=64):
|
49 |
+
self.window_size = window_size
|
50 |
+
self.overlap = overlap
|
51 |
+
self.img_multiple_of = img_multiple_of
|
52 |
+
|
53 |
+
def _pad_input(self, x, h_pad, w_pad):
|
54 |
+
"""Handle padding using reflection padding"""
|
55 |
+
return F.pad(x, (0, w_pad, 0, h_pad), 'reflect')
|
56 |
+
|
57 |
+
def __call__(self, model, input_, point, normal, dino_net, device):
|
58 |
+
# Save original dimensions
|
59 |
+
original_height, original_width = input_.shape[2], input_.shape[3]
|
60 |
+
# print(f"Original size: {original_height}x{original_width}")
|
61 |
+
|
62 |
+
# Calculate minimum dimensions needed (at least window_size and multiple of img_multiple_of)
|
63 |
+
H = max(self.window_size,
|
64 |
+
((original_height + self.img_multiple_of - 1) // self.img_multiple_of) * self.img_multiple_of)
|
65 |
+
W = max(self.window_size,
|
66 |
+
((original_width + self.img_multiple_of - 1) // self.img_multiple_of) * self.img_multiple_of)
|
67 |
+
# print(f"Target padded size: {H}x{W}")
|
68 |
+
|
69 |
+
# Calculate required padding
|
70 |
+
padh = H - original_height
|
71 |
+
padw = W - original_width
|
72 |
+
# print(f"Padding: h={padh}, w={padw}")
|
73 |
+
|
74 |
+
# Pad all inputs
|
75 |
+
input_pad = self._pad_input(input_, padh, padw)
|
76 |
+
point_pad = self._pad_input(point, padh, padw)
|
77 |
+
normal_pad = self._pad_input(normal, padh, padw)
|
78 |
+
|
79 |
+
# If image was smaller than window_size, process it as a single window
|
80 |
+
if original_height <= self.window_size and original_width <= self.window_size:
|
81 |
+
# print("Image smaller than window size, processing as single padded window")
|
82 |
+
|
83 |
+
# For DINO features
|
84 |
+
DINO_patch_size = 14
|
85 |
+
h_size = H * DINO_patch_size // 8
|
86 |
+
w_size = W * DINO_patch_size // 8
|
87 |
+
|
88 |
+
UpSample_window = torch.nn.UpsamplingBilinear2d(size=(h_size, w_size))
|
89 |
+
|
90 |
+
# Get DINO features
|
91 |
+
with torch.no_grad():
|
92 |
+
input_DINO = UpSample_window(input_pad)
|
93 |
+
dino_features = dino_net.module.get_intermediate_layers(input_DINO, 4, True)
|
94 |
+
|
95 |
+
# Model inference
|
96 |
+
with torch.cuda.amp.autocast():
|
97 |
+
restored = model(input_pad, dino_features, point_pad, normal_pad)
|
98 |
+
|
99 |
+
# Crop back to original size
|
100 |
+
output = restored[:, :, :original_height, :original_width]
|
101 |
+
return output
|
102 |
+
|
103 |
+
# For larger images, proceed with sliding window approach
|
104 |
+
stride = self.window_size - self.overlap
|
105 |
+
h_steps = (H - self.window_size + stride - 1) // stride + 1
|
106 |
+
w_steps = (W - self.window_size + stride - 1) // stride + 1
|
107 |
+
# print(f"Steps: h={h_steps}, w={w_steps}")
|
108 |
+
|
109 |
+
# Create output tensor and counter
|
110 |
+
output = torch.zeros_like(input_pad)
|
111 |
+
count = torch.zeros_like(input_pad)
|
112 |
+
|
113 |
+
for h_idx in range(h_steps):
|
114 |
+
for w_idx in range(w_steps):
|
115 |
+
# Calculate current window position
|
116 |
+
h_start = min(h_idx * stride, H - self.window_size)
|
117 |
+
w_start = min(w_idx * stride, W - self.window_size)
|
118 |
+
h_end = h_start + self.window_size
|
119 |
+
w_end = w_start + self.window_size
|
120 |
+
|
121 |
+
# Get current window
|
122 |
+
input_window = input_pad[:, :, h_start:h_end, w_start:w_end]
|
123 |
+
point_window = point_pad[:, :, h_start:h_end, w_start:w_end]
|
124 |
+
normal_window = normal_pad[:, :, h_start:h_end, w_start:w_end]
|
125 |
+
|
126 |
+
# print(f"Processing window at ({h_idx}, {w_idx}): {input_window.shape}")
|
127 |
+
|
128 |
+
# For DINO features
|
129 |
+
DINO_patch_size = 14
|
130 |
+
h_size = self.window_size * DINO_patch_size // 8
|
131 |
+
w_size = self.window_size * DINO_patch_size // 8
|
132 |
+
|
133 |
+
UpSample_window = torch.nn.UpsamplingBilinear2d(size=(h_size, w_size))
|
134 |
+
|
135 |
+
# Get DINO features
|
136 |
+
with torch.no_grad():
|
137 |
+
input_DINO = UpSample_window(input_window)
|
138 |
+
dino_features = dino_net.module.get_intermediate_layers(input_DINO, 4, True)
|
139 |
+
|
140 |
+
# Model inference
|
141 |
+
with torch.cuda.amp.autocast():
|
142 |
+
restored = model(input_window, dino_features, point_window, normal_window)
|
143 |
+
|
144 |
+
# Create weight mask for smooth transition
|
145 |
+
weight = torch.ones_like(restored)
|
146 |
+
if self.overlap > 0:
|
147 |
+
# Create gradual weights for overlap regions
|
148 |
+
for i in range(self.overlap):
|
149 |
+
ratio = i / self.overlap
|
150 |
+
weight[:, :, i, :] *= ratio
|
151 |
+
weight[:, :, -(i+1), :] *= ratio
|
152 |
+
weight[:, :, :, i] *= ratio
|
153 |
+
weight[:, :, :, -(i+1)] *= ratio
|
154 |
+
|
155 |
+
# Accumulate results and weights
|
156 |
+
output[:, :, h_start:h_end, w_start:w_end] += restored * weight
|
157 |
+
count[:, :, h_start:h_end, w_start:w_end] += weight
|
158 |
+
|
159 |
+
# Normalize output
|
160 |
+
output = output / (count + 1e-6)
|
161 |
+
|
162 |
+
# Crop back to original size
|
163 |
+
output = output[:, :, :original_height, :original_width]
|
164 |
+
return output
|
165 |
+
|
166 |
+
|
167 |
+
utils.mkdir(args.result_dir)
|
168 |
+
|
169 |
+
# ######### Set Seeds ###########
|
170 |
+
random.seed(1234)
|
171 |
+
np.random.seed(1234)
|
172 |
+
torch.manual_seed(1234)
|
173 |
+
torch.cuda.manual_seed(1234)
|
174 |
+
torch.cuda.manual_seed_all(1234)
|
175 |
+
|
176 |
+
def worker_init_fn(worker_id):
|
177 |
+
random.seed(1234 + worker_id)
|
178 |
+
|
179 |
+
g = torch.Generator()
|
180 |
+
g.manual_seed(1234)
|
181 |
+
|
182 |
+
torch.backends.cudnn.benchmark = True
|
183 |
+
# torch.backends.cudnn.deterministic = True
|
184 |
+
######### Model ###########
|
185 |
+
model_restoration = utils.get_arch(args)
|
186 |
+
model_restoration.to(device)
|
187 |
+
model_restoration.eval()
|
188 |
+
DINO_Net = torch.hub.load('./dinov2', 'dinov2_vitl14', source='local')
|
189 |
+
DINO_Net.to(device)
|
190 |
+
DINO_Net.eval()
|
191 |
+
######### Load ###########
|
192 |
+
utils.load_checkpoint(model_restoration, args.weights)
|
193 |
+
print("===>Testing using weights: ", args.weights)
|
194 |
+
|
195 |
+
######### DDP ###########
|
196 |
+
|
197 |
+
model_restoration = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model_restoration).to(device)
|
198 |
+
model_restoration = DDP(model_restoration, device_ids=[local_rank], output_device=local_rank)
|
199 |
+
DINO_Net = DDP(DINO_Net, device_ids=[local_rank], output_device=local_rank)
|
200 |
+
|
201 |
+
######### Test ###########
|
202 |
+
img_multiple_of = 8 * args.win_size
|
203 |
+
DINO_patch_size = 14
|
204 |
+
|
205 |
+
def UpSample(img):
|
206 |
+
upsample = nn.UpsamplingBilinear2d(
|
207 |
+
size=((int)(img.shape[2] * (DINO_patch_size / 8)),
|
208 |
+
(int)(img.shape[3] * (DINO_patch_size / 8))))
|
209 |
+
return upsample(img)
|
210 |
+
|
211 |
+
img_options_train = {'patch_size':args.train_ps}
|
212 |
+
test_dataset = get_test_data(args.input_dir, False)
|
213 |
+
test_sampler = DistributedSampler(test_dataset, shuffle=False)
|
214 |
+
test_loader = DataLoader(dataset=test_dataset, batch_size=1, num_workers=0, sampler=test_sampler, drop_last=False, worker_init_fn=worker_init_fn, generator=g)
|
215 |
+
with torch.no_grad():
|
216 |
+
psnr_val_rgb_list = []
|
217 |
+
psnr_val_mask_list = []
|
218 |
+
ssim_val_rgb_list = []
|
219 |
+
rmse_val_rgb_list = []
|
220 |
+
for ii, data_test in enumerate(tqdm(test_loader), 0):
|
221 |
+
# rgb_gt = data_test[0].numpy().squeeze().transpose((1, 2, 0))
|
222 |
+
rgb_noisy = data_test[1].to(device)
|
223 |
+
point = data_test[2].to(device)
|
224 |
+
normal = data_test[3].to(device)
|
225 |
+
filenames = data_test[4]
|
226 |
+
|
227 |
+
# Pad the input if not_multiple_of win_size * 8
|
228 |
+
# height, width = rgb_noisy.shape[2], rgb_noisy.shape[3]
|
229 |
+
# H, W = ((height + img_multiple_of) // img_multiple_of) * img_multiple_of, (
|
230 |
+
# (width + img_multiple_of) // img_multiple_of) * img_multiple_of
|
231 |
+
|
232 |
+
# padh = H - height if height % img_multiple_of != 0 else 0
|
233 |
+
# padw = W - width if width % img_multiple_of != 0 else 0
|
234 |
+
# rgb_noisy = F.pad(rgb_noisy, (0, padw, 0, padh), 'reflect')
|
235 |
+
# point = F.pad(point, (0, padw, 0, padh), 'reflect')
|
236 |
+
# normal = F.pad(normal, (0, padw, 0, padh), 'reflect')
|
237 |
+
# print(f'{rgb_noisy.shape=} {point.shape=} {normal.shape=}')
|
238 |
+
# UpSample_val = nn.UpsamplingBilinear2d(
|
239 |
+
# size=((int)(rgb_noisy.shape[2] * (DINO_patch_size / 8)),
|
240 |
+
# (int)(rgb_noisy.shape[3] * (DINO_patch_size / 8))))
|
241 |
+
# with torch.cuda.amp.autocast():
|
242 |
+
# # DINO_V2
|
243 |
+
# input_DINO = UpSample_val(rgb_noisy)
|
244 |
+
# dino_mat_features = DINO_Net.module.get_intermediate_layers(input_DINO, 4, True)
|
245 |
+
# rgb_restored = model_restoration(rgb_noisy, dino_mat_features, point, normal)
|
246 |
+
sliding_window = SlidingWindowInference(
|
247 |
+
window_size=512, # 與訓練相同的 patch size
|
248 |
+
overlap=64, # 相應調整 overlap
|
249 |
+
img_multiple_of=8 * args.win_size
|
250 |
+
)
|
251 |
+
|
252 |
+
with torch.cuda.amp.autocast():
|
253 |
+
rgb_restored = sliding_window(
|
254 |
+
model=model_restoration,
|
255 |
+
input_=rgb_noisy,
|
256 |
+
point=point,
|
257 |
+
normal=normal,
|
258 |
+
dino_net=DINO_Net,
|
259 |
+
device=device
|
260 |
+
)
|
261 |
+
|
262 |
+
|
263 |
+
rgb_restored = torch.clamp(rgb_restored, 0.0, 1.0)
|
264 |
+
# rgb_restored = rgb_restored[:, : ,:height, :width]
|
265 |
+
rgb_restored = torch.clamp(rgb_restored, 0, 1).cpu().numpy().squeeze().transpose((1, 2, 0))
|
266 |
+
|
267 |
+
|
268 |
+
if args.save_images:
|
269 |
+
utils.save_img(rgb_restored * 255.0, os.path.join(args.result_dir, filenames[0]))
|
270 |
+
|
271 |
+
|
utils/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .dir_utils import *
|
2 |
+
from .dataset_utils import *
|
3 |
+
from .image_utils import *
|
4 |
+
from .model_utils import *
|
5 |
+
from .shadow_mask_evaluate import *
|
6 |
+
from .tta import *
|
utils/antialias.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019, Adobe Inc. All rights reserved.
|
2 |
+
#
|
3 |
+
# This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
|
4 |
+
# 4.0 International Public License. To view a copy of this license, visit
|
5 |
+
# https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
######## https://github.com/adobe/antialiased-cnns/blob/master/models_lpf/__init__.py
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.nn.parallel
|
15 |
+
import numpy as np
|
16 |
+
import torch.nn as nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
|
19 |
+
class Downsample(nn.Module):
|
20 |
+
def __init__(self, pad_type='reflect', filt_size=3, stride=2, channels=None, pad_off=0):
|
21 |
+
super(Downsample, self).__init__()
|
22 |
+
self.filt_size = filt_size
|
23 |
+
self.pad_off = pad_off
|
24 |
+
self.pad_sizes = [int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2)), int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2))]
|
25 |
+
self.pad_sizes = [pad_size+pad_off for pad_size in self.pad_sizes]
|
26 |
+
self.stride = stride
|
27 |
+
self.off = int((self.stride-1)/2.)
|
28 |
+
self.channels = channels
|
29 |
+
|
30 |
+
# print('Filter size [%i]'%filt_size)
|
31 |
+
if(self.filt_size==1):
|
32 |
+
a = np.array([1.,])
|
33 |
+
elif(self.filt_size==2):
|
34 |
+
a = np.array([1., 1.])
|
35 |
+
elif(self.filt_size==3):
|
36 |
+
a = np.array([1., 2., 1.])
|
37 |
+
elif(self.filt_size==4):
|
38 |
+
a = np.array([1., 3., 3., 1.])
|
39 |
+
elif(self.filt_size==5):
|
40 |
+
a = np.array([1., 4., 6., 4., 1.])
|
41 |
+
elif(self.filt_size==6):
|
42 |
+
a = np.array([1., 5., 10., 10., 5., 1.])
|
43 |
+
elif(self.filt_size==7):
|
44 |
+
a = np.array([1., 6., 15., 20., 15., 6., 1.])
|
45 |
+
|
46 |
+
filt = torch.Tensor(a[:,None]*a[None,:])
|
47 |
+
filt = filt/torch.sum(filt)
|
48 |
+
self.register_buffer('filt', filt[None,None,:,:].repeat((self.channels,1,1,1)))
|
49 |
+
|
50 |
+
self.pad = get_pad_layer(pad_type)(self.pad_sizes)
|
51 |
+
|
52 |
+
def forward(self, inp):
|
53 |
+
if(self.filt_size==1):
|
54 |
+
if(self.pad_off==0):
|
55 |
+
return inp[:,:,::self.stride,::self.stride]
|
56 |
+
else:
|
57 |
+
return self.pad(inp)[:,:,::self.stride,::self.stride]
|
58 |
+
else:
|
59 |
+
return F.conv2d(self.pad(inp), self.filt, stride=self.stride, groups=inp.shape[1])
|
60 |
+
|
61 |
+
def get_pad_layer(pad_type):
|
62 |
+
if(pad_type in ['refl','reflect']):
|
63 |
+
PadLayer = nn.ReflectionPad2d
|
64 |
+
elif(pad_type in ['repl','replicate']):
|
65 |
+
PadLayer = nn.ReplicationPad2d
|
66 |
+
elif(pad_type=='zero'):
|
67 |
+
PadLayer = nn.ZeroPad2d
|
68 |
+
else:
|
69 |
+
print('Pad type [%s] not recognized'%pad_type)
|
70 |
+
return PadLayer
|
71 |
+
|
72 |
+
|
73 |
+
class Downsample1D(nn.Module):
|
74 |
+
def __init__(self, pad_type='reflect', filt_size=3, stride=2, channels=None, pad_off=0):
|
75 |
+
super(Downsample1D, self).__init__()
|
76 |
+
self.filt_size = filt_size
|
77 |
+
self.pad_off = pad_off
|
78 |
+
self.pad_sizes = [int(1. * (filt_size - 1) / 2), int(np.ceil(1. * (filt_size - 1) / 2))]
|
79 |
+
self.pad_sizes = [pad_size + pad_off for pad_size in self.pad_sizes]
|
80 |
+
self.stride = stride
|
81 |
+
self.off = int((self.stride - 1) / 2.)
|
82 |
+
self.channels = channels
|
83 |
+
|
84 |
+
# print('Filter size [%i]' % filt_size)
|
85 |
+
if(self.filt_size == 1):
|
86 |
+
a = np.array([1., ])
|
87 |
+
elif(self.filt_size == 2):
|
88 |
+
a = np.array([1., 1.])
|
89 |
+
elif(self.filt_size == 3):
|
90 |
+
a = np.array([1., 2., 1.])
|
91 |
+
elif(self.filt_size == 4):
|
92 |
+
a = np.array([1., 3., 3., 1.])
|
93 |
+
elif(self.filt_size == 5):
|
94 |
+
a = np.array([1., 4., 6., 4., 1.])
|
95 |
+
elif(self.filt_size == 6):
|
96 |
+
a = np.array([1., 5., 10., 10., 5., 1.])
|
97 |
+
elif(self.filt_size == 7):
|
98 |
+
a = np.array([1., 6., 15., 20., 15., 6., 1.])
|
99 |
+
|
100 |
+
filt = torch.Tensor(a)
|
101 |
+
filt = filt / torch.sum(filt)
|
102 |
+
self.register_buffer('filt', filt[None, None, :].repeat((self.channels, 1, 1)))
|
103 |
+
|
104 |
+
self.pad = get_pad_layer_1d(pad_type)(self.pad_sizes)
|
105 |
+
|
106 |
+
def forward(self, inp):
|
107 |
+
if(self.filt_size == 1):
|
108 |
+
if(self.pad_off == 0):
|
109 |
+
return inp[:, :, ::self.stride]
|
110 |
+
else:
|
111 |
+
return self.pad(inp)[:, :, ::self.stride]
|
112 |
+
else:
|
113 |
+
return F.conv1d(self.pad(inp), self.filt, stride=self.stride, groups=inp.shape[1])
|
114 |
+
|
115 |
+
|
116 |
+
def get_pad_layer_1d(pad_type):
|
117 |
+
if(pad_type in ['refl', 'reflect']):
|
118 |
+
PadLayer = nn.ReflectionPad1d
|
119 |
+
elif(pad_type in ['repl', 'replicate']):
|
120 |
+
PadLayer = nn.ReplicationPad1d
|
121 |
+
elif(pad_type == 'zero'):
|
122 |
+
PadLayer = nn.ZeroPad1d
|
123 |
+
else:
|
124 |
+
print('Pad type [%s] not recognized' % pad_type)
|
125 |
+
return PadLayer
|
utils/bundle_submissions.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Author: Tobias Plötz, TU Darmstadt ([email protected])
|
2 |
+
|
3 |
+
# This file is part of the implementation as described in the CVPR 2017 paper:
|
4 |
+
# Tobias Plötz and Stefan Roth, Benchmarking Denoising Algorithms with Real Photographs.
|
5 |
+
# Please see the file LICENSE.txt for the license governing this code.
|
6 |
+
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import scipy.io as sio
|
10 |
+
import os
|
11 |
+
import h5py
|
12 |
+
|
13 |
+
def bundle_submissions_raw(submission_folder,session):
|
14 |
+
'''
|
15 |
+
Bundles submission data for raw denoising
|
16 |
+
submission_folder Folder where denoised images reside
|
17 |
+
Output is written to <submission_folder>/bundled/. Please submit
|
18 |
+
the content of this folder.
|
19 |
+
'''
|
20 |
+
|
21 |
+
out_folder = os.path.join(submission_folder, session)
|
22 |
+
# out_folder = os.path.join(submission_folder, "bundled/")
|
23 |
+
try:
|
24 |
+
os.mkdir(out_folder)
|
25 |
+
except:pass
|
26 |
+
|
27 |
+
israw = True
|
28 |
+
eval_version="1.0"
|
29 |
+
|
30 |
+
for i in range(50):
|
31 |
+
Idenoised = np.zeros((20,), dtype=np.object)
|
32 |
+
for bb in range(20):
|
33 |
+
filename = '%04d_%02d.mat'%(i+1,bb+1)
|
34 |
+
s = sio.loadmat(os.path.join(submission_folder,filename))
|
35 |
+
Idenoised_crop = s["Idenoised_crop"]
|
36 |
+
Idenoised[bb] = Idenoised_crop
|
37 |
+
filename = '%04d.mat'%(i+1)
|
38 |
+
sio.savemat(os.path.join(out_folder, filename),
|
39 |
+
{"Idenoised": Idenoised,
|
40 |
+
"israw": israw,
|
41 |
+
"eval_version": eval_version},
|
42 |
+
)
|
43 |
+
|
44 |
+
def bundle_submissions_srgb(submission_folder,session):
|
45 |
+
'''
|
46 |
+
Bundles submission data for sRGB denoising
|
47 |
+
|
48 |
+
submission_folder Folder where denoised images reside
|
49 |
+
Output is written to <submission_folder>/bundled/. Please submit
|
50 |
+
the content of this folder.
|
51 |
+
'''
|
52 |
+
out_folder = os.path.join(submission_folder, session)
|
53 |
+
# out_folder = os.path.join(submission_folder, "bundled/")
|
54 |
+
try:
|
55 |
+
os.mkdir(out_folder)
|
56 |
+
except:pass
|
57 |
+
israw = False
|
58 |
+
eval_version="1.0"
|
59 |
+
|
60 |
+
for i in range(50):
|
61 |
+
Idenoised = np.zeros((20,), dtype=np.object)
|
62 |
+
for bb in range(20):
|
63 |
+
filename = '%04d_%02d.mat'%(i+1,bb+1)
|
64 |
+
s = sio.loadmat(os.path.join(submission_folder,filename))
|
65 |
+
Idenoised_crop = s["Idenoised_crop"]
|
66 |
+
Idenoised[bb] = Idenoised_crop
|
67 |
+
filename = '%04d.mat'%(i+1)
|
68 |
+
sio.savemat(os.path.join(out_folder, filename),
|
69 |
+
{"Idenoised": Idenoised,
|
70 |
+
"israw": israw,
|
71 |
+
"eval_version": eval_version},
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
def bundle_submissions_srgb_v1(submission_folder,session):
|
77 |
+
'''
|
78 |
+
Bundles submission data for sRGB denoising
|
79 |
+
|
80 |
+
submission_folder Folder where denoised images reside
|
81 |
+
Output is written to <submission_folder>/bundled/. Please submit
|
82 |
+
the content of this folder.
|
83 |
+
'''
|
84 |
+
out_folder = os.path.join(submission_folder, session)
|
85 |
+
# out_folder = os.path.join(submission_folder, "bundled/")
|
86 |
+
try:
|
87 |
+
os.mkdir(out_folder)
|
88 |
+
except:pass
|
89 |
+
israw = False
|
90 |
+
eval_version="1.0"
|
91 |
+
|
92 |
+
for i in range(50):
|
93 |
+
Idenoised = np.zeros((20,), dtype=np.object)
|
94 |
+
for bb in range(20):
|
95 |
+
filename = '%04d_%d.mat'%(i+1,bb+1)
|
96 |
+
s = sio.loadmat(os.path.join(submission_folder,filename))
|
97 |
+
Idenoised_crop = s["Idenoised_crop"]
|
98 |
+
Idenoised[bb] = Idenoised_crop
|
99 |
+
filename = '%04d.mat'%(i+1)
|
100 |
+
sio.savemat(os.path.join(out_folder, filename),
|
101 |
+
{"Idenoised": Idenoised,
|
102 |
+
"israw": israw,
|
103 |
+
"eval_version": eval_version},
|
104 |
+
)
|
utils/dataset_utils.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import os
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
|
5 |
+
|
6 |
+
class Augment_RGB_torch:
|
7 |
+
### rotate and flip
|
8 |
+
def __init__(self, rotate=0):
|
9 |
+
self.rotate = rotate
|
10 |
+
pass
|
11 |
+
def transform0(self, torch_tensor):
|
12 |
+
return torch_tensor
|
13 |
+
|
14 |
+
def transform1(self, torch_tensor):
|
15 |
+
H, W = torch_tensor.shape[1], torch_tensor.shape[2]
|
16 |
+
train_transform = transforms.Compose([
|
17 |
+
transforms.RandomRotation((self.rotate,self.rotate), interpolation=transforms.InterpolationMode.BILINEAR, expand=False),
|
18 |
+
transforms.Resize((int(H * 1.3), int(W * 1.3)), antialias=True),
|
19 |
+
# CenterCrop,if the size is larger than the original size, the excess will be filled with black
|
20 |
+
transforms.CenterCrop([H, W])
|
21 |
+
])
|
22 |
+
return train_transform(torch_tensor)
|
23 |
+
|
24 |
+
def transform2(self, torch_tensor):
|
25 |
+
torch_tensor = torch.rot90(torch_tensor, k=1, dims=[-1,-2])
|
26 |
+
return torch_tensor
|
27 |
+
def transform3(self, torch_tensor):
|
28 |
+
torch_tensor = torch.rot90(torch_tensor, k=2, dims=[-1,-2])
|
29 |
+
return torch_tensor
|
30 |
+
def transform4(self, torch_tensor):
|
31 |
+
torch_tensor = torch.rot90(torch_tensor, k=3, dims=[-1,-2])
|
32 |
+
return torch_tensor
|
33 |
+
def transform5(self, torch_tensor):
|
34 |
+
torch_tensor = torch_tensor.flip(-2)
|
35 |
+
return torch_tensor
|
36 |
+
def transform6(self, torch_tensor):
|
37 |
+
torch_tensor = (torch.rot90(torch_tensor, k=1, dims=[-1,-2])).flip(-2)
|
38 |
+
return torch_tensor
|
39 |
+
def transform7(self, torch_tensor):
|
40 |
+
torch_tensor = (torch.rot90(torch_tensor, k=2, dims=[-1,-2])).flip(-2)
|
41 |
+
return torch_tensor
|
42 |
+
def transform8(self, torch_tensor):
|
43 |
+
torch_tensor = (torch.rot90(torch_tensor, k=3, dims=[-1,-2])).flip(-2)
|
44 |
+
return torch_tensor
|
45 |
+
|
46 |
+
|
utils/dir_utils.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from natsort import natsorted
|
3 |
+
from glob import glob
|
4 |
+
|
5 |
+
def mkdirs(paths):
|
6 |
+
if isinstance(paths, list) and not isinstance(paths, str):
|
7 |
+
for path in paths:
|
8 |
+
mkdir(path)
|
9 |
+
else:
|
10 |
+
mkdir(paths)
|
11 |
+
|
12 |
+
def mkdir(path):
|
13 |
+
if not os.path.exists(path):
|
14 |
+
os.makedirs(path)
|
15 |
+
|
16 |
+
def mknod(path):
|
17 |
+
if not os.path.exists(path):
|
18 |
+
os.mknod(path)
|
19 |
+
|
20 |
+
def get_last_path(path, session):
|
21 |
+
x = natsorted(glob(os.path.join(path,'*%s'%session)))[-1]
|
22 |
+
return x
|
utils/image_utils.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import pickle
|
4 |
+
import cv2
|
5 |
+
from skimage.color import rgb2lab
|
6 |
+
import os
|
7 |
+
import math
|
8 |
+
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"
|
9 |
+
|
10 |
+
def is_numpy_file(filename):
|
11 |
+
return any(filename.endswith(extension) for extension in [".npy"])
|
12 |
+
|
13 |
+
def is_image_file(filename):
|
14 |
+
return any(filename.endswith(extension) for extension in [".jpg"])
|
15 |
+
|
16 |
+
def is_png_file(filename):
|
17 |
+
return any(filename.endswith(extension) for extension in [".png"])
|
18 |
+
|
19 |
+
def is_pkl_file(filename):
|
20 |
+
return any(filename.endswith(extension) for extension in [".pkl"])
|
21 |
+
|
22 |
+
def load_pkl(filename_):
|
23 |
+
with open(filename_, 'rb') as f:
|
24 |
+
ret_dict = pickle.load(f)
|
25 |
+
return ret_dict
|
26 |
+
|
27 |
+
def save_dict(dict_, filename_):
|
28 |
+
with open(filename_, 'wb') as f:
|
29 |
+
pickle.dump(dict_, f)
|
30 |
+
|
31 |
+
def load_npy(filepath):
|
32 |
+
img = np.load(filepath)
|
33 |
+
return img
|
34 |
+
|
35 |
+
def load_SSAO(filepath):
|
36 |
+
img = cv2.imread(filepath)
|
37 |
+
# img = cv2.resize(img, [256, 256], interpolation=cv2.INTER_AREA)
|
38 |
+
img = img.astype(np.float32)
|
39 |
+
img = img/255.
|
40 |
+
return img
|
41 |
+
def load_img(filepath):
|
42 |
+
img = cv2.cvtColor(cv2.imread(filepath), cv2.COLOR_BGR2RGB)
|
43 |
+
# img = cv2.resize(img, [256, 256], interpolation=cv2.INTER_AREA)
|
44 |
+
img = img.astype(np.float32)
|
45 |
+
img = img/255.
|
46 |
+
return img
|
47 |
+
|
48 |
+
def load_val_img(filepath):
|
49 |
+
img = cv2.cvtColor(cv2.imread(filepath), cv2.COLOR_BGR2RGB)
|
50 |
+
# img = cv2.resize(img, [256, 256], interpolation=cv2.INTER_AREA)
|
51 |
+
resized_img = img.astype(np.float32)
|
52 |
+
resized_img = resized_img/255.
|
53 |
+
return resized_img
|
54 |
+
|
55 |
+
def load_mask(filepath):
|
56 |
+
img = cv2.imread(filepath, cv2.IMREAD_GRAYSCALE)
|
57 |
+
# img = cv2.resize(img, [256, 256], interpolation=cv2.INTER_AREA)
|
58 |
+
# img = cv2.cvtColor(img, cv2.COLOR_BGR2YUV)
|
59 |
+
# kernel = np.ones((8,8), np.uint8)
|
60 |
+
# erosion = cv2.erode(img, kernel, iterations=1)
|
61 |
+
# dilation = cv2.dilate(img, kernel, iterations=1)
|
62 |
+
# contour = dilation - erosion
|
63 |
+
img = img.astype(np.float32)
|
64 |
+
# contour = contour.astype(np.float32)
|
65 |
+
# contour = contour/255.
|
66 |
+
img = img/255.
|
67 |
+
return img
|
68 |
+
|
69 |
+
def load_ssao(filepath):
|
70 |
+
img = cv2.imread(filepath, cv2.IMREAD_GRAYSCALE)
|
71 |
+
# img = cv2.resize(img, [256, 256], interpolation=cv2.INTER_AREA)
|
72 |
+
img = img.astype(np.float32)
|
73 |
+
# contour = contour.astype(np.float32)
|
74 |
+
# contour = contour/255.
|
75 |
+
img = img/255.
|
76 |
+
return img
|
77 |
+
|
78 |
+
def load_depth(filepath):
|
79 |
+
img = np.load(filepath)
|
80 |
+
# img = cv2.resize(img, [256, 256], interpolation=cv2.INTER_AREA)
|
81 |
+
# img = cv2.imread(filepath, cv2.IMREAD_UNCHANGED)
|
82 |
+
# img = img / 255
|
83 |
+
return img
|
84 |
+
|
85 |
+
def load_normal(filepath):
|
86 |
+
img = np.load(filepath).transpose(1,2,0)
|
87 |
+
# img = cv2.resize(img, [256, 256], interpolation=cv2.INTER_AREA)
|
88 |
+
return img
|
89 |
+
|
90 |
+
def load_val_mask(filepath):
|
91 |
+
img = cv2.imread(filepath, 0)
|
92 |
+
resized_img = img
|
93 |
+
# resized_img = cv2.resize(img, [256, 256], interpolation=cv2.INTER_AREA)
|
94 |
+
resized_img = resized_img.astype(np.float32)
|
95 |
+
resized_img = resized_img/255.
|
96 |
+
return resized_img
|
97 |
+
|
98 |
+
def save_img(img, filepath):
|
99 |
+
cv2.imwrite(filepath, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
|
100 |
+
|
101 |
+
def myPSNR(tar_img, prd_img):
|
102 |
+
imdff = torch.clamp(prd_img,0,1) - torch.clamp(tar_img,0,1)
|
103 |
+
rmse = (imdff**2).mean().sqrt()
|
104 |
+
ps = 20*torch.log10(1/rmse)
|
105 |
+
return ps
|
106 |
+
|
107 |
+
# imdff = torch.clamp(prd_img,0,1) - torch.clamp(tar_img,0,1)
|
108 |
+
# rmse = (imdff**2).mean()
|
109 |
+
# ps = 10*torch.log10(1/rmse)
|
110 |
+
# return ps
|
111 |
+
|
112 |
+
def batch_PSNR(img1, img2, average=True):
|
113 |
+
PSNR = []
|
114 |
+
for im1, im2 in zip(img1, img2):
|
115 |
+
psnr = myPSNR(im1, im2)
|
116 |
+
PSNR.append(psnr)
|
117 |
+
return sum(PSNR)/len(PSNR) if average else sum(PSNR)
|
118 |
+
|
119 |
+
def tensor2im(input_image, imtype=np.uint8):
|
120 |
+
""""Converts a Tensor array into a numpy image array.
|
121 |
+
Parameters:
|
122 |
+
input_image (tensor) -- the input image tensor array
|
123 |
+
imtype (type) -- the desired type of the converted numpy array
|
124 |
+
"""
|
125 |
+
if not isinstance(input_image, np.ndarray):
|
126 |
+
|
127 |
+
if isinstance(input_image, torch.Tensor): # get the data from a variable
|
128 |
+
image_tensor = input_image.data
|
129 |
+
else:
|
130 |
+
return input_image
|
131 |
+
image_numpy = image_tensor[0].cpu().float().numpy() # convert it into a numpy array
|
132 |
+
if image_numpy.shape[0] == 1: # grayscale to RGB
|
133 |
+
image_numpy = np.tile(image_numpy, (3, 1, 1))
|
134 |
+
# image_numpy = image_numpy.convert('L')
|
135 |
+
|
136 |
+
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling
|
137 |
+
else: # if it is a numpy array, do nothing
|
138 |
+
image_numpy = input_image
|
139 |
+
# image_numpy =
|
140 |
+
return np.clip(image_numpy, 0, 255).astype(imtype)
|
141 |
+
|
142 |
+
def calc_RMSE(real_img, fake_img):
|
143 |
+
# convert to LAB color space
|
144 |
+
real_lab = rgb2lab(real_img)
|
145 |
+
fake_lab = rgb2lab(fake_img)
|
146 |
+
return real_lab - fake_lab
|
147 |
+
|
148 |
+
def tensor2uint(img):
|
149 |
+
img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
|
150 |
+
if img.ndim == 3:
|
151 |
+
img = np.transpose(img, (1, 2, 0))
|
152 |
+
return np.uint8((img*255.0).round())
|
153 |
+
|
154 |
+
def imsave(img, img_path):
|
155 |
+
img = np.squeeze(img)
|
156 |
+
if img.ndim == 3:
|
157 |
+
img = img[:, :, [2, 1, 0]]
|
158 |
+
cv2.imwrite(img_path, img)
|
159 |
+
|
160 |
+
def process_normal(normal):
|
161 |
+
normal = normal * 2.0 - 1.0
|
162 |
+
normal = normal[:,:,np.newaxis,:]
|
163 |
+
normalizer = np.sqrt(normal @ normal.transpose(0,1,3,2))
|
164 |
+
normalizer = np.squeeze(normalizer, axis=-2)
|
165 |
+
normalizer = np.clip(normalizer, 1.0e-20, 1.0e10)
|
166 |
+
normal = np.squeeze(normal, axis=-2)
|
167 |
+
normal = normal / normalizer
|
168 |
+
return normal
|
169 |
+
|
170 |
+
|
171 |
+
def depthToPoint(fov, depth):
|
172 |
+
# width = 512
|
173 |
+
# height = 512
|
174 |
+
height, width = depth.shape
|
175 |
+
fov_radians = np.deg2rad(fov)
|
176 |
+
|
177 |
+
focal_length = width / (2 * np.tan(fov_radians / 2))
|
178 |
+
fx = focal_length
|
179 |
+
fy = focal_length
|
180 |
+
cx = (width - 1) / 2.0
|
181 |
+
cy = (height - 1) / 2.0
|
182 |
+
|
183 |
+
x, y = np.meshgrid(range(width), range(height))
|
184 |
+
z = depth
|
185 |
+
x_3d = (x - cx) * z / fx
|
186 |
+
y_3d = (y - cy) * z / fy
|
187 |
+
x_3d = x_3d.astype(np.float32)
|
188 |
+
y_3d = y_3d.astype(np.float32)
|
189 |
+
|
190 |
+
|
191 |
+
point_cloud = np.stack((x_3d, y_3d, z), axis=-1)
|
192 |
+
|
193 |
+
return point_cloud
|
194 |
+
|
195 |
+
def grid_sample(input, img_size):
|
196 |
+
x = torch.linspace(-1, 1, img_size[0])
|
197 |
+
y = torch.linspace(-1, 1, img_size[1])
|
198 |
+
meshx, meshy = torch.meshgrid((x, y))
|
199 |
+
grid = torch.stack((meshy, meshx),2).unsqueeze(0).cuda()
|
200 |
+
grid = grid.repeat(input.shape[0],1,1,1)
|
201 |
+
input = torch.nn.functional.grid_sample(input, grid, mode="nearest", align_corners=False)
|
202 |
+
return input
|
203 |
+
|
204 |
+
|
utils/loader.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from dataset import DataLoaderTrain, DataLoaderVal, DataLoaderTest
|
4 |
+
def get_training_data(rgb_dir, img_options, debug):
|
5 |
+
assert os.path.exists(rgb_dir)
|
6 |
+
return DataLoaderTrain(rgb_dir, img_options, None, debug)
|
7 |
+
|
8 |
+
def get_validation_data(rgb_dir, debug=False):
|
9 |
+
assert os.path.exists(rgb_dir)
|
10 |
+
return DataLoaderVal(rgb_dir, None, debug)
|
11 |
+
|
12 |
+
def get_test_data(rgb_dir, debug=False):
|
13 |
+
assert os.path.exists(rgb_dir)
|
14 |
+
return DataLoaderTest(rgb_dir, None, debug)
|
15 |
+
|
16 |
+
|
17 |
+
|
utils/misc.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torchvision.utils as vutils
|
3 |
+
|
4 |
+
|
5 |
+
def get_np_imgrid(array, nrow=3, padding=0, pad_value=0):
|
6 |
+
'''
|
7 |
+
achieves the same function of torchvision.utils.make_grid for
|
8 |
+
numpy array
|
9 |
+
'''
|
10 |
+
# assume every image has smae size
|
11 |
+
n, h, w, c = array.shape
|
12 |
+
row_num = n // nrow + (n % nrow != 0)
|
13 |
+
gh, gw = row_num*h + padding*(row_num-1), nrow*w + padding*(nrow - 1)
|
14 |
+
grid = np.ones((gh, gw, c), dtype=array.dtype) * pad_value
|
15 |
+
for i in range(n):
|
16 |
+
grow, gcol = i // nrow, i % nrow
|
17 |
+
off_y, off_x = grow * (h + padding), gcol * (w + padding)
|
18 |
+
grid[off_y : off_y + h, off_x : off_x + w] = array[i]
|
19 |
+
return grid
|
20 |
+
|
21 |
+
|
22 |
+
def split_np_imgrid(imgrid, nimg, nrow, padding=0):
|
23 |
+
'''
|
24 |
+
reverse operation of make_grid.
|
25 |
+
args:
|
26 |
+
imgrid: HWC image grid
|
27 |
+
nimg: number of images in the grid
|
28 |
+
nrow: number of columns in image grid
|
29 |
+
return:
|
30 |
+
images: list, contains splitted images
|
31 |
+
'''
|
32 |
+
row_num = nimg // nrow + (nimg % nrow != 0)
|
33 |
+
gh, gw, _ = imgrid.shape
|
34 |
+
h, w = (gh - (row_num-1)*padding)//row_num, (gw - (nrow-1)*padding)//nrow
|
35 |
+
images = []
|
36 |
+
for gid in range(nimg):
|
37 |
+
grow, gcol = gid // nrow, gid % nrow
|
38 |
+
off_i, off_j = grow * (h + padding), gcol * (w + padding)
|
39 |
+
images.append(imgrid[off_i:off_i+h, off_j:off_j+w])
|
40 |
+
return images
|
41 |
+
|
42 |
+
|
43 |
+
class MDTableConvertor:
|
44 |
+
|
45 |
+
def __init__(self, col_num):
|
46 |
+
self.col_num = col_num
|
47 |
+
|
48 |
+
def _get_table_row(self, items):
|
49 |
+
row = ''
|
50 |
+
for item in items:
|
51 |
+
row += '| {:s} '.format(item)
|
52 |
+
row += '|\n'
|
53 |
+
return row
|
54 |
+
|
55 |
+
def convert(self, item_list, title=None):
|
56 |
+
'''
|
57 |
+
args:
|
58 |
+
item_list: a list of items (str or can be converted to str)
|
59 |
+
that want to be presented in table.
|
60 |
+
|
61 |
+
title: None, or a list of strings. When set to None, empty title
|
62 |
+
row is used and column number is determined by col_num; Otherwise,
|
63 |
+
it will be used as title row, its length will override col_num.
|
64 |
+
|
65 |
+
return:
|
66 |
+
table: markdown table string.
|
67 |
+
'''
|
68 |
+
table = ''
|
69 |
+
if title: # not None or not [] both equal to true
|
70 |
+
col_num = len(title)
|
71 |
+
table += self._get_table_row(title)
|
72 |
+
else:
|
73 |
+
col_num=self.col_num
|
74 |
+
table += self._get_table_row([' ']*col_num) # empty title row
|
75 |
+
table += self._get_table_row(['-'] * col_num) # header spliter
|
76 |
+
for i in range(0, len(item_list), col_num):
|
77 |
+
table += self._get_table_row(item_list[i:i+col_num])
|
78 |
+
return table
|
79 |
+
|
80 |
+
|
81 |
+
def visual_dict_to_imgrid(visual_dict, col_num=4, padding=0):
|
82 |
+
'''
|
83 |
+
args:
|
84 |
+
visual_dict: a dictionary of images of the same size
|
85 |
+
col_num: number of columns in image grid
|
86 |
+
padding: number of padding pixels to seperate images
|
87 |
+
'''
|
88 |
+
im_names = []
|
89 |
+
im_tensors = []
|
90 |
+
for name, visual in visual_dict.items():
|
91 |
+
im_names.append(name)
|
92 |
+
im_tensors.append(visual)
|
93 |
+
im_grid = vutils.make_grid(im_tensors,
|
94 |
+
nrow=col_num ,
|
95 |
+
padding=0,
|
96 |
+
pad_value=1.0)
|
97 |
+
layout = MDTableConvertor(col_num).convert(im_names)
|
98 |
+
|
99 |
+
return im_grid, layout
|
100 |
+
|
101 |
+
|
102 |
+
def count_parameters(model, trainable_only=False):
|
103 |
+
return sum(p.numel() for p in model.parameters())
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
class WarmupExpLRScheduler(object):
|
108 |
+
def __init__(self, lr_start=1e-4, lr_max=4e-4, lr_min=5e-6, rampup_epochs=4, sustain_epochs=0, exp_decay=0.75):
|
109 |
+
self.lr_start = lr_start
|
110 |
+
self.lr_max = lr_max
|
111 |
+
self.lr_min = lr_min
|
112 |
+
self.rampup_epochs = rampup_epochs
|
113 |
+
self.sustain_epochs = sustain_epochs
|
114 |
+
self.exp_decay = exp_decay
|
115 |
+
|
116 |
+
def __call__(self, epoch):
|
117 |
+
if epoch < self.rampup_epochs:
|
118 |
+
lr = (self.lr_max - self.lr_start) / self.rampup_epochs * epoch + self.lr_start
|
119 |
+
elif epoch < self.rampup_epochs + self.sustain_epochs:
|
120 |
+
lr = self.lr_max
|
121 |
+
else:
|
122 |
+
lr = (self.lr_max - self.lr_min) * self.exp_decay**(epoch - self.rampup_epochs - self.sustain_epochs) + self.lr_min
|
123 |
+
# print(lr)
|
124 |
+
return lr
|
utils/model_utils.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import os
|
3 |
+
from collections import OrderedDict
|
4 |
+
|
5 |
+
def freeze(model):
|
6 |
+
for p in model.parameters():
|
7 |
+
p.requires_grad=False
|
8 |
+
|
9 |
+
def unfreeze(model):
|
10 |
+
for p in model.parameters():
|
11 |
+
p.requires_grad=True
|
12 |
+
|
13 |
+
def is_frozen(model):
|
14 |
+
x = [p.requires_grad for p in model.parameters()]
|
15 |
+
return not all(x)
|
16 |
+
|
17 |
+
def save_checkpoint(model_dir, state, session):
|
18 |
+
epoch = state['epoch']
|
19 |
+
model_out_path = os.path.join(model_dir,"model_epoch_{}_{}.pth".format(epoch,session))
|
20 |
+
torch.save(state, model_out_path)
|
21 |
+
|
22 |
+
def load_checkpoint(model, weights, strict=True):
|
23 |
+
checkpoint = torch.load(weights, map_location=torch.device('cpu'))
|
24 |
+
try:
|
25 |
+
state_dict = checkpoint["state_dict"]
|
26 |
+
new_state_dict = OrderedDict()
|
27 |
+
for k, v in state_dict.items():
|
28 |
+
new_state_dict[k] = v
|
29 |
+
model.load_state_dict(new_state_dict, strict=strict)
|
30 |
+
except:
|
31 |
+
state_dict = checkpoint["state_dict"]
|
32 |
+
new_state_dict = OrderedDict()
|
33 |
+
for k, v in state_dict.items():
|
34 |
+
name = k[7:] if 'module.' in k else k
|
35 |
+
new_state_dict[name] = v
|
36 |
+
model.load_state_dict(new_state_dict, strict=strict)
|
37 |
+
|
38 |
+
def load_checkpoint_multigpu(model, weights):
|
39 |
+
checkpoint = torch.load(weights)
|
40 |
+
state_dict = checkpoint["state_dict"]
|
41 |
+
new_state_dict = OrderedDict()
|
42 |
+
for k, v in state_dict.items():
|
43 |
+
name = k[7:]
|
44 |
+
new_state_dict[name] = v
|
45 |
+
model.load_state_dict(new_state_dict)
|
46 |
+
|
47 |
+
def load_start_epoch(weights):
|
48 |
+
checkpoint = torch.load(weights, map_location=torch.device('cpu'))
|
49 |
+
epoch = checkpoint["epoch"]
|
50 |
+
return epoch
|
51 |
+
|
52 |
+
def load_optim(optimizer, weights):
|
53 |
+
checkpoint = torch.load(weights, map_location=torch.device('cpu'))
|
54 |
+
optimizer.load_state_dict(checkpoint['optimizer'])
|
55 |
+
for p in optimizer.param_groups: lr = p['lr']
|
56 |
+
return lr
|
57 |
+
|
58 |
+
def get_arch(opt):
|
59 |
+
from model import ShadowFormer, ShadowFormerFreq
|
60 |
+
arch = opt.arch
|
61 |
+
|
62 |
+
print('You choose '+arch+'...')
|
63 |
+
if arch == 'ShadowFormer':
|
64 |
+
model_restoration = ShadowFormer(img_size=opt.train_ps,embed_dim=opt.embed_dim,
|
65 |
+
win_size=opt.win_size,token_projection=opt.token_projection,
|
66 |
+
token_mlp=opt.token_mlp)
|
67 |
+
elif arch == 'ShadowFormerFreq':
|
68 |
+
model_restoration = ShadowFormerFreq(img_size=opt.train_ps,embed_dim=opt.embed_dim,
|
69 |
+
win_size=opt.win_size,token_projection=opt.token_projection,
|
70 |
+
token_mlp=opt.token_mlp)
|
71 |
+
else:
|
72 |
+
raise Exception("Arch error!")
|
73 |
+
|
74 |
+
return model_restoration
|
75 |
+
|
76 |
+
|
77 |
+
def window_partition(x, win_size):
|
78 |
+
B, C, H, W = x.shape
|
79 |
+
x = x.permute(0,2,3,1)
|
80 |
+
x = x.reshape(B, H // win_size, win_size, W // win_size, win_size, C)
|
81 |
+
x = x.permute(0, 1, 3, 2, 4, 5).reshape(-1, win_size, win_size, C)
|
82 |
+
return x.permute(0,3,1,2)
|
83 |
+
|
84 |
+
# def distributed_concat(var, num_total):
|
85 |
+
# var_list = [torch.zeros(1, dtype=var.dtype).cuda() for _ in range(torch.distributed.get_world_size())]
|
86 |
+
# torch.distributed.all_gather(var_list, var)
|
87 |
+
# # truncate the dummy elements added by SequentialDistributedSampler
|
88 |
+
# return var_list[:num_total]
|
89 |
+
|
90 |
+
def distributed_concat(var, num_total):
|
91 |
+
# 確保 var 是一個 1D tensor (shape: [1])
|
92 |
+
var = var.view(1) if var.dim() == 0 else var
|
93 |
+
|
94 |
+
var_list = [torch.zeros_like(var).cuda() for _ in range(torch.distributed.get_world_size())]
|
95 |
+
torch.distributed.all_gather(var_list, var)
|
96 |
+
|
97 |
+
# truncate the dummy elements added by SequentialDistributedSampler
|
98 |
+
return var_list[:num_total]
|
utils/shadow_mask_evaluate.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from collections import OrderedDict
|
4 |
+
import pandas as pd
|
5 |
+
import os
|
6 |
+
from tqdm import tqdm
|
7 |
+
import cv2
|
8 |
+
from utils.misc import split_np_imgrid, get_np_imgrid
|
9 |
+
|
10 |
+
|
11 |
+
def cal_ber(tn, tp, fn, fp):
|
12 |
+
return 0.5*(fp/(tn+fp) + fn/(fn+tp))
|
13 |
+
|
14 |
+
def cal_acc(tn, tp, fn, fp):
|
15 |
+
return (tp + tn) / (tp + tn + fp + fn)
|
16 |
+
|
17 |
+
|
18 |
+
def get_binary_classification_metrics(pred, gt, threshold=None):
|
19 |
+
if threshold is not None:
|
20 |
+
gt = (gt > threshold)
|
21 |
+
pred = (pred > threshold)
|
22 |
+
TP = np.logical_and(gt, pred).sum()
|
23 |
+
TN = np.logical_and(np.logical_not(gt), np.logical_not(pred)).sum()
|
24 |
+
FN = np.logical_and(gt, np.logical_not(pred)).sum()
|
25 |
+
FP = np.logical_and(np.logical_not(gt), pred).sum()
|
26 |
+
BER = cal_ber(TN, TP, FN, FP)
|
27 |
+
ACC = cal_acc(TN, TP, FN, FP)
|
28 |
+
return OrderedDict( [('TP', TP),
|
29 |
+
('TN', TN),
|
30 |
+
('FP', FP),
|
31 |
+
('FN', FN),
|
32 |
+
('BER', BER),
|
33 |
+
('ACC', ACC)]
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def evaluate(res_root, pred_id, gt_id, nimg, nrow, threshold):
|
38 |
+
img_names = os.listdir(res_root)
|
39 |
+
score_dict = OrderedDict()
|
40 |
+
|
41 |
+
for img_name in img_names:
|
42 |
+
im_grid_path = os.path.join(res_root, img_name)
|
43 |
+
im_grid = cv2.imread(im_grid_path)
|
44 |
+
ims = split_np_imgrid(im_grid, nimg, nrow)
|
45 |
+
pred = ims[pred_id]
|
46 |
+
gt = ims[gt_id]
|
47 |
+
score_dict[img_name] = get_binary_classification_metrics(pred,
|
48 |
+
gt,
|
49 |
+
threshold)
|
50 |
+
|
51 |
+
df = pd.DataFrame(score_dict)
|
52 |
+
df['ave'] = df.mean(axis=1)
|
53 |
+
|
54 |
+
tn = df['ave']['TN']
|
55 |
+
tp = df['ave']['TP']
|
56 |
+
fn = df['ave']['FN']
|
57 |
+
fp = df['ave']['FP']
|
58 |
+
|
59 |
+
pos_err = (1 - tp / (tp + fn)) * 100
|
60 |
+
neg_err = (1 - tn / (tn + fp)) * 100
|
61 |
+
ber = (pos_err + neg_err) / 2
|
62 |
+
acc = (tn + tp) / (tn + tp + fn + fp)
|
63 |
+
|
64 |
+
return pos_err, neg_err, ber, acc, df
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
###############################################
|
73 |
+
|
74 |
+
class AverageMeter(object):
|
75 |
+
"""Computes and stores the average and current value"""
|
76 |
+
def __init__(self):
|
77 |
+
self.sum = 0
|
78 |
+
self.count = 0
|
79 |
+
|
80 |
+
def update(self, val, weight=1):
|
81 |
+
self.sum += val * weight
|
82 |
+
self.count += weight
|
83 |
+
|
84 |
+
def average(self):
|
85 |
+
if self.count == 0:
|
86 |
+
return 0
|
87 |
+
else:
|
88 |
+
return self.sum / self.count
|
89 |
+
|
90 |
+
def clear(self):
|
91 |
+
self.sum = 0
|
92 |
+
self.count = 0
|
93 |
+
|
94 |
+
def compute_cm_torch(y_pred, y_label, n_class):
|
95 |
+
mask = (y_label >= 0) & (y_label < n_class)
|
96 |
+
hist = torch.bincount(n_class * y_label[mask] + y_pred[mask],
|
97 |
+
minlength=n_class**2).reshape(n_class, n_class)
|
98 |
+
return hist
|
99 |
+
|
100 |
+
class MyConfuseMatrixMeter(AverageMeter):
|
101 |
+
"""More Clear Confusion Matrix Meter"""
|
102 |
+
def __init__(self, n_class):
|
103 |
+
super(MyConfuseMatrixMeter, self).__init__()
|
104 |
+
self.n_class = n_class
|
105 |
+
|
106 |
+
def update_cm(self, y_pred, y_label, weight=1):
|
107 |
+
y_label = y_label.type(torch.int64)
|
108 |
+
val = compute_cm_torch(y_pred=y_pred.flatten(), y_label=y_label.flatten(),
|
109 |
+
n_class=self.n_class)
|
110 |
+
self.update(val, weight)
|
111 |
+
|
112 |
+
# def get_scores_binary(self):
|
113 |
+
# assert self.n_class == 2, "this function can only be called for binary calssification problem"
|
114 |
+
# tn, fp, fn, tp = self.sum.flatten()
|
115 |
+
# eps = torch.finfo(torch.float32).eps
|
116 |
+
# precision = tp / (tp + fp + eps)
|
117 |
+
# recall = tp / (tp + fn + eps)
|
118 |
+
# f1 = 2*recall*precision / (recall + precision + eps)
|
119 |
+
# iou = tp / (tp + fn + fp + eps)
|
120 |
+
# oa = (tp + tn) / (tp + tn + fn + fp + eps)
|
121 |
+
# score_dict = {}
|
122 |
+
# score_dict['precision'] = precision.item()
|
123 |
+
# score_dict['recall'] = recall.item()
|
124 |
+
# score_dict['f1'] = f1.item()
|
125 |
+
# score_dict['iou'] = iou.item()
|
126 |
+
# score_dict['oa'] = oa.item()
|
127 |
+
# return score_dict
|
128 |
+
def get_scores_binary(self):
|
129 |
+
assert self.n_class == 2, "this function can only be called for binary calssification problem"
|
130 |
+
tn, fp, fn, tp = self.sum.flatten()
|
131 |
+
eps = torch.finfo(torch.float32).eps
|
132 |
+
pos_err = (1 - tp / (tp + fn + eps)) * 100
|
133 |
+
neg_err = (1 - tn / (tn + fp + eps)) * 100
|
134 |
+
ber = (pos_err + neg_err) / 2
|
135 |
+
acc = (tn + tp) / (tn + tp + fn + fp + eps)
|
136 |
+
score_dict = {}
|
137 |
+
score_dict['pos_err'] = pos_err
|
138 |
+
score_dict['neg_err'] = neg_err
|
139 |
+
score_dict['ber'] = ber
|
140 |
+
score_dict['acc'] = acc
|
141 |
+
return score_dict
|
utils/tta.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
class TestTimeAugmentation:
|
5 |
+
"""Test-Time Augmentation for image restoration models"""
|
6 |
+
|
7 |
+
def __init__(self, model, dino_net, device, use_flip=True, use_rot=True, use_multi_scale=False, scales=None):
|
8 |
+
"""
|
9 |
+
Args:
|
10 |
+
model: The model to apply TTA to
|
11 |
+
dino_net: DINO feature extractor
|
12 |
+
device: Device to run inference on
|
13 |
+
use_flip: Whether to use horizontal and vertical flips
|
14 |
+
use_rot: Whether to use 90-degree rotations
|
15 |
+
use_multi_scale: Whether to use multi-scale testing
|
16 |
+
scales: List of scales to use for multi-scale testing, e.g. [0.8, 1.0, 1.2]
|
17 |
+
"""
|
18 |
+
self.model = model
|
19 |
+
self.dino_net = dino_net
|
20 |
+
self.device = device
|
21 |
+
self.use_flip = use_flip
|
22 |
+
self.use_rot = use_rot
|
23 |
+
self.use_multi_scale = use_multi_scale
|
24 |
+
self.scales = scales or [1.0]
|
25 |
+
|
26 |
+
def _apply_augmentation(self, image, point, normal, aug_type):
|
27 |
+
"""Apply single augmentation to input images
|
28 |
+
|
29 |
+
Args:
|
30 |
+
image: Input RGB image
|
31 |
+
point: Point map
|
32 |
+
normal: Normal map
|
33 |
+
aug_type: Augmentation type string (e.g., 'original', 'h_flip', etc.)
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
Augmented versions of image, point map and normal map
|
37 |
+
"""
|
38 |
+
if aug_type == 'original':
|
39 |
+
return image, point, normal
|
40 |
+
|
41 |
+
elif aug_type == 'h_flip':
|
42 |
+
# Horizontal flip
|
43 |
+
img_aug = torch.flip(image, dims=[3])
|
44 |
+
point_aug = torch.flip(point, dims=[3])
|
45 |
+
normal_aug = torch.flip(normal, dims=[3])
|
46 |
+
# For normal map, x direction needs to be flipped
|
47 |
+
normal_aug[:, 0, :, :] = -normal_aug[:, 0, :, :]
|
48 |
+
return img_aug, point_aug, normal_aug
|
49 |
+
|
50 |
+
elif aug_type == 'v_flip':
|
51 |
+
# Vertical flip
|
52 |
+
img_aug = torch.flip(image, dims=[2])
|
53 |
+
point_aug = torch.flip(point, dims=[2])
|
54 |
+
normal_aug = torch.flip(normal, dims=[2])
|
55 |
+
# For normal map, y direction needs to be flipped
|
56 |
+
normal_aug[:, 1, :, :] = -normal_aug[:, 1, :, :]
|
57 |
+
return img_aug, point_aug, normal_aug
|
58 |
+
|
59 |
+
elif aug_type == 'rot90':
|
60 |
+
# 90-degree rotation
|
61 |
+
img_aug = torch.rot90(image, k=1, dims=[2, 3])
|
62 |
+
point_aug = torch.rot90(point, k=1, dims=[2, 3])
|
63 |
+
normal_aug = torch.rot90(normal, k=1, dims=[2, 3])
|
64 |
+
# Swap x and y channels in normal map and negate x
|
65 |
+
normal_x = -normal_aug[:, 1, :, :].clone()
|
66 |
+
normal_y = normal_aug[:, 0, :, :].clone()
|
67 |
+
normal_aug[:, 0, :, :] = normal_x
|
68 |
+
normal_aug[:, 1, :, :] = normal_y
|
69 |
+
return img_aug, point_aug, normal_aug
|
70 |
+
|
71 |
+
elif aug_type == 'rot180':
|
72 |
+
# 180-degree rotation
|
73 |
+
img_aug = torch.rot90(image, k=2, dims=[2, 3])
|
74 |
+
point_aug = torch.rot90(point, k=2, dims=[2, 3])
|
75 |
+
normal_aug = torch.rot90(normal, k=2, dims=[2, 3])
|
76 |
+
# For normal map, both x and y directions need to be flipped
|
77 |
+
normal_aug[:, 0, :, :] = -normal_aug[:, 0, :, :]
|
78 |
+
normal_aug[:, 1, :, :] = -normal_aug[:, 1, :, :]
|
79 |
+
return img_aug, point_aug, normal_aug
|
80 |
+
|
81 |
+
elif aug_type == 'rot270':
|
82 |
+
# 270-degree rotation
|
83 |
+
img_aug = torch.rot90(image, k=3, dims=[2, 3])
|
84 |
+
point_aug = torch.rot90(point, k=3, dims=[2, 3])
|
85 |
+
normal_aug = torch.rot90(normal, k=3, dims=[2, 3])
|
86 |
+
# Swap x and y channels in normal map and negate y
|
87 |
+
normal_x = normal_aug[:, 1, :, :].clone()
|
88 |
+
normal_y = -normal_aug[:, 0, :, :].clone()
|
89 |
+
normal_aug[:, 0, :, :] = normal_x
|
90 |
+
normal_aug[:, 1, :, :] = normal_y
|
91 |
+
return img_aug, point_aug, normal_aug
|
92 |
+
|
93 |
+
else:
|
94 |
+
raise ValueError(f"Unknown augmentation type: {aug_type}")
|
95 |
+
|
96 |
+
def _reverse_augmentation(self, result, aug_type):
|
97 |
+
"""Reverse the augmentation on the result
|
98 |
+
|
99 |
+
Args:
|
100 |
+
result: Model output to reverse augmentation on
|
101 |
+
aug_type: Augmentation type string
|
102 |
+
|
103 |
+
Returns:
|
104 |
+
De-augmented result
|
105 |
+
"""
|
106 |
+
if aug_type == 'original':
|
107 |
+
return result
|
108 |
+
|
109 |
+
elif aug_type == 'h_flip':
|
110 |
+
return torch.flip(result, dims=[3])
|
111 |
+
|
112 |
+
elif aug_type == 'v_flip':
|
113 |
+
return torch.flip(result, dims=[2])
|
114 |
+
|
115 |
+
elif aug_type == 'rot90':
|
116 |
+
return torch.rot90(result, k=3, dims=[2, 3])
|
117 |
+
|
118 |
+
elif aug_type == 'rot180':
|
119 |
+
return torch.rot90(result, k=2, dims=[2, 3])
|
120 |
+
|
121 |
+
elif aug_type == 'rot270':
|
122 |
+
return torch.rot90(result, k=1, dims=[2, 3])
|
123 |
+
|
124 |
+
else:
|
125 |
+
raise ValueError(f"Unknown augmentation type: {aug_type}")
|
126 |
+
|
127 |
+
def __call__(self, sliding_window, input_img, point, normal):
|
128 |
+
"""
|
129 |
+
Apply TTA to the model and return ensemble result
|
130 |
+
|
131 |
+
Args:
|
132 |
+
sliding_window: SlidingWindowInference class instance
|
133 |
+
input_img: Input RGB image [B, C, H, W]
|
134 |
+
point: Point map [B, C, H, W]
|
135 |
+
normal: Normal map [B, C, H, W]
|
136 |
+
|
137 |
+
Returns:
|
138 |
+
Ensemble result with TTA [B, C, H, W]
|
139 |
+
"""
|
140 |
+
# Define all augmentations to use
|
141 |
+
augmentations = ['original']
|
142 |
+
if self.use_flip:
|
143 |
+
augmentations.extend(['h_flip', 'v_flip'])
|
144 |
+
if self.use_rot:
|
145 |
+
augmentations.extend(['rot90', 'rot180', 'rot270'])
|
146 |
+
|
147 |
+
# Initialize the result tensor
|
148 |
+
ensemble_result = torch.zeros_like(input_img)
|
149 |
+
ensemble_weight = 0.0
|
150 |
+
|
151 |
+
# For each scale and augmentation
|
152 |
+
for scale in self.scales:
|
153 |
+
scale_weight = 1.0
|
154 |
+
if scale != 1.0:
|
155 |
+
# Resize inputs for multi-scale testing
|
156 |
+
h, w = input_img.shape[2], input_img.shape[3]
|
157 |
+
new_h, new_w = int(h * scale), int(w * scale)
|
158 |
+
|
159 |
+
# Resize all inputs
|
160 |
+
resize_fn = torch.nn.functional.interpolate
|
161 |
+
input_img_scaled = resize_fn(input_img, size=(new_h, new_w), mode='bilinear', align_corners=False)
|
162 |
+
point_scaled = resize_fn(point, size=(new_h, new_w), mode='bilinear', align_corners=False)
|
163 |
+
normal_scaled = resize_fn(normal, size=(new_h, new_w), mode='bilinear', align_corners=False)
|
164 |
+
|
165 |
+
# Normalize normal vectors after resizing
|
166 |
+
normal_norm = torch.sqrt(torch.sum(normal_scaled**2, dim=1, keepdim=True) + 1e-6)
|
167 |
+
normal_scaled = normal_scaled / normal_norm
|
168 |
+
else:
|
169 |
+
input_img_scaled = input_img
|
170 |
+
point_scaled = point
|
171 |
+
normal_scaled = normal
|
172 |
+
|
173 |
+
# Apply each augmentation
|
174 |
+
for aug_type in augmentations:
|
175 |
+
# Apply augmentation
|
176 |
+
img_aug, point_aug, normal_aug = self._apply_augmentation(
|
177 |
+
input_img_scaled, point_scaled, normal_scaled, aug_type
|
178 |
+
)
|
179 |
+
|
180 |
+
# Run model inference with sliding window
|
181 |
+
with torch.cuda.amp.autocast():
|
182 |
+
result_aug = sliding_window(
|
183 |
+
model=self.model,
|
184 |
+
input_=img_aug,
|
185 |
+
point=point_aug,
|
186 |
+
normal=normal_aug,
|
187 |
+
dino_net=self.dino_net,
|
188 |
+
device=self.device
|
189 |
+
)
|
190 |
+
|
191 |
+
# Reverse augmentation on the result
|
192 |
+
result_aug = self._reverse_augmentation(result_aug, aug_type)
|
193 |
+
|
194 |
+
# Resize back to original size if using multi-scale
|
195 |
+
if scale != 1.0:
|
196 |
+
result_aug = resize_fn(result_aug, size=(h, w), mode='bilinear', align_corners=False)
|
197 |
+
|
198 |
+
# Add to ensemble
|
199 |
+
ensemble_result += result_aug * scale_weight
|
200 |
+
ensemble_weight += scale_weight
|
201 |
+
|
202 |
+
# Average results
|
203 |
+
ensemble_result = ensemble_result / ensemble_weight
|
204 |
+
|
205 |
+
return ensemble_result
|