File size: 1,639 Bytes
f2fd34d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
license: mit
datasets:
- HuggingFaceH4/CodeAlpaca_20K
base_model:
- Qwen/Qwen3-0.6B
---
# π§ Qwen-0.6B β Code Generation Model
**Model Repo:** `XformAI-india/qwen-0.6b-coder`
**Base Model:** [`Qwen/Qwen-0.5B`](https://huggingface.co/Qwen/Qwen-0.5B)
**Task:** Code generation and completion
**Trained by:** [XformAI](https://xformai.in)
**Date:** May 2025
---
## π What is this?
This is a fine-tuned version of Qwen-0.6B optimized for **code generation, completion, and programming logic reasoning**.
Itβs designed to be lightweight, fast, and capable of handling common developer tasks across multiple programming languages.
---
## π» Use Cases
- AI-powered code assistants
- Auto-completion for IDEs
- Offline code generation
- Learning & training environments
- Natural language β code prompts
---
## π Training Details
| Parameter | Value |
|---------------|--------------|
| Epochs | 3 |
| Batch Size | 16 |
| Optimizer | AdamW |
| Precision | bfloat16 |
| Context Window | 2048 tokens |
| Framework | π€ Transformers + LoRA (PEFT)
---
## π Example Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("XformAI-india/qwen-0.6b-coder")
tokenizer = AutoTokenizer.from_pretrained("XformAI-india/qwen-0.6b-coder")
prompt = "Write a Python function that checks if a number is prime:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=150)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|