XGenerationLab commited on
Commit
59c7ef4
·
1 Parent(s): a2f2fb4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +149 -3
README.md CHANGED
@@ -1,3 +1,149 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ ### Important Links
5
+
6
+ 📖[Github](https://github.com/XGenerationLab/XiYanSQL-QwenCoder) |
7
+ 🤗[HuggingFace](https://huggingface.co/collections/XGenerationLab/xiyansql-models-67c9844307b49f87436808fc) |
8
+ 🌐[XiYan-SQL](https://github.com/XGenerationLab/XiYan-SQL) |
9
+ 🌕[析言GBI](https://bailian.console.aliyun.com/xiyan) |
10
+ 🤖[Modelscope Space](https://www.modelscope.cn/studios/XGenerationLab/XiYanSQL-QwenCoder-32B)
11
+
12
+
13
+ ## Introduction
14
+ We are excited to update our new XiYanSQL-QwenCoder series model, demonstrating improvements over its predecessor in some key features.
15
+ - The new XiYanSQL-QwenCoder model applies the merits of GRPO training strategy without thinking process, maintaining high efficiency and accuracy in SQL generation.
16
+ - The new XiYanSQL-QwenCoder model keeps its great performance in various benchmarks, including BIRD, Spider and DW benchmarks which will be released in the future.
17
+ - The new XiYanSQL-QwenCoder model demonstrates better generalization than its predecessor, especially in different dialects and out-of-domain datasets.
18
+
19
+
20
+ ## Model Downloads
21
+
22
+
23
+ | **Model** | **Download Latest** |
24
+ |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
25
+ |XiYanSQL-QwenCoder-3B | 🤗[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-3B-2504) 🤖[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-3B-2504) |
26
+ |XiYanSQL-QwenCoder-7B | 🤗[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-7B-2504) 🤖[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-7B-2504) |
27
+ |XiYanSQL-QwenCoder-14B | 🤗[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-14B-2504) 🤖[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-14B-2504) |
28
+ |XiYanSQL-QwenCoder-32B | 🤗[HuggingFace](https://huggingface.co/XGenerationLab/XiYanSQL-QwenCoder-32B-2504) 🤖[Modelscope](https://www.modelscope.cn/models/XGenerationLab/XiYanSQL-QwenCoder-32B-2504) |
29
+
30
+
31
+
32
+ ## Performance
33
+ The XiYanSQL-QwenCoder models, as multi-dialect SQL base models, demonstrating robust SQL generation capabilities. The following presents the evaluation results at the time of release. We conducted a comprehensive evaluation of the model's performance under two schema formats, M-Schema, and original DDL, using the BIRD and Spider as SQLite benchmarks in the Text-to-SQL domain, as well as DW benchmarks for PostgreSQL and MySQL dialects.
34
+
35
+ | Model name | Size | BIRD Dev@M-Schema | BIRD Dev@DDL | Spider Test@M-Schema | Spider Test@DDL | DW PostgreSQL@M-Schema | DW MySQL@M-Schema |
36
+ |------------------------------|:------:|:-----------------:|:------------:|:--------------------:|:---------------:|:----------------------:|:-----------------:|
37
+ | GPT-4o-0806 | UNK | 58.47% | 54.82% | 82.89% | 78.45% | 46.79% | 57.77% |
38
+ | GPT-4.1-0414 | UNK | 59.39% | 54.11% | 84.45% | 79.86% | 54.29% | 63.18% |
39
+ | Claude3.5-sonnet-1022 | UNK | 53.32% | 50.46% | 76.27% | 73.04% | 55.22% | 52.84% |
40
+ | Claude3.7-sonnet | UNK | 54.82% | 49.22% | 78.04% | 74.66% | 53.23% | 54.61% |
41
+ | Gemini-1.5-Pro | UNK | 61.34% | 57.89% | 85.11% | 84.00% | 52.78% | 62.78% |
42
+ | Gemini-2.5-Pro | UNK | 67.21% | 63.43% | 88.29% | 86.27% | 63.16% | 65.37% |
43
+ | DeepSeek-V2.5-1210 | 236B | 55.74% | 55.61% | 82.08% | 80.57% | 45.74% | 52.18% |
44
+ | DeepSeek-V3 | 685B | 59.58% | 56.71% | 81.52% | 79.91% | 52.56% | 55.95% |
45
+ | DeepSeek-R1 | 685B | 58.15% | 55.61% | 80.72% | 78.85% | 60.56% | xx% |
46
+ | DeepSeek-R1-Distill-Qwen-32B | 32B | 50.65% | 48.31% | 78.65% | 77.33% | 37.22% | 44.72% |
47
+ | Deepseek-Coder-33B-Instruct | 33B | 47.52% | 44.72% | 72.39% | xx% | 31.48% | 36.17% |
48
+ | OmniSQL-32B | 32B | 60.37% | 55.87% | 85.16% | 83.19% | 38.19% | 42.34% |
49
+ | XiYanSQL-QwenCoder-32B-2412 | 32B | 67.07% | 63.04% | 88.39% | 85.46% | 45.07% | 52.84% |
50
+ | XiYanSQL-QwenCoder-32B-2504 | 32B | 67.14% | 62.26% | 89.20% | 86.17% | 53.52% | 57.74% |
51
+
52
+
53
+ ## Requirements
54
+
55
+ transformers >= 4.37.0
56
+ vllm >= 0.7.2
57
+
58
+ ## Quickstart with Transformers and vLLM
59
+
60
+ Here is a simple code snippet for quickly using **XiYanSQL-QwenCoder** model. We provide a Chinese version of the prompt, and you just need to replace the placeholders for "question," "db_schema," and "evidence" to get started. We recommend using our [M-Schema](https://github.com/XGenerationLab/M-Schema) format for the schema; other formats such as DDL are also acceptable, but they may affect performance.
61
+ Currently, we mainly support mainstream dialects like SQLite, PostgreSQL, and MySQL.
62
+
63
+ ### Prompt Template
64
+ ```python
65
+ nl2sqlite_template_cn = """你是一名{dialect}专家,现在需要阅读并理解下面的【数据库schema】描述,以及可能用到的【参考信息】,并运用{dialect}知识生成sql语句回答【用户问题】。
66
+ 【用户问题】
67
+ {question}
68
+
69
+ 【数据库schema】
70
+ {db_schema}
71
+
72
+ 【参考信息】
73
+ {evidence}
74
+
75
+ 【用户问题】
76
+ {question}
77
+
78
+ ```sql"""
79
+ ```
80
+
81
+
82
+ ### Inference with Transformers
83
+ ```python
84
+ import torch
85
+ from transformers import AutoModelForCausalLM, AutoTokenizer
86
+
87
+ model_name = "XGenerationLab/XiYanSQL-QwenCoder-32B-2502"
88
+ model = AutoModelForCausalLM.from_pretrained(
89
+ model_name,
90
+ torch_dtype=torch.bfloat16,
91
+ device_map="auto"
92
+ )
93
+
94
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
95
+
96
+ ## dialects -> ['SQLite', 'PostgreSQL', 'MySQL']
97
+ prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="")
98
+ message = [{'role': 'user', 'content': prompt}]
99
+
100
+ text = tokenizer.apply_chat_template(
101
+ message,
102
+ tokenize=False,
103
+ add_generation_prompt=True
104
+ )
105
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
106
+
107
+ generated_ids = model.generate(
108
+ **model_inputs,
109
+ pad_token_id=tokenizer.pad_token_id,
110
+ eos_token_id=tokenizer.eos_token_id,
111
+ max_new_tokens=1024,
112
+ temperature=0.1,
113
+ top_p=0.8,
114
+ do_sample=True,
115
+ )
116
+ generated_ids = [
117
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
118
+ ]
119
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
120
+ ```
121
+
122
+ ### Inference with vLLM
123
+ ```python
124
+ from vllm import LLM, SamplingParams
125
+ from transformers import AutoTokenizer
126
+ model_path = "XGenerationLab/XiYanSQL-QwenCoder-32B-2502"
127
+ llm = LLM(model=model_path, tensor_parallel_size=8)
128
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
129
+ sampling_params = SamplingParams(
130
+ n=1,
131
+ temperature=0.1,
132
+ max_tokens=2048
133
+ )
134
+
135
+ ## dialects -> ['SQLite', 'PostgreSQL', 'MySQL']
136
+ prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="")
137
+ message = [{'role': 'user', 'content': prompt}]
138
+ text = tokenizer.apply_chat_template(
139
+ message,
140
+ tokenize=False,
141
+ add_generation_prompt=True
142
+ )
143
+ outputs = llm.generate([text], sampling_params=sampling_params)
144
+ response = outputs[0].outputs[0].text
145
+ ```
146
+
147
+
148
+ ## Acknowledgments
149
+ If you find our work useful, please give us a citation or a like, so we can make a greater contribution to the open-source community!