File size: 5,369 Bytes
b30c1d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import os.path as osp
import shlex
import shutil
import subprocess

import lmdb
import msgpack_numpy
import numpy as np
import torch
import torch.utils.data as data
import tqdm

BASE_DIR = os.path.dirname(os.path.abspath(__file__))


def pc_normalize(pc):
    l = pc.shape[0]
    centroid = np.mean(pc, axis=0)
    pc = pc - centroid
    m = np.max(np.sqrt(np.sum(pc ** 2, axis=1)))
    pc = pc / m
    return pc


class ModelNet40Cls(data.Dataset):
    def __init__(self, num_points, transforms=None, train=True, download=True):
        super().__init__()

        self.transforms = transforms

        self.set_num_points(num_points)
        self._cache = os.path.join(BASE_DIR, "modelnet40_normal_resampled_cache")

        if not osp.exists(self._cache):
            self.folder = "modelnet40_normal_resampled"
            self.data_dir = os.path.join(BASE_DIR, self.folder)
            self.url = (
                "https://shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip"
            )

            if download and not os.path.exists(self.data_dir):
                zipfile = os.path.join(BASE_DIR, os.path.basename(self.url))
                subprocess.check_call(
                    shlex.split("curl {} -o {}".format(self.url, zipfile))
                )

                subprocess.check_call(
                    shlex.split("unzip {} -d {}".format(zipfile, BASE_DIR))
                )

                subprocess.check_call(shlex.split("rm {}".format(zipfile)))

            self.train = train
            self.set_num_points(num_points)

            self.catfile = os.path.join(self.data_dir, "modelnet40_shape_names.txt")
            self.cat = [line.rstrip() for line in open(self.catfile)]
            self.classes = dict(zip(self.cat, range(len(self.cat))))

            os.makedirs(self._cache)

            print("Converted to LMDB for faster dataloading while training")
            for split in ["train", "test"]:
                if split == "train":
                    shape_ids = [
                        line.rstrip()
                        for line in open(
                            os.path.join(self.data_dir, "modelnet40_train.txt")
                        )
                    ]
                else:
                    shape_ids = [
                        line.rstrip()
                        for line in open(
                            os.path.join(self.data_dir, "modelnet40_test.txt")
                        )
                    ]

                shape_names = ["_".join(x.split("_")[0:-1]) for x in shape_ids]
                # list of (shape_name, shape_txt_file_path) tuple
                self.datapath = [
                    (
                        shape_names[i],
                        os.path.join(self.data_dir, shape_names[i], shape_ids[i])
                        + ".txt",
                    )
                    for i in range(len(shape_ids))
                ]

                with lmdb.open(
                    osp.join(self._cache, split), map_size=1 << 36
                ) as lmdb_env, lmdb_env.begin(write=True) as txn:
                    for i in tqdm.trange(len(self.datapath)):
                        fn = self.datapath[i]
                        point_set = np.loadtxt(fn[1], delimiter=",").astype(np.float32)
                        cls = self.classes[self.datapath[i][0]]
                        cls = int(cls)

                        txn.put(
                            str(i).encode(),
                            msgpack_numpy.packb(
                                dict(pc=point_set, lbl=cls), use_bin_type=True
                            ),
                        )

            shutil.rmtree(self.data_dir)

        self._lmdb_file = osp.join(self._cache, "train" if train else "test")
        with lmdb.open(self._lmdb_file, map_size=1 << 36) as lmdb_env:
            self._len = lmdb_env.stat()["entries"]

        self._lmdb_env = None

    def __getitem__(self, idx):
        if self._lmdb_env is None:
            self._lmdb_env = lmdb.open(
                self._lmdb_file, map_size=1 << 36, readonly=True, lock=False
            )

        with self._lmdb_env.begin(buffers=True) as txn:
            ele = msgpack_numpy.unpackb(txn.get(str(idx).encode()), raw=False)

        point_set = ele["pc"]

        pt_idxs = np.arange(0, self.num_points)
        np.random.shuffle(pt_idxs)

        point_set = point_set[pt_idxs, :]
        point_set[:, 0:3] = pc_normalize(point_set[:, 0:3])

        if self.transforms is not None:
            point_set = self.transforms(point_set)

        return point_set, ele["lbl"]

    def __len__(self):
        return self._len

    def set_num_points(self, pts):
        self.num_points = min(int(1e4), pts)


if __name__ == "__main__":
    from torchvision import transforms
    import data_utils as d_utils

    transforms = transforms.Compose(
        [
            d_utils.PointcloudToTensor(),
            d_utils.PointcloudRotate(axis=np.array([1, 0, 0])),
            d_utils.PointcloudScale(),
            d_utils.PointcloudTranslate(),
            d_utils.PointcloudJitter(),
        ]
    )
    dset = ModelNet40Cls(16, train=True, transforms=transforms)
    print(dset[0][0])
    print(dset[0][1])
    print(len(dset))
    dloader = torch.utils.data.DataLoader(dset, batch_size=32, shuffle=True)