Update README.md
Browse files
README.md
CHANGED
@@ -3,197 +3,69 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
# Model Card for Model ID
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
## Uses
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
## Uses
|
7 |
+
Use this code for inference:
|
8 |
+
```python
|
9 |
+
import torch, os
|
10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
|
11 |
+
|
12 |
+
SYSTEM_TEMPLATE = (
|
13 |
+
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. "
|
14 |
+
"The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. "
|
15 |
+
"The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., "
|
16 |
+
"<think> reasoning process here </think> <answer> answer here </answer>."
|
17 |
+
)
|
18 |
+
|
19 |
+
model_path = 'deepseek-ai/DeepSeek-R1-Distill-Qwen-14B'
|
20 |
+
lora_path = "X-ART/LeX-Enhancer_LoRA"
|
21 |
+
simple_caption = "A thank you card with the words very much, with the text on it: \"VERY\" in black, \"MUCH\" in yellow."
|
22 |
+
|
23 |
+
def create_chat_template(user_prompt):
|
24 |
+
return [
|
25 |
+
{"role": "system", "content": SYSTEM_TEMPLATE},
|
26 |
+
{"role": "user", "content": user_prompt},
|
27 |
+
{"role": "assistant", "content": "<think>"}
|
28 |
+
]
|
29 |
+
|
30 |
+
def create_direct_template(user_prompt):
|
31 |
+
return user_prompt + "<think>" # better
|
32 |
+
|
33 |
+
def create_user_prompt(simple_caption):
|
34 |
+
return (
|
35 |
+
"Below is the simple caption of an image with text. Please deduce the detailed description of the image based on this simple caption. "
|
36 |
+
"Note: 1. The description should only include visual elements and should not contain any extended meanings. "
|
37 |
+
"2. The visual elements should be as rich as possible, such as the main objects in the image, their respective attributes, "
|
38 |
+
"the spatial relationships between the objects, lighting and shadows, color style, any text in the image and its style, etc. "
|
39 |
+
"3. The output description should be a single paragraph and should not be structured. "
|
40 |
+
"4. The description should avoid certain situations, such as pure white or black backgrounds, blurry text, excessive rendering of text, "
|
41 |
+
"or harsh visual styles. "
|
42 |
+
"5. The detailed caption should be human readable and fluent. "
|
43 |
+
"6. Avoid using vague expressions such as \"may be\" or \"might be\"; the generated caption must be in a definitive, narrative tone. "
|
44 |
+
"7. Do not use negative sentence structures, such as \"there is nothing in the image,\" etc. The entire caption should directly describe the content of the image. "
|
45 |
+
"8. The entire output should be limited to 200 words.\n\n"
|
46 |
+
"SIMPLE CAPTION: {0}"
|
47 |
+
).format(simple_caption)
|
48 |
+
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", torch_dtype=torch.bfloat16)
|
51 |
+
|
52 |
+
# Tokenize the input prompt
|
53 |
+
messages = create_direct_template(create_user_prompt(simple_caption)) # 3.for direct template
|
54 |
+
input_ids = tokenizer.encode(messages, return_tensors="pt")
|
55 |
+
|
56 |
+
# Generate text using the model
|
57 |
+
streamer = TextStreamer(tokenizer, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
58 |
+
output = model.generate(
|
59 |
+
input_ids.to(model.device),
|
60 |
+
max_length=2048,
|
61 |
+
num_return_sequences=1,
|
62 |
+
do_sample=True,
|
63 |
+
temperature=0.6,
|
64 |
+
repetition_penalty=1.1,
|
65 |
+
streamer=streamer
|
66 |
+
)
|
67 |
+
|
68 |
+
# Print the generated text
|
69 |
+
print("*" * 80)
|
70 |
+
# print(generated_text)
|
71 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|