Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,69 @@
|
|
1 |
-
---
|
2 |
-
license:
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model:
|
4 |
+
- Qwen/Qwen3-1.7B
|
5 |
+
tags:
|
6 |
+
- code
|
7 |
+
- qwen3
|
8 |
+
---
|
9 |
+
# π» Qwen-1.7B Coder β XformAI Fine-Tuned
|
10 |
+
|
11 |
+
**Model:** `XformAI-india/qwen-1.7b-coder`
|
12 |
+
**Base Model:** [`Qwen/Qwen3-1.7B`](https://huggingface.co/Qwen/Qwen3-1.7B)
|
13 |
+
**Architecture:** Transformer decoder (GPT-style)
|
14 |
+
**Size:** 1.7 Billion Parameters
|
15 |
+
**Fine-Tuned By:** [XformAI](https://xformai.in)
|
16 |
+
**Release Date:** May 2025
|
17 |
+
**License:** MIT
|
18 |
+
|
19 |
+
---
|
20 |
+
|
21 |
+
## π Overview
|
22 |
+
|
23 |
+
`qwen-1.7b-coder` is a **purpose-built code generation model**, fine-tuned from Qwen3 1.7B by XformAI to deliver highly usable Python, JS, and Bash snippets with low-latency inference.
|
24 |
+
|
25 |
+
Designed to help:
|
26 |
+
- π§βπ» Developers
|
27 |
+
- π§ AI agents
|
28 |
+
- βοΈ Backend toolchains
|
29 |
+
Generate and complete code reliably β both in IDEs and on edge devices.
|
30 |
+
|
31 |
+
---
|
32 |
+
|
33 |
+
## π§ Training Highlights
|
34 |
+
|
35 |
+
| Aspect | Value |
|
36 |
+
|---------------------|--------------------|
|
37 |
+
| Fine-Tuning Type | Instruction-tuned on code corpus |
|
38 |
+
| Target Domains | Python, Bash, HTML, JavaScript |
|
39 |
+
| Style | Docstring-to-code, prompt-to-app |
|
40 |
+
| Tuning Technique | LoRA (8-bit) + PEFT |
|
41 |
+
| Framework | π€ Transformers |
|
42 |
+
| Precision | bfloat16 |
|
43 |
+
| Epochs | 3 |
|
44 |
+
| Max Tokens | 2048 |
|
45 |
+
|
46 |
+
---
|
47 |
+
|
48 |
+
## π§ Use Cases
|
49 |
+
|
50 |
+
- VSCode-like autocomplete agents
|
51 |
+
- Shell command assistants
|
52 |
+
- Backend logic & API template generation
|
53 |
+
- Code-aware chatbots
|
54 |
+
- On-device copilots
|
55 |
+
|
56 |
+
---
|
57 |
+
|
58 |
+
## βοΈ Example Prompt + Usage
|
59 |
+
|
60 |
+
```python
|
61 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
62 |
+
|
63 |
+
model = AutoModelForCausalLM.from_pretrained("XformAI-india/qwen-1.7b-coder")
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained("XformAI-india/qwen-1.7b-coder")
|
65 |
+
|
66 |
+
prompt = "Write a Python script that takes a directory path and prints all .txt file names inside it."
|
67 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
68 |
+
outputs = model.generate(**inputs, max_new_tokens=200)
|
69 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|