File size: 4,152 Bytes
b30c1d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import torch


def angle_axis(angle, axis):
    # type: (float, np.ndarray) -> float
    r"""Returns a 4x4 rotation matrix that performs a rotation around axis by angle

    Parameters
    ----------
    angle : float
        Angle to rotate by
    axis: np.ndarray
        Axis to rotate about

    Returns
    -------
    torch.Tensor
        3x3 rotation matrix
    """
    u = axis / np.linalg.norm(axis)
    cosval, sinval = np.cos(angle), np.sin(angle)

    # yapf: disable
    cross_prod_mat = np.array([[0.0, -u[2], u[1]],
                                [u[2], 0.0, -u[0]],
                                [-u[1], u[0], 0.0]])

    R = torch.from_numpy(
        cosval * np.eye(3)
        + sinval * cross_prod_mat
        + (1.0 - cosval) * np.outer(u, u)
    )
    # yapf: enable
    return R.float()


class PointcloudScale(object):
    def __init__(self, lo=0.8, hi=1.25):
        self.lo, self.hi = lo, hi

    def __call__(self, points):
        scaler = np.random.uniform(self.lo, self.hi)
        points[:, 0:3] *= scaler
        return points


class PointcloudRotate(object):
    def __init__(self, axis=np.array([0.0, 1.0, 0.0])):
        self.axis = axis

    def __call__(self, points):
        rotation_angle = np.random.uniform() * 2 * np.pi
        rotation_matrix = angle_axis(rotation_angle, self.axis)

        normals = points.size(1) > 3
        if not normals:
            return torch.matmul(points, rotation_matrix.t())
        else:
            pc_xyz = points[:, 0:3]
            pc_normals = points[:, 3:]
            points[:, 0:3] = torch.matmul(pc_xyz, rotation_matrix.t())
            points[:, 3:] = torch.matmul(pc_normals, rotation_matrix.t())

            return points


class PointcloudRotatePerturbation(object):
    def __init__(self, angle_sigma=0.06, angle_clip=0.18):
        self.angle_sigma, self.angle_clip = angle_sigma, angle_clip

    def _get_angles(self):
        angles = np.clip(
            self.angle_sigma * np.random.randn(3), -self.angle_clip, self.angle_clip
        )

        return angles

    def __call__(self, points):
        angles = self._get_angles()
        Rx = angle_axis(angles[0], np.array([1.0, 0.0, 0.0]))
        Ry = angle_axis(angles[1], np.array([0.0, 1.0, 0.0]))
        Rz = angle_axis(angles[2], np.array([0.0, 0.0, 1.0]))

        rotation_matrix = torch.matmul(torch.matmul(Rz, Ry), Rx)

        normals = points.size(1) > 3
        if not normals:
            return torch.matmul(points, rotation_matrix.t())
        else:
            pc_xyz = points[:, 0:3]
            pc_normals = points[:, 3:]
            points[:, 0:3] = torch.matmul(pc_xyz, rotation_matrix.t())
            points[:, 3:] = torch.matmul(pc_normals, rotation_matrix.t())

            return points


class PointcloudJitter(object):
    def __init__(self, std=0.01, clip=0.05):
        self.std, self.clip = std, clip

    def __call__(self, points):
        jittered_data = (
            points.new(points.size(0), 3)
            .normal_(mean=0.0, std=self.std)
            .clamp_(-self.clip, self.clip)
        )
        points[:, 0:3] += jittered_data
        return points


class PointcloudTranslate(object):
    def __init__(self, translate_range=0.1):
        self.translate_range = translate_range

    def __call__(self, points):
        translation = np.random.uniform(-self.translate_range, self.translate_range)
        points[:, 0:3] += translation
        return points


class PointcloudToTensor(object):
    def __call__(self, points):
        return torch.from_numpy(points).float()


class PointcloudRandomInputDropout(object):
    def __init__(self, max_dropout_ratio=0.875):
        assert max_dropout_ratio >= 0 and max_dropout_ratio < 1
        self.max_dropout_ratio = max_dropout_ratio

    def __call__(self, points):
        pc = points.numpy()

        dropout_ratio = np.random.random() * self.max_dropout_ratio  # 0~0.875
        drop_idx = np.where(np.random.random((pc.shape[0])) <= dropout_ratio)[0]
        if len(drop_idx) > 0:
            pc[drop_idx] = pc[0]  # set to the first point

        return torch.from_numpy(pc).float()