Add/update the quantized ONNX model files and README.md for Transformers.js v3 (#1)
Browse files- Add/update the quantized ONNX model files and README.md for Transformers.js v3 (b84c2ea3b06dcef69362e87b66f98335756d1f81)
Co-authored-by: Yuichiro Tachibana <[email protected]>
- README.md +3 -4
- onnx/model_bnb4.onnx +3 -0
- onnx/model_q4.onnx +3 -0
- onnx/model_q4f16.onnx +3 -0
- onnx/model_uint8.onnx +3 -0
README.md
CHANGED
@@ -7,15 +7,15 @@ https://huggingface.co/YituTech/conv-bert-base with ONNX weights to be compatibl
|
|
7 |
|
8 |
## Usage (Transformers.js)
|
9 |
|
10 |
-
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@
|
11 |
```bash
|
12 |
-
npm i @
|
13 |
```
|
14 |
|
15 |
**Example:** Feature extraction w/ `Xenova/conv-bert-base`.
|
16 |
|
17 |
```javascript
|
18 |
-
import { pipeline } from '@
|
19 |
|
20 |
// Create feature extraction pipeline
|
21 |
const extractor = await pipeline('feature-extraction', 'Xenova/conv-bert-base');
|
@@ -33,5 +33,4 @@ console.log(output)
|
|
33 |
|
34 |
---
|
35 |
|
36 |
-
|
37 |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|
|
|
7 |
|
8 |
## Usage (Transformers.js)
|
9 |
|
10 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
|
11 |
```bash
|
12 |
+
npm i @huggingface/transformers
|
13 |
```
|
14 |
|
15 |
**Example:** Feature extraction w/ `Xenova/conv-bert-base`.
|
16 |
|
17 |
```javascript
|
18 |
+
import { pipeline } from '@huggingface/transformers';
|
19 |
|
20 |
// Create feature extraction pipeline
|
21 |
const extractor = await pipeline('feature-extraction', 'Xenova/conv-bert-base');
|
|
|
33 |
|
34 |
---
|
35 |
|
|
|
36 |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
|
onnx/model_bnb4.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1081ce96b4653bd902703dff77eee001bccf5fcd599e1d5aedcb6c80b79bc78c
|
3 |
+
size 154677945
|
onnx/model_q4.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28bfb5b8e60722357260e650cc29454d15c92c13319b8b9e2ba51a5b22ae1934
|
3 |
+
size 159558789
|
onnx/model_q4f16.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f52319f607f7e2f12aa0d835e18e4037eb8c3888e74089cf8502d83aa7fb972a
|
3 |
+
size 99527486
|
onnx/model_uint8.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4be0dd8fa8125aecd598ebb133716f26dfa083ef090d1366c1626a8748de1a20
|
3 |
+
size 106625276
|