File size: 8,552 Bytes
b30c1d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import json
import argparse
from torch.utils.data import DataLoader
from pointllm.data import ModelNet
from tqdm import tqdm
import torch
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from llava.conversation import conv_templates
from llava.model.builder import load_pretrained_model
from llava.mm_utils import  tokenizer_image_token, get_model_name_from_path


class MyClass:

    def __init__(self, arg):

        self.vision_tower = None
        self.pretrain_mm_mlp_adapter = arg.pretrain_mm_mlp_adapter
        self.encoder_type = 'pc_encoder'
        self.std=arg.std
        self.pc_encoder_type = arg.pc_encoder_type
        self.pc_feat_dim = 192
        self.embed_dim = 1024
        self.group_size = 64
        self.num_group =512
        self.pc_encoder_dim =512
        self.patch_dropout = 0.0
        self.pc_ckpt_path = arg.pc_ckpt_path
        self.lora_path = arg.lora_path
        self.model_path=arg.model_path
        self.get_pc_tokens_way=arg.get_pc_tokens_way


def init_model(model_arg_):
    model_path = "llava-vicuna_phi_3_finetune_weight"
    model_name = get_model_name_from_path(model_path)
    model_path = model_arg_.model_path
    tokenizer, model, context_len = load_pretrained_model(model_path, None, model_name)

    if model_arg_.lora_path:
        from peft import PeftModel

        model = PeftModel.from_pretrained(model, model_arg_.lora_path)
        print("load lora weight ok")

    model.get_model().initialize_other_modules(model_arg_)
    print("load encoder, mlp ok")
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    # 将模型加载到CUDA设备
    model.to(dtype=torch.bfloat16)
    model.get_model().vision_tower.to(dtype=torch.float)
    model.to(device)

    return tokenizer, model



PROMPT_LISTS = [
    "What is this?",
    "This is an object of "
]


def load_dataset(data_path, config_path, split, subset_nums, use_color):
    print(f"Loading {split} split of ModelNet datasets.")
    dataset = ModelNet(data_path=data_path, config_path=config_path, split=split, subset_nums=subset_nums, use_color=use_color)
    print("Done!")
    return dataset

def get_dataloader(dataset, batch_size, shuffle=False, num_workers=4):
    assert shuffle is False, "Since we using the index of ModelNet as Object ID when evaluation \
        so shuffle shoudl be False and should always set random seed."
    dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
    return dataloader


def start_generation(model,  tokenizer, dataloader, prompt_index, output_dir, output_file, args):
    # stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    qs = PROMPT_LISTS[prompt_index]

    results = {"prompt": qs}

    qs = DEFAULT_IMAGE_TOKEN + "\n" + qs

    conv_mode = "phi3_instruct"
    conv = conv_templates[conv_mode].copy()
    conv.append_message(conv.roles[0], qs)
    conv.append_message(conv.roles[1], None)
    qs = conv.get_prompt()

    input_ids = (
        tokenizer_image_token(qs, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
            .unsqueeze(0)
            .cuda()
    )

    responses = []

    for batch in tqdm(dataloader):
        point_clouds = batch["point_clouds"].cuda()  # * tensor of B, N, C(3)
        labels = batch["labels"]
        label_names = batch["label_names"]
        indice = batch["indice"]

        texts = input_ids.repeat(point_clouds.size()[0], 1)

        images_tensor = point_clouds.to(dtype=torch.bfloat16)

        temperature = args.temperature
        top_p = args.top_p

        max_new_tokens = args.max_new_tokens
        min_new_tokens = args.min_new_tokens
        num_beams = args.num_beams

        with torch.inference_mode():
            output_ids = model.generate(
                texts,
                images=images_tensor,
                do_sample=True if temperature > 0 and num_beams == 1 else False,
                temperature=temperature,
                top_p=top_p,
                num_beams=num_beams,
                max_new_tokens=max_new_tokens,
                min_new_tokens=min_new_tokens,
                use_cache=True,
            )

        answers = tokenizer.batch_decode(output_ids, skip_special_tokens=True)

        outputs = []
        for answer in answers:
            answer = answer.strip()
            answer = answer.replace("<|end|>", "").strip()
            outputs.append(answer)

        # saving results
        for index, output, label, label_name in zip(indice, outputs, labels, label_names):
            responses.append({
                "object_id": index.item(),
                "ground_truth": label.item(),
                "model_output": output,
                "label_name": label_name
            })
    
    results["results"] = responses

    os.makedirs(output_dir, exist_ok=True)
    # save the results to a JSON file
    with open(os.path.join(output_dir, output_file), 'w') as fp:
        json.dump(results, fp, indent=2)

    # * print info
    print(f"Saved results to {os.path.join(output_dir, output_file)}")

    return results

def main(args):
    # * ouptut
    args.output_dir = os.path.join(args.out_path, "evaluation")

    # * output file 
    args.output_file = f"ModelNet_classification_prompt{args.prompt_index}.json"
    args.output_file_path = os.path.join(args.output_dir, args.output_file)

    # * First inferencing, then evaluate
    if not os.path.exists(args.output_file_path):
        # * need to generate results first
        dataset = load_dataset(data_path=args.data_path, config_path=None, split=args.split, subset_nums=args.subset_nums, use_color=args.use_color) # * defalut config
        dataloader = get_dataloader(dataset, args.batch_size, args.shuffle, args.num_workers)

        model_arg = MyClass(args)
        tokenizer, model = init_model(model_arg)


        model.eval()

        # * ouptut
        print(f'[INFO] Start generating results for {args.output_file}.')
        results = start_generation(model, tokenizer, dataloader, args.prompt_index, args.output_dir, args.output_file, args)

        # * release model and tokenizer, and release cuda memory
        del model

        torch.cuda.empty_cache()
    else:
        # * directly load the results
        print(f'[INFO] {args.output_file_path} already exists, directly loading...')
        with open(args.output_file_path, 'r') as fp:
            results = json.load(fp)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--out_path", type=str,  default="./output_json")
    parser.add_argument("--pretrain_mm_mlp_adapter", type=str,  required=True)



    parser.add_argument("--lora_path", type=str, default=None)
    parser.add_argument("--model_path", type=str, default='./lava-vicuna_2024_4_Phi-3-mini-4k-instruct')

    parser.add_argument("--std", type=float, default=0.0)
    parser.add_argument("--pc_ckpt_path",  type=str,  required=True, default="./pretrained_weight/Uni3D_PC_encoder/modelzoo/uni3d-small/model.pt")
    parser.add_argument("--pc_encoder_type", type=str, required=True, default='small')
    parser.add_argument("--get_pc_tokens_way", type=str, required=True)

    # * dataset type
    parser.add_argument("--data_path", type=str, default="./dataset/modelnet40_data", help="train or test.")
    parser.add_argument("--split", type=str, default="test", help="train or test.")
    parser.add_argument("--use_color",  action="store_true", default=True)

    # * data loader, batch_size, shuffle, num_workers
    parser.add_argument("--batch_size", type=int, default=10)
    parser.add_argument("--shuffle", type=bool, default=False)
    parser.add_argument("--num_workers", type=int, default=20)
    parser.add_argument("--subset_nums", type=int, default=-1) # * only use "subset_nums" of samples, mainly for debug 

    # * evaluation setting
    parser.add_argument("--prompt_index", type=int, required=True,  help="0 or 1")

    ############## new add
    parser.add_argument("--max_new_tokens", type=int, default=110, help="max number of generated tokens")
    parser.add_argument("--min_new_tokens", type=int, default=0, help="min number of generated tokens")
    parser.add_argument("--num_beams", type=int, default=1)
    parser.add_argument("--temperature", type=float, default=0.1)
    parser.add_argument("--top_k", type=int, default=1)
    parser.add_argument("--top_p", type=float, default=0.7)
    ############## new add

    args = parser.parse_args()

    main(args)