change get_depth_normap.py location
Browse files- README.md +6 -3
- get_depth_normap.py +119 -0
- utils/__pycache__/__init__.cpython-39.pyc +0 -0
- utils/__pycache__/dataset_utils.cpython-39.pyc +0 -0
- utils/__pycache__/dir_utils.cpython-39.pyc +0 -0
- utils/__pycache__/image_utils.cpython-39.pyc +0 -0
- utils/__pycache__/loader.cpython-39.pyc +0 -0
- utils/__pycache__/misc.cpython-39.pyc +0 -0
- utils/__pycache__/model_utils.cpython-39.pyc +0 -0
- utils/__pycache__/shadow_mask_evaluate.cpython-39.pyc +0 -0
- utils/__pycache__/tta.cpython-39.pyc +0 -0
README.md
CHANGED
@@ -41,7 +41,10 @@ git clone https://github.com/DepthAnything/Depth-Anything-V2.git
|
|
41 |
```
|
42 |
2. Download the [pretrain model of depth anything v2](https://huggingface.co/depth-anything/Depth-Anything-V2-Large/resolve/main/depth_anything_v2_vitl.pth?download=true)
|
43 |
|
44 |
-
3. Run ```
|
|
|
|
|
|
|
45 |
|
46 |
Now folder structure will be
|
47 |
```bash
|
@@ -65,12 +68,12 @@ output_dir
|
|
65 |
├──...
|
66 |
```
|
67 |
|
68 |
-
|
69 |
```bash
|
70 |
git clone https://github.com/facebookresearch/dinov2.git
|
71 |
```
|
72 |
|
73 |
-
|
74 |
|
75 |
```bash
|
76 |
gdown 1USD5sLvEcgFqIg7BDzc1OuInzSx3GnUN
|
|
|
41 |
```
|
42 |
2. Download the [pretrain model of depth anything v2](https://huggingface.co/depth-anything/Depth-Anything-V2-Large/resolve/main/depth_anything_v2_vitl.pth?download=true)
|
43 |
|
44 |
+
3. Run ```get_depth_normap.py``` to create depth and normal map.
|
45 |
+
```python
|
46 |
+
python get_depth_normap.py
|
47 |
+
```
|
48 |
|
49 |
Now folder structure will be
|
50 |
```bash
|
|
|
68 |
├──...
|
69 |
```
|
70 |
|
71 |
+
1. Clone [DINOv2](https://github.com/facebookresearch/dinov2.git)
|
72 |
```bash
|
73 |
git clone https://github.com/facebookresearch/dinov2.git
|
74 |
```
|
75 |
|
76 |
+
1. Download [shadow removal weight](https://drive.google.com/file/d/1USD5sLvEcgFqIg7BDzc1OuInzSx3GnUN/view?usp=drive_link)
|
77 |
|
78 |
```bash
|
79 |
gdown 1USD5sLvEcgFqIg7BDzc1OuInzSx3GnUN
|
get_depth_normap.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.append('Depth-Anything-V2')
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import torch
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import numpy as np
|
8 |
+
from PIL import Image
|
9 |
+
from depth_anything_v2.dpt import DepthAnythingV2
|
10 |
+
from pathlib import Path
|
11 |
+
from tqdm.auto import tqdm
|
12 |
+
import argparse
|
13 |
+
|
14 |
+
|
15 |
+
def parse_args():
|
16 |
+
parser = argparse.ArgumentParser(description='Generate depth and normal maps from images')
|
17 |
+
parser.add_argument('--source_root', type=str, default='test_dir',
|
18 |
+
help='Root directory containing the images')
|
19 |
+
parser.add_argument('--model_path', type=str,
|
20 |
+
default='depth_anything_v2_vitl.pth',
|
21 |
+
help='Path to the depth model checkpoint')
|
22 |
+
return parser.parse_args()
|
23 |
+
|
24 |
+
|
25 |
+
def generate_depth_maps(source_root, model_path):
|
26 |
+
source_root = Path(source_root)
|
27 |
+
origin = source_root / 'origin'
|
28 |
+
to_thermal_list = [origin]
|
29 |
+
|
30 |
+
model = DepthAnythingV2(encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024]).cuda()
|
31 |
+
model.load_state_dict(torch.load(model_path, map_location='cpu'))
|
32 |
+
model.eval()
|
33 |
+
|
34 |
+
thermal_path = source_root / 'depth'
|
35 |
+
|
36 |
+
with torch.inference_mode():
|
37 |
+
for to_thermal_item in to_thermal_list:
|
38 |
+
folder_name = to_thermal_item.stem
|
39 |
+
dst_path = thermal_path
|
40 |
+
|
41 |
+
dst_path.mkdir(parents=True, exist_ok=True)
|
42 |
+
|
43 |
+
bar = tqdm(to_thermal_item.glob('*'))
|
44 |
+
|
45 |
+
for image_path in bar:
|
46 |
+
try:
|
47 |
+
raw_img = cv2.imread(str(image_path))
|
48 |
+
depth = model.infer_image(raw_img) # HxW raw depth map
|
49 |
+
|
50 |
+
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
|
51 |
+
depth = depth.astype(np.uint8)
|
52 |
+
|
53 |
+
print(depth.shape)
|
54 |
+
np.save(f'{dst_path}/{image_path.stem}.npy', depth)
|
55 |
+
|
56 |
+
except Exception as e:
|
57 |
+
print(e)
|
58 |
+
continue
|
59 |
+
|
60 |
+
return thermal_path
|
61 |
+
|
62 |
+
|
63 |
+
def calculate_normal_map(img_path: Path, ksize=5):
|
64 |
+
# 讀取深度圖
|
65 |
+
depth = np.load(img_path).astype(np.float32)
|
66 |
+
|
67 |
+
# 計算 X、Y 方向的梯度
|
68 |
+
dx = cv2.Sobel(depth, cv2.CV_32F, 1, 0, ksize=ksize)
|
69 |
+
dy = cv2.Sobel(depth, cv2.CV_32F, 0, 1, ksize=ksize)
|
70 |
+
|
71 |
+
# 假設 Z 軸方向為 -1
|
72 |
+
dz = np.ones_like(dx) * -1
|
73 |
+
|
74 |
+
# 組合成法向量 (Nx, Ny, Nz)
|
75 |
+
normals = np.stack((dx, dy, dz), axis=-1)
|
76 |
+
|
77 |
+
# 進行歸一化
|
78 |
+
norm = np.linalg.norm(normals, axis=-1, keepdims=True)
|
79 |
+
normals /= (norm + 1e-6) # 避免除零錯誤
|
80 |
+
|
81 |
+
# 轉換為 0-255 的 RGB 影像 (HWC)
|
82 |
+
normal_map = (normals + 1) / 2 * 255
|
83 |
+
normal_map = normal_map.astype("uint8")
|
84 |
+
|
85 |
+
normal_map = normal_map.transpose(2, 0, 1) # (H, W, C) -> (C, H, W)
|
86 |
+
|
87 |
+
return normal_map
|
88 |
+
|
89 |
+
|
90 |
+
def generate_normal_maps(source_root, ksize=5):
|
91 |
+
source_root = Path(source_root)
|
92 |
+
depth_root = source_root / 'depth'
|
93 |
+
normal_root = source_root / 'normal'
|
94 |
+
normal_root.mkdir(parents=True, exist_ok=True)
|
95 |
+
|
96 |
+
bar = tqdm(list(depth_root.glob('*.npy')))
|
97 |
+
|
98 |
+
for depth_img_path in bar:
|
99 |
+
img_name = depth_img_path.name
|
100 |
+
|
101 |
+
normal_map = calculate_normal_map(depth_img_path, ksize=ksize)
|
102 |
+
|
103 |
+
np.save(f'{normal_root}/{img_name}', normal_map)
|
104 |
+
|
105 |
+
|
106 |
+
def main():
|
107 |
+
args = parse_args()
|
108 |
+
|
109 |
+
print(f"Generating depth maps from images in {args.source_root}")
|
110 |
+
depth_path = generate_depth_maps(args.source_root, args.model_path)
|
111 |
+
|
112 |
+
print(f"Generating normal maps from depth maps")
|
113 |
+
generate_normal_maps(args.source_root)
|
114 |
+
|
115 |
+
print("Processing complete!")
|
116 |
+
|
117 |
+
|
118 |
+
if __name__ == "__main__":
|
119 |
+
main()
|
utils/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (277 Bytes). View file
|
|
utils/__pycache__/dataset_utils.cpython-39.pyc
ADDED
Binary file (2.29 kB). View file
|
|
utils/__pycache__/dir_utils.cpython-39.pyc
ADDED
Binary file (889 Bytes). View file
|
|
utils/__pycache__/image_utils.cpython-39.pyc
ADDED
Binary file (6.53 kB). View file
|
|
utils/__pycache__/loader.cpython-39.pyc
ADDED
Binary file (758 Bytes). View file
|
|
utils/__pycache__/misc.cpython-39.pyc
ADDED
Binary file (4.39 kB). View file
|
|
utils/__pycache__/model_utils.cpython-39.pyc
ADDED
Binary file (3.46 kB). View file
|
|
utils/__pycache__/shadow_mask_evaluate.cpython-39.pyc
ADDED
Binary file (4.13 kB). View file
|
|
utils/__pycache__/tta.cpython-39.pyc
ADDED
Binary file (5.03 kB). View file
|
|