--- license: mit datasets: - HuggingFaceH4/CodeAlpaca_20K base_model: - Qwen/Qwen3-0.6B --- # 🧠 Qwen-0.6B – Code Generation Model **Model Repo:** `XformAI-india/qwen-0.6b-coder` **Base Model:** [`Qwen/Qwen-0.5B`](https://huggingface.co/Qwen/Qwen-0.5B) **Task:** Code generation and completion **Trained by:** [XformAI](https://xformai.in) **Date:** May 2025 --- ## πŸ” What is this? This is a fine-tuned version of Qwen-0.6B optimized for **code generation, completion, and programming logic reasoning**. It’s designed to be lightweight, fast, and capable of handling common developer tasks across multiple programming languages. --- ## πŸ’» Use Cases - AI-powered code assistants - Auto-completion for IDEs - Offline code generation - Learning & training environments - Natural language β†’ code prompts --- ## πŸ“š Training Details | Parameter | Value | |---------------|--------------| | Epochs | 3 | | Batch Size | 16 | | Optimizer | AdamW | | Precision | bfloat16 | | Context Window | 2048 tokens | | Framework | πŸ€— Transformers + LoRA (PEFT) --- ## πŸš€ Example Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("XformAI-india/qwen-0.6b-coder") tokenizer = AutoTokenizer.from_pretrained("XformAI-india/qwen-0.6b-coder") prompt = "Write a Python function that checks if a number is prime:" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=150) print(tokenizer.decode(outputs[0], skip_special_tokens=True))