File size: 9,596 Bytes
b30c1d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import os
import argparse
import torch
import json
from torch.utils.data import DataLoader
from tqdm import tqdm

from pointllm.data import ObjectPointCloudDataset


PROMPT_LISTS = [
    "What is this?",
    "This is an object of ",
    "Caption this 3D model in detail.",
]


from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from llava.conversation import conv_templates
from llava.model.builder import load_pretrained_model
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path


class MyClass:

    def __init__(self, arg):

        self.vision_tower = None
        self.pretrain_mm_mlp_adapter = arg.pretrain_mm_mlp_adapter

        self.encoder_type = 'pc_encoder'  # text_encoder, pc_encoder
        self.std=arg.std

        self.pc_encoder_type = arg.pc_encoder_type
        self.pc_feat_dim = 192  # 不同的pc encoder 不同
        self.embed_dim = 1024
        self.group_size = 64
        self.num_group =512
        self.pc_encoder_dim =512
        self.patch_dropout = 0.0
        self.pc_ckpt_path = arg.pc_ckpt_path
        self.lora_path = arg.lora_path
        self.model_path=arg.model_path
        self.get_pc_tokens_way=arg.get_pc_tokens_way


def init_model(model_arg_):
    model_path = "llava-vicuna_phi_3_finetune_weight"
    model_name = get_model_name_from_path(model_path)
    model_path = model_arg_.model_path
    tokenizer, model, context_len = load_pretrained_model(model_path, None, model_name)

    if model_arg_.lora_path:
        from peft import PeftModel

        model = PeftModel.from_pretrained(model, model_arg_.lora_path)
        print("load lora weight ok")

    model.get_model().initialize_other_modules(model_arg_)
    print("load encoder, mlp ok")
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    model.to(dtype=torch.bfloat16)
    model.get_model().vision_tower.to(dtype=torch.float)
    model.to(device)

    return tokenizer, model



def load_dataset(data_path, anno_path, pointnum, conversation_types, use_color):
    print("Loading validation datasets.")
    dataset = ObjectPointCloudDataset(
        data_path=data_path,
        anno_path=anno_path,
        pointnum=pointnum,
        conversation_types=conversation_types,
        use_color=use_color,
        tokenizer=None  # * load point cloud only
    )
    print("Done!")
    return dataset


def get_dataloader(dataset, batch_size, shuffle=False, num_workers=4):
    dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
    return dataloader


def start_generation(model, dataloader, annos, prompt_index, output_dir, output_file, tokenizer, args):
    qs = PROMPT_LISTS[prompt_index]

    results = {"prompt": qs}


    qs = DEFAULT_IMAGE_TOKEN + "\n" + qs

    conv_mode = 'phi3_instruct'
    conv = conv_templates[conv_mode].copy()
    conv.append_message(conv.roles[0], qs)
    conv.append_message(conv.roles[1], None)
    qs = conv.get_prompt()

    print("qs:",qs)


    input_ids = (
        tokenizer_image_token(qs, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
            .unsqueeze(0)
            .cuda()
    )


    responses = []

    for batch in tqdm(dataloader):
        point_clouds = batch["point_clouds"].cuda()
        object_ids = batch["object_ids"]  # * list of string

        texts = input_ids.repeat(point_clouds.size()[0], 1)

        images_tensor = point_clouds.to(dtype=torch.bfloat16)  #  torch.Size([20, 8192, 6]


        temperature = args.temperature
        top_p = args.top_p

        max_new_tokens = args.max_new_tokens
        min_new_tokens = args.min_new_tokens
        num_beams = args.num_beams
        repetition_penalty=args.repetition_penalty


        with torch.inference_mode():
            output_ids = model.generate(
                texts,
                images=images_tensor,
                do_sample=True if temperature > 0 and num_beams == 1 else False,
                temperature=temperature,
                top_p=top_p,
                num_beams=num_beams,
                max_new_tokens=max_new_tokens,
                min_new_tokens=min_new_tokens,
                use_cache=True,
                repetition_penalty=repetition_penalty,
            )



        answers = tokenizer.batch_decode(output_ids, skip_special_tokens=True)

        outputs = []
        for answer in answers:
            answer = answer.strip()
            answer = answer.replace("<|end|>", "").strip()
            outputs.append(answer)

        # saving results
        for obj_id, output in zip(object_ids, outputs):
            responses.append({
                "object_id": obj_id,
                "ground_truth": annos[obj_id],
                "model_output": output
            })

    results["results"] = responses

    os.makedirs(output_dir, exist_ok=True)
    # save the results to a JSON file
    with open(os.path.join(output_dir, output_file), 'w') as fp:
        json.dump(results, fp, indent=2)

    # * print info
    print(f"Saved results to {os.path.join(output_dir, output_file)}")

    return results


def main(args):
    # * ouptut
    args.output_dir = os.path.join(args.out_path, "evaluation")

    # * output file 
    anno_file = os.path.splitext(os.path.basename(args.anno_path))[0]
    args.output_file = f"{anno_file}_Objaverse_{args.task_type}_prompt{args.prompt_index}.json"
    args.output_file_path = os.path.join(args.output_dir, args.output_file)

    # * First inferencing, then evaluate
    if not os.path.exists(args.output_file_path):
        # * need inferencing
        # * load annotation files
        with open(args.anno_path, 'r') as fp:
            annos = json.load(fp)

        dataset = load_dataset(args.data_path, args.anno_path, args.pointnum, ("simple_description",), args.use_color)
        dataloader = get_dataloader(dataset, args.batch_size, args.shuffle, args.num_workers)

        model_arg = MyClass(args)
        tokenizer, model = init_model(model_arg)
        model.eval()

        # * convert annos file from [{"object_id": }] to {"object_id": }
        annos = {anno["object_id"]: anno["conversations"][1]['value'] for anno in annos}

        print(f'[INFO] Start generating results for {args.output_file}.')
        results = start_generation(model, dataloader, annos, args.prompt_index, args.output_dir, args.output_file, tokenizer, args)

        # * release model and release cuda memory
        del model

        torch.cuda.empty_cache()
    else:
        # * directly load the results
        print(f'[INFO] {args.output_file_path} already exists, directly loading...')
        with open(args.output_file_path, 'r') as fp:
            results = json.load(fp)




if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument("--out_path", type=str,  default="./output_json")
    parser.add_argument("--pretrain_mm_mlp_adapter", type=str,  required=True)

    parser.add_argument("--lora_path", type=str, default=None)
    parser.add_argument("--model_path", type=str, default='./lava-vicuna_2024_4_Phi-3-mini-4k-instruct')

    parser.add_argument("--std", type=float, default=0.0)
    parser.add_argument("--pc_ckpt_path",  type=str,  required=True, default="./pretrained_weight/Uni3D_PC_encoder/modelzoo/uni3d-small/model.pt")
    parser.add_argument("--pc_encoder_type", type=str, required=True, default='small')
    parser.add_argument("--get_pc_tokens_way", type=str, required=True)
    
    # * dataset type
    parser.add_argument("--data_path", type=str, default="./dataset/Objaverse/8192_npy", required=False)

    parser.add_argument("--anno_path", type=str,
                        default="./dataset/Objaverse/PointLLM_brief_description_val_200_GT.json",
                        required=False)
    parser.add_argument("--pointnum", type=int, default=8192)
    parser.add_argument("--use_color", action="store_true", default=True)

    # * data loader, batch_size, shuffle, num_workers
    parser.add_argument("--batch_size", type=int, default=10)
    parser.add_argument("--shuffle", type=bool, default=False)
    parser.add_argument("--num_workers", type=int, default=10)

    # * evaluation setting
    parser.add_argument("--prompt_index", type=int, default=0)

    parser.add_argument("--task_type", type=str, default="classification", choices=["captioning", "classification"],
                        help="Type of the task to evaluate.")


    ############## new add
    parser.add_argument("--max_new_tokens", type=int, default=150, help="max number of generated tokens")
    parser.add_argument("--min_new_tokens", type=int, default=0, help="min number of generated tokens")
    parser.add_argument("--num_beams", type=int, default=1)
    parser.add_argument("--temperature", type=float, default=0.1)
    parser.add_argument("--top_k", type=int, default=1)  # 暂时没起作用
    parser.add_argument("--top_p", type=float, default=0.7)
    parser.add_argument("--repetition_penalty", type=float, default=1 )
    ############## new add

    args = parser.parse_args()

    # * check prompt index
    # * * classification: 0, 1 and captioning: 2. Raise Warning otherwise.
    if args.task_type == "classification":
        if args.prompt_index != 0 and args.prompt_index != 1:
            print("[Warning] For classification task, prompt_index should be 0 or 1.")
    elif args.task_type == "captioning":
        pass
        if args.prompt_index != 2:
            print("[Warning] For captioning task, prompt_index should be 2.")
    else:
        raise NotImplementedError

    main(args)