Upload InternVideo2Stage2VideoEncoder
Browse files- config.py +160 -34
- model.safetensors +1 -1
config.py
CHANGED
@@ -1,23 +1,149 @@
|
|
1 |
from transformers import PretrainedConfig, PreTrainedModel, AutoModel, AutoConfig
|
2 |
|
3 |
-
class
|
4 |
-
"""
|
5 |
-
|
6 |
-
def __getattr__(self, key):
|
7 |
-
if key in self:
|
8 |
-
return self[key]
|
9 |
-
else:
|
10 |
-
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{key}'")
|
11 |
-
|
12 |
-
def __setattr__(self, key, value):
|
13 |
-
self[key] = value
|
14 |
-
|
15 |
-
def __delattr__(self, key):
|
16 |
-
if key in self:
|
17 |
-
del self[key]
|
18 |
-
else:
|
19 |
-
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{key}'")
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
class InternVideo2Config(PretrainedConfig):
|
23 |
model_type = "internvideo2"
|
@@ -72,7 +198,7 @@ class InternVideo2Config(PretrainedConfig):
|
|
72 |
|
73 |
# Data configuration
|
74 |
self.train_file = train_file or "available_corpus[\"pretrain_example_data_1B\"]"
|
75 |
-
self.test_file =
|
76 |
"msrvtt_1k_test": "available_corpus[\"msrvtt_1k_test\"]",
|
77 |
"didemo_ret_test": "available_corpus[\"didemo_ret_test\"]"
|
78 |
})
|
@@ -86,25 +212,25 @@ class InternVideo2Config(PretrainedConfig):
|
|
86 |
self.batch_size = batch_size
|
87 |
self.batch_size_test = batch_size_test
|
88 |
self.max_txt_l = max_txt_l
|
89 |
-
self.inputs =
|
90 |
"image_res": 224,
|
91 |
-
"video_input":
|
92 |
"num_frames": num_frames,
|
93 |
"sample_type": "rand",
|
94 |
"num_frames_test": num_frames_test,
|
95 |
"sample_type_test": "middle",
|
96 |
"random_aug": False
|
97 |
}),
|
98 |
-
"max_txt_l":
|
99 |
-
"batch_size":
|
100 |
-
"batch_size_test":
|
101 |
})
|
102 |
|
103 |
# Model configuration
|
104 |
self.text_enc = text_enc
|
105 |
-
self.model =
|
106 |
"model_cls": "InternVideo2_Stage2",
|
107 |
-
"vision_encoder":
|
108 |
"name": "pretrain_internvideo2_1b_patch14_224",
|
109 |
"img_size": 224,
|
110 |
"num_frames": num_frames,
|
@@ -135,15 +261,15 @@ class InternVideo2Config(PretrainedConfig):
|
|
135 |
"only_mask": True
|
136 |
}),
|
137 |
"text_encoder": text_enc,
|
138 |
-
"multimodal":
|
139 |
"embed_dim": 512,
|
140 |
"temp": 0.07,
|
141 |
"find_unused_parameters": False
|
142 |
})
|
143 |
|
144 |
# Criterion configuration
|
145 |
-
self.criterion =
|
146 |
-
"loss_weight":
|
147 |
"vtc": 1.0,
|
148 |
"mlm": 1.0,
|
149 |
"vtm": 1.0,
|
@@ -157,17 +283,17 @@ class InternVideo2Config(PretrainedConfig):
|
|
157 |
})
|
158 |
|
159 |
# Optimizer configuration
|
160 |
-
self.optimizer =
|
161 |
"opt": "adamW",
|
162 |
"lr": 5e-5,
|
163 |
"opt_betas": [0.9, 0.98],
|
164 |
"weight_decay": 0.05,
|
165 |
"max_grad_norm": 3.0,
|
166 |
-
"different_lr":
|
167 |
})
|
168 |
|
169 |
# Scheduler configuration
|
170 |
-
self.scheduler =
|
171 |
"sched": "cosine",
|
172 |
"epochs": 10,
|
173 |
"min_lr_multi": 0.01,
|
@@ -177,7 +303,7 @@ class InternVideo2Config(PretrainedConfig):
|
|
177 |
# Evaluation configuration
|
178 |
self.evaluate = evaluate
|
179 |
self.deep_fusion = deep_fusion
|
180 |
-
self.evaluation =
|
181 |
"eval_frame_ensemble": "concat",
|
182 |
"eval_x_only": False,
|
183 |
"k_test": 128,
|
@@ -192,7 +318,7 @@ class InternVideo2Config(PretrainedConfig):
|
|
192 |
self.use_mem_efficient_sdp = use_mem_efficient_sdp
|
193 |
self.compile_model = compile_model
|
194 |
|
195 |
-
self.wandb =
|
196 |
"enable": False,
|
197 |
"entity": "opengvlab",
|
198 |
"project": "InternVideo2-Stage2"
|
@@ -214,7 +340,7 @@ class InternVideo2Config(PretrainedConfig):
|
|
214 |
self.save_ckpt_iter = save_ckpt_iter
|
215 |
self.delete_ds_optim_states = delete_ds_optim_states
|
216 |
|
217 |
-
self.deepspeed =
|
218 |
"enable": True,
|
219 |
"stage": 1
|
220 |
})
|
|
|
1 |
from transformers import PretrainedConfig, PreTrainedModel, AutoModel, AutoConfig
|
2 |
|
3 |
+
class EasyDict(dict):
|
4 |
+
"""
|
5 |
+
Get attributes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
>>> d = EasyDict({'foo':3})
|
8 |
+
>>> d['foo']
|
9 |
+
3
|
10 |
+
>>> d.foo
|
11 |
+
3
|
12 |
+
>>> d.bar
|
13 |
+
Traceback (most recent call last):
|
14 |
+
...
|
15 |
+
AttributeError: 'EasyDict' object has no attribute 'bar'
|
16 |
+
|
17 |
+
Works recursively
|
18 |
+
|
19 |
+
>>> d = EasyDict({'foo':3, 'bar':{'x':1, 'y':2}})
|
20 |
+
>>> isinstance(d.bar, dict)
|
21 |
+
True
|
22 |
+
>>> d.bar.x
|
23 |
+
1
|
24 |
+
|
25 |
+
Bullet-proof
|
26 |
+
|
27 |
+
>>> EasyDict({})
|
28 |
+
{}
|
29 |
+
>>> EasyDict(d={})
|
30 |
+
{}
|
31 |
+
>>> EasyDict(None)
|
32 |
+
{}
|
33 |
+
>>> d = {'a': 1}
|
34 |
+
>>> EasyDict(**d)
|
35 |
+
{'a': 1}
|
36 |
+
|
37 |
+
Set attributes
|
38 |
+
|
39 |
+
>>> d = EasyDict()
|
40 |
+
>>> d.foo = 3
|
41 |
+
>>> d.foo
|
42 |
+
3
|
43 |
+
>>> d.bar = {'prop': 'value'}
|
44 |
+
>>> d.bar.prop
|
45 |
+
'value'
|
46 |
+
>>> d
|
47 |
+
{'foo': 3, 'bar': {'prop': 'value'}}
|
48 |
+
>>> d.bar.prop = 'newer'
|
49 |
+
>>> d.bar.prop
|
50 |
+
'newer'
|
51 |
+
|
52 |
+
|
53 |
+
Values extraction
|
54 |
+
|
55 |
+
>>> d = EasyDict({'foo':0, 'bar':[{'x':1, 'y':2}, {'x':3, 'y':4}]})
|
56 |
+
>>> isinstance(d.bar, list)
|
57 |
+
True
|
58 |
+
>>> from operator import attrgetter
|
59 |
+
>>> map(attrgetter('x'), d.bar)
|
60 |
+
[1, 3]
|
61 |
+
>>> map(attrgetter('y'), d.bar)
|
62 |
+
[2, 4]
|
63 |
+
>>> d = EasyDict()
|
64 |
+
>>> d.keys()
|
65 |
+
[]
|
66 |
+
>>> d = EasyDict(foo=3, bar=dict(x=1, y=2))
|
67 |
+
>>> d.foo
|
68 |
+
3
|
69 |
+
>>> d.bar.x
|
70 |
+
1
|
71 |
+
|
72 |
+
Still like a dict though
|
73 |
+
|
74 |
+
>>> o = EasyDict({'clean':True})
|
75 |
+
>>> o.items()
|
76 |
+
[('clean', True)]
|
77 |
+
|
78 |
+
And like a class
|
79 |
+
|
80 |
+
>>> class Flower(EasyDict):
|
81 |
+
... power = 1
|
82 |
+
...
|
83 |
+
>>> f = Flower()
|
84 |
+
>>> f.power
|
85 |
+
1
|
86 |
+
>>> f = Flower({'height': 12})
|
87 |
+
>>> f.height
|
88 |
+
12
|
89 |
+
>>> f['power']
|
90 |
+
1
|
91 |
+
>>> sorted(f.keys())
|
92 |
+
['height', 'power']
|
93 |
+
|
94 |
+
update and pop items
|
95 |
+
>>> d = EasyDict(a=1, b='2')
|
96 |
+
>>> e = EasyDict(c=3.0, a=9.0)
|
97 |
+
>>> d.update(e)
|
98 |
+
>>> d.c
|
99 |
+
3.0
|
100 |
+
>>> d['c']
|
101 |
+
3.0
|
102 |
+
>>> d.get('c')
|
103 |
+
3.0
|
104 |
+
>>> d.update(a=4, b=4)
|
105 |
+
>>> d.b
|
106 |
+
4
|
107 |
+
>>> d.pop('a')
|
108 |
+
4
|
109 |
+
>>> d.a
|
110 |
+
Traceback (most recent call last):
|
111 |
+
...
|
112 |
+
AttributeError: 'EasyDict' object has no attribute 'a'
|
113 |
+
"""
|
114 |
+
|
115 |
+
def __init__(self, d=None, **kwargs):
|
116 |
+
if d is None:
|
117 |
+
d = {}
|
118 |
+
if kwargs:
|
119 |
+
d.update(**kwargs)
|
120 |
+
for k, v in d.items():
|
121 |
+
setattr(self, k, v)
|
122 |
+
# Class attributes
|
123 |
+
for k in self.__class__.__dict__.keys():
|
124 |
+
if not (k.startswith("__") and k.endswith("__")) and not k in ("update", "pop"):
|
125 |
+
setattr(self, k, getattr(self, k))
|
126 |
+
|
127 |
+
def __setattr__(self, name, value):
|
128 |
+
if isinstance(value, (list, tuple)):
|
129 |
+
value = [self.__class__(x) if isinstance(x, dict) else x for x in value]
|
130 |
+
elif isinstance(value, dict) and not isinstance(value, self.__class__):
|
131 |
+
value = self.__class__(value)
|
132 |
+
super(EasyDict, self).__setattr__(name, value)
|
133 |
+
super(EasyDict, self).__setitem__(name, value)
|
134 |
+
|
135 |
+
__setitem__ = __setattr__
|
136 |
+
|
137 |
+
def update(self, e=None, **f):
|
138 |
+
d = e or dict()
|
139 |
+
d.update(f)
|
140 |
+
for k in d:
|
141 |
+
setattr(self, k, d[k])
|
142 |
+
|
143 |
+
def pop(self, k, d=None):
|
144 |
+
if hasattr(self, k):
|
145 |
+
delattr(self, k)
|
146 |
+
return super(EasyDict, self).pop(k, d)
|
147 |
|
148 |
class InternVideo2Config(PretrainedConfig):
|
149 |
model_type = "internvideo2"
|
|
|
198 |
|
199 |
# Data configuration
|
200 |
self.train_file = train_file or "available_corpus[\"pretrain_example_data_1B\"]"
|
201 |
+
self.test_file = EasyDict(test_file or {
|
202 |
"msrvtt_1k_test": "available_corpus[\"msrvtt_1k_test\"]",
|
203 |
"didemo_ret_test": "available_corpus[\"didemo_ret_test\"]"
|
204 |
})
|
|
|
212 |
self.batch_size = batch_size
|
213 |
self.batch_size_test = batch_size_test
|
214 |
self.max_txt_l = max_txt_l
|
215 |
+
self.inputs = EasyDict(inputs or {
|
216 |
"image_res": 224,
|
217 |
+
"video_input": EasyDict({
|
218 |
"num_frames": num_frames,
|
219 |
"sample_type": "rand",
|
220 |
"num_frames_test": num_frames_test,
|
221 |
"sample_type_test": "middle",
|
222 |
"random_aug": False
|
223 |
}),
|
224 |
+
"max_txt_l": EasyDict({"image": max_txt_l, "video": max_txt_l}),
|
225 |
+
"batch_size": EasyDict({"image": batch_size, "video": batch_size}),
|
226 |
+
"batch_size_test": EasyDict({"image": batch_size_test, "video": batch_size_test})
|
227 |
})
|
228 |
|
229 |
# Model configuration
|
230 |
self.text_enc = text_enc
|
231 |
+
self.model = EasyDict(model or {
|
232 |
"model_cls": "InternVideo2_Stage2",
|
233 |
+
"vision_encoder": EasyDict({
|
234 |
"name": "pretrain_internvideo2_1b_patch14_224",
|
235 |
"img_size": 224,
|
236 |
"num_frames": num_frames,
|
|
|
261 |
"only_mask": True
|
262 |
}),
|
263 |
"text_encoder": text_enc,
|
264 |
+
"multimodal": EasyDict({"enable": True}),
|
265 |
"embed_dim": 512,
|
266 |
"temp": 0.07,
|
267 |
"find_unused_parameters": False
|
268 |
})
|
269 |
|
270 |
# Criterion configuration
|
271 |
+
self.criterion = EasyDict(criterion or {
|
272 |
+
"loss_weight": EasyDict({
|
273 |
"vtc": 1.0,
|
274 |
"mlm": 1.0,
|
275 |
"vtm": 1.0,
|
|
|
283 |
})
|
284 |
|
285 |
# Optimizer configuration
|
286 |
+
self.optimizer = EasyDict(optimizer or {
|
287 |
"opt": "adamW",
|
288 |
"lr": 5e-5,
|
289 |
"opt_betas": [0.9, 0.98],
|
290 |
"weight_decay": 0.05,
|
291 |
"max_grad_norm": 3.0,
|
292 |
+
"different_lr": EasyDict({"enable": False, "module_names": [], "lr": 1e-3})
|
293 |
})
|
294 |
|
295 |
# Scheduler configuration
|
296 |
+
self.scheduler = EasyDict(scheduler or {
|
297 |
"sched": "cosine",
|
298 |
"epochs": 10,
|
299 |
"min_lr_multi": 0.01,
|
|
|
303 |
# Evaluation configuration
|
304 |
self.evaluate = evaluate
|
305 |
self.deep_fusion = deep_fusion
|
306 |
+
self.evaluation = EasyDict(evaluation or {
|
307 |
"eval_frame_ensemble": "concat",
|
308 |
"eval_x_only": False,
|
309 |
"k_test": 128,
|
|
|
318 |
self.use_mem_efficient_sdp = use_mem_efficient_sdp
|
319 |
self.compile_model = compile_model
|
320 |
|
321 |
+
self.wandb = EasyDict(wandb or {
|
322 |
"enable": False,
|
323 |
"entity": "opengvlab",
|
324 |
"project": "InternVideo2-Stage2"
|
|
|
340 |
self.save_ckpt_iter = save_ckpt_iter
|
341 |
self.delete_ds_optim_states = delete_ds_optim_states
|
342 |
|
343 |
+
self.deepspeed = EasyDict(deepspeed or {
|
344 |
"enable": True,
|
345 |
"stage": 1
|
346 |
})
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2104856154
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0e5845f86e194d4043bb2d0cfb78fadaae0481882163350973df077cb22256a
|
3 |
size 2104856154
|