Commit
·
c5c63e7
1
Parent(s):
98a1d48
First commit
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 174.04 +/- 57.75
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4c6dd05290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4c6dd05320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4c6dd053b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4c6dd05440>", "_build": "<function ActorCriticPolicy._build at 0x7f4c6dd054d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4c6dd05560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4c6dd055f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4c6dd05680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4c6dd05710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4c6dd057a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4c6dd05830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4c6dcd3600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652617667.4212964, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIZv2z439S4/TUT7PZ1zqb4aV34+Og8tvAAAAAAAAAAAZvfnPFxrCrox0j48LDEbuB7hyzu6LBa3AACAPwAAgD/NyEM97Kn0uVpatrj/XR203UFAO7Ld0jcAAIA/AACAP4Ou8j55wv4+NuqvPeXCl77sbtk9PmVuvgAAAAAAAAAA6lXPPk68+byUsYi6mVXJOCsbDb5eHKM5AACAPwAAgD9m0bg8cW0AuT1p2bpV5qe1fcZluopk/TkAAIA/AACAP6YxLT79nY8/B+gBP9HRmL5aJwY+MY/IPQAAAAAAAAAAZmP7vJQPmjvxjZ89I51SvnJmVr2ipRU9AAAAAAAAAABNyDg9FGSdun6/K7xHhlq2J3RpupG1wTUAAIA/AACAP5qIFb0pKEC6hQbAuyrAKDdlLaw66K6ZtgAAgD8AAIA/YhcFPz8vIz71q7q95ftjvg/bmr3BnhG9AAAAAAAAAADm5vi94bLUuoMtcTuysUk4yJQfO5TfkLoAAIA/AACAPzoVEb4pWEO6Hp+0u8WF2jZTzbi6oEWkNgAAgD8AAIA/5oILPvS1fz6w9SU7vy5MvusOuL07eAU+AAAAAAAAAACaEXg7oji4Pw7Asj1Um4w+v/K0OR5i/TwAAAAAAAAAADbozD6b+rW8SsCAurOlobXPLnI8c0WmOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkUjb+BMFOUCUhpRSlIwBbJRLzowBdJRHQISFRybQTmJ1fZQoaAZoCWgPQwiduYeE79RcQJSGlFKUaBVN6ANoFkdAhIWtiQT24HV9lChoBmgJaA9DCIi9UMB2aC1AlIaUUpRoFUvqaBZHQISK42GZeAx1fZQoaAZoCWgPQwjo2EElrrdqQJSGlFKUaBVNXAJoFkdAhJJivovBanV9lChoBmgJaA9DCDXwoxr201NAlIaUUpRoFU3oA2gWR0CEummUGFBZdX2UKGgGaAloD0MIHch6avUsXECUhpRSlGgVTegDaBZHQIS65sl9jPR1fZQoaAZoCWgPQwiTHRuBeDU7wJSGlFKUaBVNTAFoFkdAhNB+NDMNdHV9lChoBmgJaA9DCItQbAVNU1JAlIaUUpRoFU3oA2gWR0CE3G8tf5UMdX2UKGgGaAloD0MIW+m12Vh8X0CUhpRSlGgVTegDaBZHQITjYYixFAp1fZQoaAZoCWgPQwg2VmKelQxIQJSGlFKUaBVN6ANoFkdAhOVafjCHh3V9lChoBmgJaA9DCJvicVEtAFBAlIaUUpRoFU3oA2gWR0CE7dEDyOJddX2UKGgGaAloD0MITaCIRQxXPECUhpRSlGgVS8hoFkdAhPbn62v0RXV9lChoBmgJaA9DCFlqvd9oHV9AlIaUUpRoFU3oA2gWR0CE/B7CSA6NdX2UKGgGaAloD0MIK702GytRHECUhpRSlGgVTQQBaBZHQIUHWEXcgyN1fZQoaAZoCWgPQwgewY2ULRxLQJSGlFKUaBVN6ANoFkdAhQs2bPQfIXV9lChoBmgJaA9DCAM+P4wQc15AlIaUUpRoFU3oA2gWR0CFDTmapgkUdX2UKGgGaAloD0MIx7q4jQZGWkCUhpRSlGgVTegDaBZHQIUZZ+UhV2l1fZQoaAZoCWgPQwjHvfkNE2VXQJSGlFKUaBVN6ANoFkdAhSDXlS0jT3V9lChoBmgJaA9DCGpsrwW9RltAlIaUUpRoFU3oA2gWR0CFIpq+rU9ZdX2UKGgGaAloD0MIMZkqGJVuUECUhpRSlGgVTegDaBZHQIUnChUR3/x1fZQoaAZoCWgPQwgCZVOu8C7Dv5SGlFKUaBVL4GgWR0CFJxQJokAxdX2UKGgGaAloD0MI4pNOJJitWkCUhpRSlGgVTegDaBZHQIUs2LWI42l1fZQoaAZoCWgPQwg/yR02kVxeQJSGlFKUaBVN6ANoFkdAhTQ6akRBeHV9lChoBmgJaA9DCI178xumkGBAlIaUUpRoFU3oA2gWR0CFN6xX4j8ldX2UKGgGaAloD0MIwopTrYUdXECUhpRSlGgVTegDaBZHQIU4HFrEcbR1fZQoaAZoCWgPQwhKtU/HY4YvQJSGlFKUaBVL0GgWR0CFXQ5sCT2WdX2UKGgGaAloD0MI6WSp9X73S8CUhpRSlGgVTXwBaBZHQIVeVhb4agp1fZQoaAZoCWgPQwjyRBDn4ZZeQJSGlFKUaBVN6ANoFkdAhW9n2ZiNKnV9lChoBmgJaA9DCABxV68ieUvAlIaUUpRoFU0LAWgWR0CFfImEXcgydX2UKGgGaAloD0MIRu9UwD1uVUCUhpRSlGgVTegDaBZHQIWBik/KQq91fZQoaAZoCWgPQwhZUYNpGLdhQJSGlFKUaBVN6ANoFkdAhYyL3K0UoXV9lChoBmgJaA9DCCY3iqw1plhAlIaUUpRoFU3oA2gWR0CFlo83++/QdX2UKGgGaAloD0MI7N0f71XdYECUhpRSlGgVTegDaBZHQIWcJ4KQaJh1fZQoaAZoCWgPQwjzrnrAvBxgQJSGlFKUaBVN6ANoFkdAhagvWxyGSXV9lChoBmgJaA9DCH/bEyS2O2BAlIaUUpRoFU3oA2gWR0CFvKde6ZpjdX2UKGgGaAloD0MI0sjnFU+cUUCUhpRSlGgVTegDaBZHQIXH4nDziCJ1fZQoaAZoCWgPQwiI8gUtJIJaQJSGlFKUaBVN6ANoFkdAhc1fNZ/0/XV9lChoBmgJaA9DCAOV8e8zBVFAlIaUUpRoFU3oA2gWR0CFzWy7f51vdX2UKGgGaAloD0MIYcYUrHGKWUCUhpRSlGgVTegDaBZHQIXUieAd4ml1fZQoaAZoCWgPQwiE1O3sKxFMQJSGlFKUaBVN6ANoFkdAhd21yWAwwnV9lChoBmgJaA9DCA4viEhN/VpAlIaUUpRoFU3oA2gWR0CF4f47A+INdX2UKGgGaAloD0MIZMvydRk2WECUhpRSlGgVTegDaBZHQIXii90zTF51fZQoaAZoCWgPQwhQ5EnSNVReQJSGlFKUaBVN6ANoFkdAheOW3z+WGHV9lChoBmgJaA9DCKZDp+fdkDLAlIaUUpRoFU1tAWgWR0CGEqqQRwqBdX2UKGgGaAloD0MIpmH4iJhaWkCUhpRSlGgVTegDaBZHQIYcdklNUOx1fZQoaAZoCWgPQwiyoDAo02BeQJSGlFKUaBVN6ANoFkdAhirxaHKwIXV9lChoBmgJaA9DCBqKO97k42dAlIaUUpRoFU1GAWgWR0CGKxoTPBzndX2UKGgGaAloD0MIt0QuOIObSECUhpRSlGgVTegDaBZHQIYvtYOlO451fZQoaAZoCWgPQwjjjjf5LWJfQJSGlFKUaBVN6ANoFkdAhjtZIpYs/nV9lChoBmgJaA9DCL4W9N4YBl5AlIaUUpRoFU3oA2gWR0CGRaL1EmY0dX2UKGgGaAloD0MIMSO8PQhBKMCUhpRSlGgVTYABaBZHQIZIGdsi0OV1fZQoaAZoCWgPQwhJn1bRHxVRwJSGlFKUaBVL0WgWR0CGSTVqesgddX2UKGgGaAloD0MI3BK54AwIWUCUhpRSlGgVTegDaBZHQIZLH9YOlO51fZQoaAZoCWgPQwjZd0Xwv41bQJSGlFKUaBVN6ANoFkdAhldJ7b+LnHV9lChoBmgJaA9DCKRwPQrXdUnAlIaUUpRoFU0lAWgWR0CGZg4n4O+adX2UKGgGaAloD0MIqYk+H2UMWkCUhpRSlGgVTegDaBZHQIZ5qtmtheB1fZQoaAZoCWgPQwgPDCB8KKNeQJSGlFKUaBVNVgNoFkdAhn/Z+YtxuXV9lChoBmgJaA9DCF1TILOzvVtAlIaUUpRoFU3oA2gWR0CGgAT9sJpndX2UKGgGaAloD0MIYcH9gAedV0CUhpRSlGgVTegDaBZHQIaAEk8ifQN1fZQoaAZoCWgPQwjQKjOl9TVeQJSGlFKUaBVN6ANoFkdAhoZfQa72+XV9lChoBmgJaA9DCBsPttjtNzbAlIaUUpRoFU1KAWgWR0CGiYmxdIGydX2UKGgGaAloD0MIhXzQs9mQYUCUhpRSlGgVTegDaBZHQIaSINAkcCJ1fZQoaAZoCWgPQwisGRnkrkRgQJSGlFKUaBVN6ANoFkdAhpM3A/LTyHV9lChoBmgJaA9DCEykNJvHQRXAlIaUUpRoFUvCaBZHQIaXNSMtK7J1fZQoaAZoCWgPQwiunL0z2io9QJSGlFKUaBVNGQFoFkdAhsEMWoFV1nV9lChoBmgJaA9DCLHCLR9JZV1AlIaUUpRoFU3oA2gWR0CGzDRE4NqhdX2UKGgGaAloD0MIrb8lAP/CXUCUhpRSlGgVTegDaBZHQIbZhCIDYAd1fZQoaAZoCWgPQwgUdeYeEtddQJSGlFKUaBVN6ANoFkdAht3WvjfelHV9lChoBmgJaA9DCEW3XtODKjVAlIaUUpRoFUvpaBZHQIbqtR1oxpN1fZQoaAZoCWgPQwir7Lsi+HFqQJSGlFKUaBVNfwFoFkdAhuvzt1IRRXV9lChoBmgJaA9DCKyNsRNerF1AlIaUUpRoFU3oA2gWR0CG8jJmNBGAdX2UKGgGaAloD0MItcGJ6NfiU0CUhpRSlGgVTegDaBZHQIb0dUXHim51fZQoaAZoCWgPQwgJU5RLYy5gQJSGlFKUaBVN6ANoFkdAhvV+CkGiYnV9lChoBmgJaA9DCFUwKqkTClpAlIaUUpRoFU3oA2gWR0CG9wvIwM6SdX2UKGgGaAloD0MIWTMyyF3mW0CUhpRSlGgVTegDaBZHQIcMmo99tuV1fZQoaAZoCWgPQwhZpfRMr9BhQJSGlFKUaBVN6ANoFkdAhyHuA7Ppp3V9lChoBmgJaA9DCNzz/GmjMV1AlIaUUpRoFU3oA2gWR0CHIhgb6xgRdX2UKGgGaAloD0MIcXFUbqJoYECUhpRSlGgVTegDaBZHQIcpLtb9qDd1fZQoaAZoCWgPQwh646Qw72hcQJSGlFKUaBVN6ANoFkdAhyzjWTX8O3V9lChoBmgJaA9DCEYnS633HGBAlIaUUpRoFU3oA2gWR0CHNd+GXXyzdX2UKGgGaAloD0MIGArYDkafXkCUhpRSlGgVTegDaBZHQIc3BCtzS1F1fZQoaAZoCWgPQwiDwMqhRd4jwJSGlFKUaBVL2mgWR0CHPc17Y02tdX2UKGgGaAloD0MIFakwthCEX0CUhpRSlGgVTegDaBZHQIdlIID5j6N1fZQoaAZoCWgPQwh2Ul+WdgVkQJSGlFKUaBVN6ANoFkdAh33KGUOd5XV9lChoBmgJaA9DCNmwprIoZ1xAlIaUUpRoFU3oA2gWR0CHgk61b7j1dX2UKGgGaAloD0MI7C+7Jw8UYECUhpRSlGgVTegDaBZHQIePL655JK91fZQoaAZoCWgPQwh/pIgMq+NhQJSGlFKUaBVN6ANoFkdAh5BrNOdoWnV9lChoBmgJaA9DCDmAft+/fmRAlIaUUpRoFU3oA2gWR0CHld+tKZlWdX2UKGgGaAloD0MIYr68APvaZECUhpRSlGgVTegDaBZHQIeX3MSsbNt1fZQoaAZoCWgPQwioVImyN1dhQJSGlFKUaBVN6ANoFkdAh5i/3FkxynV9lChoBmgJaA9DCPjgtUsbVVxAlIaUUpRoFU3oA2gWR0CHmivicXnAdX2UKGgGaAloD0MI2gJC6+FrLUCUhpRSlGgVS9hoFkdAh6dAcT8HfXV9lChoBmgJaA9DCHOEDOTZ3VhAlIaUUpRoFU3oA2gWR0CHrrH9WIXTdX2UKGgGaAloD0MI0zB8RExkYECUhpRSlGgVTegDaBZHQIfDFmthd+p1fZQoaAZoCWgPQwhJvDydKwRfQJSGlFKUaBVN6ANoFkdAh8qJV81Gb3V9lChoBmgJaA9DCJV9VwT/TVtAlIaUUpRoFU3oA2gWR0CHzkxX4j8ldX2UKGgGaAloD0MIis3HtaGtWkCUhpRSlGgVTegDaBZHQIfX7y+YdAB1fZQoaAZoCWgPQwhQAMXIkpReQJSGlFKUaBVN6ANoFkdAh9kkHUtqYnV9lChoBmgJaA9DCDBmS1ZFM2NAlIaUUpRoFU3oA2gWR0CH4ILx7RfGdX2UKGgGaAloD0MIq+tQTUkfZUCUhpRSlGgVTegDaBZHQIfjwUHpr1x1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c13988f301e5d57aa2da3b32f85a70419d886393df0d6c58c0df7e5e5db998ae
|
3 |
+
size 144036
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4c6dd05290>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4c6dd05320>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4c6dd053b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4c6dd05440>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4c6dd054d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f4c6dd05560>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4c6dd055f0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f4c6dd05680>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4c6dd05710>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4c6dd057a0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4c6dd05830>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f4c6dcd3600>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652617667.4212964,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIZv2z439S4/TUT7PZ1zqb4aV34+Og8tvAAAAAAAAAAAZvfnPFxrCrox0j48LDEbuB7hyzu6LBa3AACAPwAAgD/NyEM97Kn0uVpatrj/XR203UFAO7Ld0jcAAIA/AACAP4Ou8j55wv4+NuqvPeXCl77sbtk9PmVuvgAAAAAAAAAA6lXPPk68+byUsYi6mVXJOCsbDb5eHKM5AACAPwAAgD9m0bg8cW0AuT1p2bpV5qe1fcZluopk/TkAAIA/AACAP6YxLT79nY8/B+gBP9HRmL5aJwY+MY/IPQAAAAAAAAAAZmP7vJQPmjvxjZ89I51SvnJmVr2ipRU9AAAAAAAAAABNyDg9FGSdun6/K7xHhlq2J3RpupG1wTUAAIA/AACAP5qIFb0pKEC6hQbAuyrAKDdlLaw66K6ZtgAAgD8AAIA/YhcFPz8vIz71q7q95ftjvg/bmr3BnhG9AAAAAAAAAADm5vi94bLUuoMtcTuysUk4yJQfO5TfkLoAAIA/AACAPzoVEb4pWEO6Hp+0u8WF2jZTzbi6oEWkNgAAgD8AAIA/5oILPvS1fz6w9SU7vy5MvusOuL07eAU+AAAAAAAAAACaEXg7oji4Pw7Asj1Um4w+v/K0OR5i/TwAAAAAAAAAADbozD6b+rW8SsCAurOlobXPLnI8c0WmOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkUjb+BMFOUCUhpRSlIwBbJRLzowBdJRHQISFRybQTmJ1fZQoaAZoCWgPQwiduYeE79RcQJSGlFKUaBVN6ANoFkdAhIWtiQT24HV9lChoBmgJaA9DCIi9UMB2aC1AlIaUUpRoFUvqaBZHQISK42GZeAx1fZQoaAZoCWgPQwjo2EElrrdqQJSGlFKUaBVNXAJoFkdAhJJivovBanV9lChoBmgJaA9DCDXwoxr201NAlIaUUpRoFU3oA2gWR0CEummUGFBZdX2UKGgGaAloD0MIHch6avUsXECUhpRSlGgVTegDaBZHQIS65sl9jPR1fZQoaAZoCWgPQwiTHRuBeDU7wJSGlFKUaBVNTAFoFkdAhNB+NDMNdHV9lChoBmgJaA9DCItQbAVNU1JAlIaUUpRoFU3oA2gWR0CE3G8tf5UMdX2UKGgGaAloD0MIW+m12Vh8X0CUhpRSlGgVTegDaBZHQITjYYixFAp1fZQoaAZoCWgPQwg2VmKelQxIQJSGlFKUaBVN6ANoFkdAhOVafjCHh3V9lChoBmgJaA9DCJvicVEtAFBAlIaUUpRoFU3oA2gWR0CE7dEDyOJddX2UKGgGaAloD0MITaCIRQxXPECUhpRSlGgVS8hoFkdAhPbn62v0RXV9lChoBmgJaA9DCFlqvd9oHV9AlIaUUpRoFU3oA2gWR0CE/B7CSA6NdX2UKGgGaAloD0MIK702GytRHECUhpRSlGgVTQQBaBZHQIUHWEXcgyN1fZQoaAZoCWgPQwgewY2ULRxLQJSGlFKUaBVN6ANoFkdAhQs2bPQfIXV9lChoBmgJaA9DCAM+P4wQc15AlIaUUpRoFU3oA2gWR0CFDTmapgkUdX2UKGgGaAloD0MIx7q4jQZGWkCUhpRSlGgVTegDaBZHQIUZZ+UhV2l1fZQoaAZoCWgPQwjHvfkNE2VXQJSGlFKUaBVN6ANoFkdAhSDXlS0jT3V9lChoBmgJaA9DCGpsrwW9RltAlIaUUpRoFU3oA2gWR0CFIpq+rU9ZdX2UKGgGaAloD0MIMZkqGJVuUECUhpRSlGgVTegDaBZHQIUnChUR3/x1fZQoaAZoCWgPQwgCZVOu8C7Dv5SGlFKUaBVL4GgWR0CFJxQJokAxdX2UKGgGaAloD0MI4pNOJJitWkCUhpRSlGgVTegDaBZHQIUs2LWI42l1fZQoaAZoCWgPQwg/yR02kVxeQJSGlFKUaBVN6ANoFkdAhTQ6akRBeHV9lChoBmgJaA9DCI178xumkGBAlIaUUpRoFU3oA2gWR0CFN6xX4j8ldX2UKGgGaAloD0MIwopTrYUdXECUhpRSlGgVTegDaBZHQIU4HFrEcbR1fZQoaAZoCWgPQwhKtU/HY4YvQJSGlFKUaBVL0GgWR0CFXQ5sCT2WdX2UKGgGaAloD0MI6WSp9X73S8CUhpRSlGgVTXwBaBZHQIVeVhb4agp1fZQoaAZoCWgPQwjyRBDn4ZZeQJSGlFKUaBVN6ANoFkdAhW9n2ZiNKnV9lChoBmgJaA9DCABxV68ieUvAlIaUUpRoFU0LAWgWR0CFfImEXcgydX2UKGgGaAloD0MIRu9UwD1uVUCUhpRSlGgVTegDaBZHQIWBik/KQq91fZQoaAZoCWgPQwhZUYNpGLdhQJSGlFKUaBVN6ANoFkdAhYyL3K0UoXV9lChoBmgJaA9DCCY3iqw1plhAlIaUUpRoFU3oA2gWR0CFlo83++/QdX2UKGgGaAloD0MI7N0f71XdYECUhpRSlGgVTegDaBZHQIWcJ4KQaJh1fZQoaAZoCWgPQwjzrnrAvBxgQJSGlFKUaBVN6ANoFkdAhagvWxyGSXV9lChoBmgJaA9DCH/bEyS2O2BAlIaUUpRoFU3oA2gWR0CFvKde6ZpjdX2UKGgGaAloD0MI0sjnFU+cUUCUhpRSlGgVTegDaBZHQIXH4nDziCJ1fZQoaAZoCWgPQwiI8gUtJIJaQJSGlFKUaBVN6ANoFkdAhc1fNZ/0/XV9lChoBmgJaA9DCAOV8e8zBVFAlIaUUpRoFU3oA2gWR0CFzWy7f51vdX2UKGgGaAloD0MIYcYUrHGKWUCUhpRSlGgVTegDaBZHQIXUieAd4ml1fZQoaAZoCWgPQwiE1O3sKxFMQJSGlFKUaBVN6ANoFkdAhd21yWAwwnV9lChoBmgJaA9DCA4viEhN/VpAlIaUUpRoFU3oA2gWR0CF4f47A+INdX2UKGgGaAloD0MIZMvydRk2WECUhpRSlGgVTegDaBZHQIXii90zTF51fZQoaAZoCWgPQwhQ5EnSNVReQJSGlFKUaBVN6ANoFkdAheOW3z+WGHV9lChoBmgJaA9DCKZDp+fdkDLAlIaUUpRoFU1tAWgWR0CGEqqQRwqBdX2UKGgGaAloD0MIpmH4iJhaWkCUhpRSlGgVTegDaBZHQIYcdklNUOx1fZQoaAZoCWgPQwiyoDAo02BeQJSGlFKUaBVN6ANoFkdAhirxaHKwIXV9lChoBmgJaA9DCBqKO97k42dAlIaUUpRoFU1GAWgWR0CGKxoTPBzndX2UKGgGaAloD0MIt0QuOIObSECUhpRSlGgVTegDaBZHQIYvtYOlO451fZQoaAZoCWgPQwjjjjf5LWJfQJSGlFKUaBVN6ANoFkdAhjtZIpYs/nV9lChoBmgJaA9DCL4W9N4YBl5AlIaUUpRoFU3oA2gWR0CGRaL1EmY0dX2UKGgGaAloD0MIMSO8PQhBKMCUhpRSlGgVTYABaBZHQIZIGdsi0OV1fZQoaAZoCWgPQwhJn1bRHxVRwJSGlFKUaBVL0WgWR0CGSTVqesgddX2UKGgGaAloD0MI3BK54AwIWUCUhpRSlGgVTegDaBZHQIZLH9YOlO51fZQoaAZoCWgPQwjZd0Xwv41bQJSGlFKUaBVN6ANoFkdAhldJ7b+LnHV9lChoBmgJaA9DCKRwPQrXdUnAlIaUUpRoFU0lAWgWR0CGZg4n4O+adX2UKGgGaAloD0MIqYk+H2UMWkCUhpRSlGgVTegDaBZHQIZ5qtmtheB1fZQoaAZoCWgPQwgPDCB8KKNeQJSGlFKUaBVNVgNoFkdAhn/Z+YtxuXV9lChoBmgJaA9DCF1TILOzvVtAlIaUUpRoFU3oA2gWR0CGgAT9sJpndX2UKGgGaAloD0MIYcH9gAedV0CUhpRSlGgVTegDaBZHQIaAEk8ifQN1fZQoaAZoCWgPQwjQKjOl9TVeQJSGlFKUaBVN6ANoFkdAhoZfQa72+XV9lChoBmgJaA9DCBsPttjtNzbAlIaUUpRoFU1KAWgWR0CGiYmxdIGydX2UKGgGaAloD0MIhXzQs9mQYUCUhpRSlGgVTegDaBZHQIaSINAkcCJ1fZQoaAZoCWgPQwisGRnkrkRgQJSGlFKUaBVN6ANoFkdAhpM3A/LTyHV9lChoBmgJaA9DCEykNJvHQRXAlIaUUpRoFUvCaBZHQIaXNSMtK7J1fZQoaAZoCWgPQwiunL0z2io9QJSGlFKUaBVNGQFoFkdAhsEMWoFV1nV9lChoBmgJaA9DCLHCLR9JZV1AlIaUUpRoFU3oA2gWR0CGzDRE4NqhdX2UKGgGaAloD0MIrb8lAP/CXUCUhpRSlGgVTegDaBZHQIbZhCIDYAd1fZQoaAZoCWgPQwgUdeYeEtddQJSGlFKUaBVN6ANoFkdAht3WvjfelHV9lChoBmgJaA9DCEW3XtODKjVAlIaUUpRoFUvpaBZHQIbqtR1oxpN1fZQoaAZoCWgPQwir7Lsi+HFqQJSGlFKUaBVNfwFoFkdAhuvzt1IRRXV9lChoBmgJaA9DCKyNsRNerF1AlIaUUpRoFU3oA2gWR0CG8jJmNBGAdX2UKGgGaAloD0MItcGJ6NfiU0CUhpRSlGgVTegDaBZHQIb0dUXHim51fZQoaAZoCWgPQwgJU5RLYy5gQJSGlFKUaBVN6ANoFkdAhvV+CkGiYnV9lChoBmgJaA9DCFUwKqkTClpAlIaUUpRoFU3oA2gWR0CG9wvIwM6SdX2UKGgGaAloD0MIWTMyyF3mW0CUhpRSlGgVTegDaBZHQIcMmo99tuV1fZQoaAZoCWgPQwhZpfRMr9BhQJSGlFKUaBVN6ANoFkdAhyHuA7Ppp3V9lChoBmgJaA9DCNzz/GmjMV1AlIaUUpRoFU3oA2gWR0CHIhgb6xgRdX2UKGgGaAloD0MIcXFUbqJoYECUhpRSlGgVTegDaBZHQIcpLtb9qDd1fZQoaAZoCWgPQwh646Qw72hcQJSGlFKUaBVN6ANoFkdAhyzjWTX8O3V9lChoBmgJaA9DCEYnS633HGBAlIaUUpRoFU3oA2gWR0CHNd+GXXyzdX2UKGgGaAloD0MIGArYDkafXkCUhpRSlGgVTegDaBZHQIc3BCtzS1F1fZQoaAZoCWgPQwiDwMqhRd4jwJSGlFKUaBVL2mgWR0CHPc17Y02tdX2UKGgGaAloD0MIFakwthCEX0CUhpRSlGgVTegDaBZHQIdlIID5j6N1fZQoaAZoCWgPQwh2Ul+WdgVkQJSGlFKUaBVN6ANoFkdAh33KGUOd5XV9lChoBmgJaA9DCNmwprIoZ1xAlIaUUpRoFU3oA2gWR0CHgk61b7j1dX2UKGgGaAloD0MI7C+7Jw8UYECUhpRSlGgVTegDaBZHQIePL655JK91fZQoaAZoCWgPQwh/pIgMq+NhQJSGlFKUaBVN6ANoFkdAh5BrNOdoWnV9lChoBmgJaA9DCDmAft+/fmRAlIaUUpRoFU3oA2gWR0CHld+tKZlWdX2UKGgGaAloD0MIYr68APvaZECUhpRSlGgVTegDaBZHQIeX3MSsbNt1fZQoaAZoCWgPQwioVImyN1dhQJSGlFKUaBVN6ANoFkdAh5i/3FkxynV9lChoBmgJaA9DCPjgtUsbVVxAlIaUUpRoFU3oA2gWR0CHmivicXnAdX2UKGgGaAloD0MI2gJC6+FrLUCUhpRSlGgVS9hoFkdAh6dAcT8HfXV9lChoBmgJaA9DCHOEDOTZ3VhAlIaUUpRoFU3oA2gWR0CHrrH9WIXTdX2UKGgGaAloD0MI0zB8RExkYECUhpRSlGgVTegDaBZHQIfDFmthd+p1fZQoaAZoCWgPQwhJvDydKwRfQJSGlFKUaBVN6ANoFkdAh8qJV81Gb3V9lChoBmgJaA9DCJV9VwT/TVtAlIaUUpRoFU3oA2gWR0CHzkxX4j8ldX2UKGgGaAloD0MIis3HtaGtWkCUhpRSlGgVTegDaBZHQIfX7y+YdAB1fZQoaAZoCWgPQwhQAMXIkpReQJSGlFKUaBVN6ANoFkdAh9kkHUtqYnV9lChoBmgJaA9DCDBmS1ZFM2NAlIaUUpRoFU3oA2gWR0CH4ILx7RfGdX2UKGgGaAloD0MIq+tQTUkfZUCUhpRSlGgVTegDaBZHQIfjwUHpr1x1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1bf66f3b70e807a81091e578324b60d77aac2a122bf91a369c5eb2686db514e5
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee222661d7d73dc29f9b6172fe63646e723b5493f8b37bbf1107fe4df2ce15fe
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dcce43cfe357e801812f72d65151f70256206e4ab032e5d664b7b037108d5a25
|
3 |
+
size 241670
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 174.04379876228205, "std_reward": 57.74565882500073, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-15T12:50:18.275430"}
|