import torch import gmm_transformer as gmm_model def load_model( n_components = 6, hidden_d = 24 * 4, out_d = 24, n_heads = 4, mlp_ratio = 8, n_blocks = 6, encoder_path = r'_encoder_25_4537398.pth', path_para = r'_embedding_25_4537398.pth', path_token = r'_emb_empty_token_25_4537398.pth', random_sample_num = None ): chw = (1, random_sample_num, 25) # Set device to GPU if available, otherwise use CPU device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Initialize the transformer model encoder = gmm_model.ViT_encodernopara(chw, hidden_d, out_d, n_heads, mlp_ratio, n_blocks).to(device) _model_scale = sum(p.numel() for p in encoder.parameters() if p.requires_grad) print('Number of parameters of encoder:', _model_scale) # Load the pre-trained model state encoder.load_state_dict(torch.load(encoder_path, map_location=device)) state_dict_para = torch.load(path_para, map_location=device) state_dict_token = torch.load(path_token, map_location=device) return encoder, state_dict_para, state_dict_token