File size: 8,552 Bytes
b30c1d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import os
import json
import argparse
from torch.utils.data import DataLoader
from pointllm.data import ModelNet
from tqdm import tqdm
import torch
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from llava.conversation import conv_templates
from llava.model.builder import load_pretrained_model
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path
class MyClass:
def __init__(self, arg):
self.vision_tower = None
self.pretrain_mm_mlp_adapter = arg.pretrain_mm_mlp_adapter
self.encoder_type = 'pc_encoder'
self.std=arg.std
self.pc_encoder_type = arg.pc_encoder_type
self.pc_feat_dim = 192
self.embed_dim = 1024
self.group_size = 64
self.num_group =512
self.pc_encoder_dim =512
self.patch_dropout = 0.0
self.pc_ckpt_path = arg.pc_ckpt_path
self.lora_path = arg.lora_path
self.model_path=arg.model_path
self.get_pc_tokens_way=arg.get_pc_tokens_way
def init_model(model_arg_):
model_path = "llava-vicuna_phi_3_finetune_weight"
model_name = get_model_name_from_path(model_path)
model_path = model_arg_.model_path
tokenizer, model, context_len = load_pretrained_model(model_path, None, model_name)
if model_arg_.lora_path:
from peft import PeftModel
model = PeftModel.from_pretrained(model, model_arg_.lora_path)
print("load lora weight ok")
model.get_model().initialize_other_modules(model_arg_)
print("load encoder, mlp ok")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 将模型加载到CUDA设备
model.to(dtype=torch.bfloat16)
model.get_model().vision_tower.to(dtype=torch.float)
model.to(device)
return tokenizer, model
PROMPT_LISTS = [
"What is this?",
"This is an object of "
]
def load_dataset(data_path, config_path, split, subset_nums, use_color):
print(f"Loading {split} split of ModelNet datasets.")
dataset = ModelNet(data_path=data_path, config_path=config_path, split=split, subset_nums=subset_nums, use_color=use_color)
print("Done!")
return dataset
def get_dataloader(dataset, batch_size, shuffle=False, num_workers=4):
assert shuffle is False, "Since we using the index of ModelNet as Object ID when evaluation \
so shuffle shoudl be False and should always set random seed."
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
return dataloader
def start_generation(model, tokenizer, dataloader, prompt_index, output_dir, output_file, args):
# stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
qs = PROMPT_LISTS[prompt_index]
results = {"prompt": qs}
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
conv_mode = "phi3_instruct"
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
qs = conv.get_prompt()
input_ids = (
tokenizer_image_token(qs, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
.unsqueeze(0)
.cuda()
)
responses = []
for batch in tqdm(dataloader):
point_clouds = batch["point_clouds"].cuda() # * tensor of B, N, C(3)
labels = batch["labels"]
label_names = batch["label_names"]
indice = batch["indice"]
texts = input_ids.repeat(point_clouds.size()[0], 1)
images_tensor = point_clouds.to(dtype=torch.bfloat16)
temperature = args.temperature
top_p = args.top_p
max_new_tokens = args.max_new_tokens
min_new_tokens = args.min_new_tokens
num_beams = args.num_beams
with torch.inference_mode():
output_ids = model.generate(
texts,
images=images_tensor,
do_sample=True if temperature > 0 and num_beams == 1 else False,
temperature=temperature,
top_p=top_p,
num_beams=num_beams,
max_new_tokens=max_new_tokens,
min_new_tokens=min_new_tokens,
use_cache=True,
)
answers = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
outputs = []
for answer in answers:
answer = answer.strip()
answer = answer.replace("<|end|>", "").strip()
outputs.append(answer)
# saving results
for index, output, label, label_name in zip(indice, outputs, labels, label_names):
responses.append({
"object_id": index.item(),
"ground_truth": label.item(),
"model_output": output,
"label_name": label_name
})
results["results"] = responses
os.makedirs(output_dir, exist_ok=True)
# save the results to a JSON file
with open(os.path.join(output_dir, output_file), 'w') as fp:
json.dump(results, fp, indent=2)
# * print info
print(f"Saved results to {os.path.join(output_dir, output_file)}")
return results
def main(args):
# * ouptut
args.output_dir = os.path.join(args.out_path, "evaluation")
# * output file
args.output_file = f"ModelNet_classification_prompt{args.prompt_index}.json"
args.output_file_path = os.path.join(args.output_dir, args.output_file)
# * First inferencing, then evaluate
if not os.path.exists(args.output_file_path):
# * need to generate results first
dataset = load_dataset(data_path=args.data_path, config_path=None, split=args.split, subset_nums=args.subset_nums, use_color=args.use_color) # * defalut config
dataloader = get_dataloader(dataset, args.batch_size, args.shuffle, args.num_workers)
model_arg = MyClass(args)
tokenizer, model = init_model(model_arg)
model.eval()
# * ouptut
print(f'[INFO] Start generating results for {args.output_file}.')
results = start_generation(model, tokenizer, dataloader, args.prompt_index, args.output_dir, args.output_file, args)
# * release model and tokenizer, and release cuda memory
del model
torch.cuda.empty_cache()
else:
# * directly load the results
print(f'[INFO] {args.output_file_path} already exists, directly loading...')
with open(args.output_file_path, 'r') as fp:
results = json.load(fp)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--out_path", type=str, default="./output_json")
parser.add_argument("--pretrain_mm_mlp_adapter", type=str, required=True)
parser.add_argument("--lora_path", type=str, default=None)
parser.add_argument("--model_path", type=str, default='./lava-vicuna_2024_4_Phi-3-mini-4k-instruct')
parser.add_argument("--std", type=float, default=0.0)
parser.add_argument("--pc_ckpt_path", type=str, required=True, default="./pretrained_weight/Uni3D_PC_encoder/modelzoo/uni3d-small/model.pt")
parser.add_argument("--pc_encoder_type", type=str, required=True, default='small')
parser.add_argument("--get_pc_tokens_way", type=str, required=True)
# * dataset type
parser.add_argument("--data_path", type=str, default="./dataset/modelnet40_data", help="train or test.")
parser.add_argument("--split", type=str, default="test", help="train or test.")
parser.add_argument("--use_color", action="store_true", default=True)
# * data loader, batch_size, shuffle, num_workers
parser.add_argument("--batch_size", type=int, default=10)
parser.add_argument("--shuffle", type=bool, default=False)
parser.add_argument("--num_workers", type=int, default=20)
parser.add_argument("--subset_nums", type=int, default=-1) # * only use "subset_nums" of samples, mainly for debug
# * evaluation setting
parser.add_argument("--prompt_index", type=int, required=True, help="0 or 1")
############## new add
parser.add_argument("--max_new_tokens", type=int, default=110, help="max number of generated tokens")
parser.add_argument("--min_new_tokens", type=int, default=0, help="min number of generated tokens")
parser.add_argument("--num_beams", type=int, default=1)
parser.add_argument("--temperature", type=float, default=0.1)
parser.add_argument("--top_k", type=int, default=1)
parser.add_argument("--top_p", type=float, default=0.7)
############## new add
args = parser.parse_args()
main(args)
|