|
import argparse |
|
import json |
|
import time |
|
from http import HTTPStatus |
|
|
|
from dashscope import Generation |
|
from tqdm import tqdm |
|
from multiprocessing import Pool |
|
import random |
|
from gradio_client import Client |
|
from concurrent.futures import ThreadPoolExecutor |
|
|
|
|
|
random.seed(0) |
|
import re |
|
|
|
import os |
|
|
|
|
|
MY_client = None |
|
|
|
open_free_from_cls_prompt = """Analyze two sentences and determine if they're referring to the same general object or concept, only focusing on the type of object and category, not attributes such as color, size, or shape. Ignore 3D model-related adjectives such as "cartoon-style", "toy". Respond with 'T' if they refer to the same big category and 'F' if not. Also, provide a brief rationale (no more than 20 words) for your judgment. |
|
Example: |
|
Input: 1. Spiral staircase that goes from a ground floor. 2. This is a 3D model of wooden stairs in light brown |
|
Output: T#Both refer to a staircase. |
|
|
|
Input: 1. A white and red van. 2. This is a 3D model of a toy cartoon-style truck |
|
Output: T# Both refer to a car, they are in the same big category. |
|
|
|
Now, analyze the following: |
|
Input: 1. {ground_truth} 2. {model_output} |
|
Output: """ |
|
|
|
close_set_cls_prompt = """Given the following free-form description of a 3D object, please determine the most probable class index from the following 40 available categories, even if the description doesn't clearly refer to any one of them. Make your best-educated guess based on the information provided. If the description already contains a valid index, then the index should be selected. If it contains more than one valid index, then randomly select one index (specify your reason). If there is no valid index and it cannot be inferred from the information, return '-1#NA#Cannot infer'. |
|
Categories: |
|
{candidate_lists} |
|
Reply with the format of 'index#class#short reason (no more than 10 words)'. |
|
|
|
Examples: |
|
Input: This is a 3D object model of a cartoon white truck. |
|
Output: 7#car#Closest match to 'car' in categories. |
|
|
|
Input: A green leaf in a flower pot. |
|
Output: 26#plant#The primary subject 'leaf' directly indicates a plant. |
|
|
|
Input: It's difficult to determine the exact type of this object due to insufficient details. But it seems to be like a piece of furniture. |
|
Output: 33#table#Randomly select one kind of furniture from the list. |
|
|
|
Input: I cannot determine the specific type of the object without additional information or context. |
|
Output: -1#NA#Cannot infer. |
|
|
|
Now analyze the following: |
|
Input: """ |
|
|
|
object_captioning_prompt = """Evaluate a model-generated caption against a ground-truth caption for a 3D model. Identify the aspects mentioned in theground-truth caption and calculate the percentage of these aspects correctly mentioned or partially matched in the model caption. Score from 0 to 100, where each aspect contributes equally to the score. Consider similar concepts for partial score. |
|
|
|
Provide your score (0-100) and a short justification (less than 15 words) in the format of 'score#reason' |
|
|
|
Example: |
|
Ground Truth:: A white brown skeleton |
|
Model: This is a 3D model of a small, cartoon-like robot. It has a spherical body and is covered in a layer of white dust. |
|
Output: 50#mention white; skeleton and robot have similar appearence. |
|
|
|
Now score the following: |
|
Ground Truth: {ground_truth} |
|
Model: {model_output} |
|
Output: """ |
|
|
|
|
|
LLM_object_captioning_prompt = object_captioning_prompt |
|
LLM_open_free_from_cls_prompt = open_free_from_cls_prompt |
|
LLM_close_set_cls_prompt = close_set_cls_prompt |
|
|
|
GPT_PRICES = { |
|
|
|
"gpt-3.5-turbo-0125": { |
|
"price_1k_prompt_tokens": 0.0005, |
|
"price_1k_completion_tokens": 0.0015 |
|
}, |
|
"gpt-3.5-turbo-0613": { |
|
"price_1k_prompt_tokens": 0.0015, |
|
"price_1k_completion_tokens": 0.002 |
|
}, |
|
"gpt-3.5-turbo-1106": { |
|
"price_1k_prompt_tokens": 0.0010, |
|
"price_1k_completion_tokens": 0.002 |
|
}, |
|
"gpt-4-0613": { |
|
"price_1k_prompt_tokens": 0.03, |
|
"price_1k_completion_tokens": 0.06 |
|
}, |
|
"gpt-4-1106-preview": { |
|
"price_1k_prompt_tokens": 0.01, |
|
"price_1k_completion_tokens": 0.03 |
|
}, |
|
"HF": { |
|
"price_1k_prompt_tokens": 0, |
|
"price_1k_completion_tokens": 0 |
|
}, |
|
} |
|
|
|
|
|
class OpenAIOpenFreeFormClsEvaluator(): |
|
def __init__(self, inputs, output_dir, output_file, model_type="Qwen/Qwen2-72B-Instruct", client=None): |
|
""" |
|
Args: |
|
inputs: A dictionary containing the results of the evaluation. It contains two keys: "results" and "prompt". |
|
"prompt": str |
|
"results": [ |
|
{ |
|
"object_id": str, |
|
"model_output": str, |
|
"ground_truth": str |
|
} |
|
] |
|
""" |
|
print("-" * 80) |
|
print("Initializing OpenAIEvaluator...") |
|
self.results = inputs['results'] |
|
self.inference_prompt = inputs['prompt'] |
|
self.correct_predictions = 0 |
|
self.total_predictions = 0 |
|
self.invalid_responses = 0 |
|
self.response_data = [] |
|
self.model_type = model_type |
|
self.check_model_type() |
|
|
|
self.client = client |
|
|
|
self.prompt_tokens = 0 |
|
self.completion_tokens = 0 |
|
|
|
self.default_chat_parameters = { |
|
"model": model_type, |
|
"temperature": 1, |
|
"top_p": 1, |
|
"max_tokens": 2048 |
|
} |
|
|
|
|
|
self.price_1k_prompt_tokens = GPT_PRICES["HF"]["price_1k_prompt_tokens"] |
|
self.price_1k_completion_tokens = GPT_PRICES["HF"]["price_1k_completion_tokens"] |
|
|
|
print(f"OpenAIGPT config: ") |
|
print(self.default_chat_parameters) |
|
|
|
|
|
self.gpt_prompt = LLM_open_free_from_cls_prompt |
|
self.output_dir = output_dir |
|
self.output_file = output_file |
|
self.temp_output_file = self.output_file.replace(".json", "_processed_temp.json") |
|
|
|
def get_relpy_from_llm(self, input_sentence): |
|
|
|
query_input = input_sentence.replace("the rocket", "this rocket") |
|
query_input = query_input.replace("The rocket", "This rocket") |
|
|
|
time.sleep(0.2) |
|
|
|
|
|
messages = [{'role': 'system', 'content': 'You are a helpful assistant.'}, |
|
{'role': 'user', 'content': query_input}] |
|
response = Generation.call(model=self.model_type, |
|
messages=messages, |
|
|
|
seed=1234, |
|
temperature=0, |
|
top_p=0.8, |
|
top_k=50, |
|
|
|
result_format='message') |
|
|
|
|
|
|
|
nested_json_str = response.output.choices[0].message.content |
|
|
|
|
|
|
|
|
|
|
|
return nested_json_str |
|
|
|
def check_model_type(self): |
|
|
|
|
|
|
|
pass |
|
|
|
def resume_processing(self): |
|
processed_results_path = os.path.join(self.output_dir, self.temp_output_file) |
|
if os.path.exists(processed_results_path): |
|
print("-" * 80) |
|
|
|
print(f"Resuming processing...") |
|
print(f"Loading processed results from {processed_results_path}...") |
|
with open(processed_results_path, "r") as f: |
|
saved_results = json.load(f) |
|
self.correct_predictions = saved_results["correct_predictions"] |
|
self.total_predictions = saved_results["total_predictions"] |
|
self.invalid_responses = saved_results["invalid_responses"] |
|
self.response_data = saved_results["results"] |
|
self.prompt_tokens = saved_results["prompt_tokens"] |
|
self.completion_tokens = saved_results["completion_tokens"] |
|
|
|
print(f"Processed results: {len(self.response_data)}") |
|
|
|
print(f"Total results: {len(self.results)}") |
|
|
|
|
|
processed_ids = [d['object_id'] for d in self.response_data] |
|
self.results = [r for r in self.results if r['object_id'] not in processed_ids] |
|
|
|
print(f"Remaining results: {len(self.results)}") |
|
|
|
def remove_temp_file(self): |
|
processed_results_path = os.path.join(self.output_dir, self.temp_output_file) |
|
if os.path.exists(processed_results_path): |
|
os.remove(processed_results_path) |
|
print("-" * 80) |
|
print(f"Removed Temporary file {processed_results_path}") |
|
|
|
def parse_gpt_response_evaluate(self, gpt_response): |
|
gpt_response = gpt_response.strip() |
|
|
|
cls_result = gpt_response[0].upper() |
|
reason = gpt_response[2:] if len(gpt_response) > 2 else "" |
|
|
|
if cls_result not in ['T', 'F']: |
|
self.invalid_responses += 1 |
|
return 0, "INVALID", gpt_response |
|
|
|
accuracy = 1 if cls_result == 'T' else 0 |
|
|
|
return accuracy, cls_result, reason |
|
|
|
def evaluate_result(self, result): |
|
|
|
object_id = result['object_id'] |
|
ground_truth = result['ground_truth'] |
|
model_output = result['model_output'] |
|
|
|
messages = self.gpt_prompt.format(ground_truth=ground_truth, model_output=model_output) |
|
|
|
gpt_response = self.get_relpy_from_llm(messages) |
|
|
|
prompt_tokens = 0 |
|
completion_tokens = 0 |
|
|
|
accuracy, cls_result, reason = self.parse_gpt_response_evaluate( |
|
gpt_response) |
|
|
|
return object_id, model_output, ground_truth, accuracy, cls_result, reason, prompt_tokens, completion_tokens |
|
|
|
def evaluate(self): |
|
|
|
self.resume_processing() |
|
|
|
print('-' * 80) |
|
print("Starting single-thread evaluation...") |
|
results = self.results |
|
|
|
try: |
|
for result in tqdm(results): |
|
object_id, model_output, ground_truth, accuracy, cls_result, reason, prompt_tokens, completion_tokens = self.evaluate_result( |
|
result) |
|
|
|
self.correct_predictions += accuracy |
|
self.total_predictions += 1 |
|
self.prompt_tokens += prompt_tokens |
|
self.completion_tokens += completion_tokens |
|
|
|
|
|
self.response_data.append({ |
|
'object_id': object_id, |
|
'ground_truth': ground_truth, |
|
'model_output': model_output, |
|
'gpt_cls_result': cls_result, |
|
'gpt_reason': reason |
|
}) |
|
|
|
print("Evaluation finished.") |
|
|
|
self.save_results() |
|
self.print_results() |
|
self.remove_temp_file() |
|
except (Exception, KeyboardInterrupt) as e: |
|
print(f"Error {e} occurred during parallel evaluation. Saving processed results to temporary file...") |
|
self.save_results(is_temp=True) |
|
exit() |
|
|
|
def parallel_evaluate(self, num_workers=20): |
|
|
|
self.resume_processing() |
|
|
|
print('-' * 80) |
|
print("Starting parallel evaluation...") |
|
results = self.results |
|
|
|
try: |
|
|
|
with ThreadPoolExecutor(max_workers=num_workers) as executor: |
|
|
|
with tqdm(total=len(results)) as pbar: |
|
|
|
futures = {executor.submit(self.evaluate_result, result): result for result in results} |
|
|
|
|
|
for future in futures: |
|
|
|
|
|
object_id, model_output, ground_truth, accuracy, cls_result, reason, prompt_tokens, completion_tokens = future.result() |
|
|
|
|
|
self.correct_predictions += accuracy |
|
self.total_predictions += 1 |
|
self.prompt_tokens += prompt_tokens |
|
self.completion_tokens += completion_tokens |
|
|
|
if cls_result == 'INVALID': |
|
self.invalid_responses += 1 |
|
|
|
|
|
self.response_data.append({ |
|
'object_id': object_id, |
|
'ground_truth': ground_truth, |
|
'model_output': model_output, |
|
'gpt_cls_result': cls_result, |
|
'gpt_reason': reason |
|
}) |
|
|
|
|
|
pbar.update() |
|
|
|
|
|
print("Parallel evaluation finished.") |
|
|
|
self.save_results() |
|
self.print_results() |
|
self.remove_temp_file() |
|
|
|
except (Exception, KeyboardInterrupt) as e: |
|
print(f"Error {e} occurred during parallel evaluation. Saving processed results to temporary file...") |
|
self.save_results(is_temp=True) |
|
exit() |
|
|
|
def save_results(self, is_temp=False): |
|
if is_temp: |
|
output_path = os.path.join(self.output_dir, self.temp_output_file) |
|
else: |
|
output_path = os.path.join(self.output_dir, self.output_file) |
|
if self.total_predictions - self.invalid_responses == 0: |
|
accuracy = 0 |
|
else: |
|
accuracy = self.correct_predictions / (self.total_predictions - self.invalid_responses) * 100 |
|
with open(output_path, 'w') as f: |
|
results_to_save = { |
|
'inference_prompt': self.inference_prompt, |
|
'prompt': self.gpt_prompt, |
|
'accuracy': f"{accuracy:.2f}%", |
|
'total_predictions': self.total_predictions, |
|
'correct_predictions': self.correct_predictions, |
|
'invalid_responses': self.invalid_responses, |
|
'prompt_tokens': self.prompt_tokens, |
|
'completion_tokens': self.completion_tokens, |
|
'GPT_cost': self.get_costs(), |
|
'results': self.response_data, |
|
} |
|
json.dump(results_to_save, f, indent=2) |
|
|
|
print(f"Results saved to {output_path}") |
|
|
|
print(f"Saved {len(self.response_data)} results in total.") |
|
|
|
def print_results(self): |
|
print('-' * 80) |
|
if self.total_predictions - self.invalid_responses == 0: |
|
accuracy = 0 |
|
else: |
|
accuracy = self.correct_predictions / (self.total_predictions - self.invalid_responses) * 100 |
|
print("Results:") |
|
print(f"Accuracy: {accuracy:.2f}%") |
|
print(f"Total Predictions: {self.total_predictions}") |
|
print(f"Correct Predictions: {self.correct_predictions}") |
|
print(f"Invalid Responses: {self.invalid_responses}") |
|
self.print_costs() |
|
|
|
def print_costs(self): |
|
print(f"Prompt Tokens Price: {self.prompt_tokens * self.price_1k_prompt_tokens / 1000:.2f} USD") |
|
print(f"Completion Tokens Price: {self.completion_tokens * self.price_1k_completion_tokens / 1000:.2f} USD") |
|
|
|
def get_costs(self): |
|
return self.prompt_tokens * self.price_1k_prompt_tokens / 1000 + self.completion_tokens * self.price_1k_completion_tokens / 1000 |
|
|
|
|
|
class OpenAICloseSetClsEvaluator(OpenAIOpenFreeFormClsEvaluator): |
|
def __init__(self, inputs, output_dir, output_file, model_type="gpt-3.5-turbo-0613", client=None): |
|
super().__init__(inputs, output_dir, output_file, model_type, client=client) |
|
self.gpt_prompt = LLM_close_set_cls_prompt |
|
self.invalid_correct_predictions = 0 |
|
|
|
|
|
try: |
|
|
|
catfile = os.path.join(os.path.dirname(__file__), |
|
'../data/modelnet_config/modelnet40_shape_names_modified.txt') |
|
|
|
|
|
|
|
self.candidate_lists_names = [line.strip() for line in open(catfile)] |
|
except: |
|
print(f"Current categories file is {catfile}. Need to move the category file to pointllm/eval/configs/.") |
|
|
|
|
|
candidate_lists = [f'{i}: {cat}' for i, cat in enumerate(self.candidate_lists_names)] |
|
self.num_categories = len(candidate_lists) |
|
self.candidate_lists = '\n'.join(candidate_lists) |
|
self.gpt_prompt = self.gpt_prompt.format(num_categories=self.num_categories, |
|
candidate_lists=self.candidate_lists) + "{model_output}\nOutput: " |
|
|
|
def check_model_type(self): |
|
|
|
return |
|
|
|
def resume_processing(self): |
|
processed_results_path = os.path.join(self.output_dir, self.temp_output_file) |
|
if os.path.exists(processed_results_path): |
|
print("-" * 80) |
|
|
|
print(f"Resuming processing...") |
|
print(f"Loading processed results from {processed_results_path}...") |
|
with open(processed_results_path, "r") as f: |
|
saved_results = json.load(f) |
|
self.correct_predictions = saved_results["correct_predictions"] |
|
self.total_predictions = saved_results["total_predictions"] |
|
self.invalid_responses = saved_results["invalid_responses"] |
|
self.invalid_correct_predictions = saved_results["invalid_correct_predictions"] |
|
self.response_data = saved_results["results"] |
|
self.prompt_tokens = saved_results["prompt_tokens"] |
|
self.completion_tokens = saved_results["completion_tokens"] |
|
|
|
print(f"Processed results: {len(self.response_data)}") |
|
|
|
print(f"Total results: {len(self.results)}") |
|
|
|
|
|
processed_ids = [d['object_id'] for d in self.response_data] |
|
self.results = [r for r in self.results if r['object_id'] not in processed_ids] |
|
|
|
print(f"Remaining results: {len(self.results)}") |
|
|
|
def parse_gpt_response_evaluate(self, gpt_response, ground_truth): |
|
""" |
|
Argument: |
|
gpt_response: str, index#label#short_reason |
|
groud_truth: int |
|
""" |
|
|
|
|
|
pattern = r'(\d+#[^#]*#.*$)' |
|
match = re.search(pattern, gpt_response) |
|
|
|
gpt_response = match.group(1) if match else gpt_response |
|
|
|
gpt_response = gpt_response.strip() |
|
gpt_response_list = gpt_response.split('#') |
|
|
|
cls_result = gpt_response_list[0] |
|
cls_label = gpt_response_list[1] if len(gpt_response_list) > 1 else "" |
|
reason = gpt_response_list[2] if len(gpt_response_list) > 2 else "" |
|
|
|
try: |
|
|
|
cls_result = int(cls_result) |
|
if cls_result not in range(self.num_categories) or cls_label == "NA": |
|
|
|
cls_result = -1 |
|
except ValueError: |
|
print(f"Error: unale to parse {gpt_response}.") |
|
cls_result = -1 |
|
|
|
if cls_result == -1: |
|
|
|
cls_result = random.choice(range(self.num_categories)) |
|
cls_label = "INVALID" |
|
reason = gpt_response |
|
|
|
self.invalid_responses += 1 |
|
|
|
accuracy = 1 if cls_result == ground_truth else 0 |
|
|
|
return accuracy, cls_result, cls_label, reason |
|
|
|
def evaluate_result(self, result): |
|
|
|
|
|
object_id = result.get('object_id', -1) |
|
ground_truth = result['ground_truth'] |
|
ground_truth_label = result['label_name'] |
|
model_output = result['model_output'] |
|
|
|
messages = self.gpt_prompt.format(model_output=model_output) |
|
|
|
gpt_response = self.get_relpy_from_llm(messages) |
|
|
|
prompt_tokens =0 |
|
completion_tokens = 0 |
|
|
|
gpt_response = gpt_response |
|
|
|
accuracy, cls_result, cls_label, reason = self.parse_gpt_response_evaluate(gpt_response, |
|
ground_truth) |
|
|
|
return object_id, model_output, ground_truth, accuracy, cls_result, cls_label, reason, ground_truth_label, prompt_tokens, completion_tokens |
|
|
|
def evaluate(self): |
|
|
|
self.resume_processing() |
|
|
|
print('-' * 80) |
|
print("Starting single-thread evaluation...") |
|
results = self.results |
|
|
|
try: |
|
for result in tqdm(results): |
|
|
|
object_id, model_output, ground_truth, accuracy, cls_result, cls_label, reason, ground_truth_label, prompt_tokens, completion_tokens = self.evaluate_result( |
|
result) |
|
self.correct_predictions += accuracy |
|
self.total_predictions += 1 |
|
|
|
if cls_label == "INVALID": |
|
self.invalid_correct_predictions += accuracy |
|
self.invalid_responses += 1 |
|
|
|
self.prompt_tokens += prompt_tokens |
|
self.completion_tokens += completion_tokens |
|
|
|
|
|
self.response_data.append({ |
|
'object_id': object_id, |
|
'ground_truth': ground_truth, |
|
'gpt_cls_result': cls_result, |
|
'ground_truth_label': ground_truth_label, |
|
'gpt_cls_label': cls_label, |
|
'model_output': model_output, |
|
'gpt_reason': reason, |
|
'prompt_tokens': prompt_tokens, |
|
'completion_tokens': completion_tokens |
|
}) |
|
|
|
print("Evaluation finished.") |
|
|
|
self.save_results() |
|
self.print_results() |
|
self.remove_temp_file() |
|
except (Exception, KeyboardInterrupt) as e: |
|
print(f"Error {e} occurred during parallel evaluation. Saving processed results to temporary file...") |
|
print(f"Current sample is {result}.") |
|
self.save_results(is_temp=True) |
|
exit() |
|
|
|
def parallel_evaluate(self, num_workers=20): |
|
|
|
self.resume_processing() |
|
|
|
print('-' * 80) |
|
print("Starting parallel evaluation...") |
|
results = self.results |
|
|
|
try: |
|
|
|
with ThreadPoolExecutor(max_workers=num_workers) as executor: |
|
|
|
with tqdm(total=len(results)) as pbar: |
|
|
|
futures = {executor.submit(self.evaluate_result, result): result for result in results} |
|
|
|
|
|
for future in futures: |
|
|
|
object_id, model_output, ground_truth, accuracy, cls_result, cls_label, reason, ground_truth_label, prompt_tokens, completion_tokens = future.result() |
|
|
|
self.correct_predictions += accuracy |
|
self.total_predictions += 1 |
|
|
|
self.prompt_tokens += prompt_tokens |
|
self.completion_tokens += completion_tokens |
|
|
|
if cls_label == "INVALID": |
|
self.invalid_correct_predictions += accuracy |
|
self.invalid_responses += 1 |
|
|
|
|
|
self.response_data.append({ |
|
'object_id': object_id, |
|
'ground_truth': ground_truth, |
|
'gpt_cls_result': cls_result, |
|
'ground_truth_label': ground_truth_label, |
|
'gpt_cls_label': cls_label, |
|
'model_output': model_output, |
|
'gpt_reason': reason, |
|
'prompt_tokens': prompt_tokens, |
|
'completion_tokens': completion_tokens |
|
}) |
|
|
|
pbar.update() |
|
|
|
print("Parallel evaluation finished.") |
|
|
|
self.save_results() |
|
self.print_results() |
|
self.remove_temp_file() |
|
|
|
except (Exception, KeyboardInterrupt) as e: |
|
print(f"Error {e} occurred during parallel evaluation. Saving processed results to temporary file...") |
|
self.save_results(is_temp=True) |
|
exit() |
|
|
|
def save_results(self, is_temp=False): |
|
if is_temp: |
|
output_path = os.path.join(self.output_dir, self.temp_output_file) |
|
else: |
|
output_path = os.path.join(self.output_dir, self.output_file) |
|
if self.total_predictions - self.invalid_responses == 0: |
|
accuracy = 0 |
|
clean_accuracy = 0 |
|
else: |
|
accuracy = self.correct_predictions / self.total_predictions * 100 |
|
clean_accuracy = (self.correct_predictions - self.invalid_correct_predictions) / ( |
|
self.total_predictions - self.invalid_responses) * 100 |
|
with open(output_path, 'w') as f: |
|
results_to_save = { |
|
'inference_prompt': self.inference_prompt, |
|
'prompt': self.gpt_prompt, |
|
'accuracy': f"{accuracy:.2f}%", |
|
'clean_accuracy': f"{clean_accuracy:.2f}%", |
|
'total_predictions': self.total_predictions, |
|
'correct_predictions': self.correct_predictions, |
|
'invalid_correct_predictions': self.invalid_correct_predictions, |
|
'invalid_responses': self.invalid_responses, |
|
'prompt_tokens': self.prompt_tokens, |
|
'completion_tokens': self.completion_tokens, |
|
'GPT_cost': self.get_costs(), |
|
'results': self.response_data, |
|
} |
|
json.dump(results_to_save, f, indent=2) |
|
|
|
print(f"Results saved to {output_path}") |
|
|
|
print(f"Saved {len(self.response_data)} results in total.") |
|
|
|
def print_results(self): |
|
print('-' * 80) |
|
if self.total_predictions - self.invalid_responses == 0: |
|
accuracy = 0 |
|
else: |
|
accuracy = self.correct_predictions / self.total_predictions * 100 |
|
clean_accuracy = (self.correct_predictions - self.invalid_correct_predictions) / ( |
|
self.total_predictions - self.invalid_responses) * 100 |
|
accuracy = self.correct_predictions / self.total_predictions * 100 |
|
print("Results:") |
|
print(f"Accuracy: {accuracy:.2f}%") |
|
print(f"Clean Accuracy: {clean_accuracy:.2f}%", ) |
|
print(f"Total Predictions: {self.total_predictions}") |
|
print(f"Correct Predictions: {self.correct_predictions}") |
|
print(f"Invalid Correct Predictions: {self.invalid_correct_predictions}") |
|
print(f"Invalid Responses: {self.invalid_responses}") |
|
print(f"Prompt Tokens: {self.prompt_tokens}") |
|
print(f"Completion Tokens: {self.completion_tokens}") |
|
|
|
self.print_costs() |
|
|
|
|
|
class OpenAIObjectCaptioningEvaluator(OpenAIOpenFreeFormClsEvaluator): |
|
def __init__(self, inputs, output_dir, output_file, model_type="gpt-4-0613", client=None): |
|
super().__init__(inputs, output_dir, output_file, model_type, client=client) |
|
self.gpt_prompt = LLM_object_captioning_prompt |
|
|
|
self.total_scores = 0 |
|
|
|
def resume_processing(self): |
|
processed_results_path = os.path.join(self.output_dir, self.temp_output_file) |
|
if os.path.exists(processed_results_path): |
|
print("-" * 80) |
|
|
|
print(f"Resuming processing...") |
|
print(f"Loading processed results from {processed_results_path}...") |
|
with open(processed_results_path, "r") as f: |
|
saved_results = json.load(f) |
|
self.total_scores = float(saved_results["total_score"]) |
|
|
|
self.total_predictions = saved_results["total_predictions"] |
|
self.invalid_responses = saved_results["invalid_responses"] |
|
self.response_data = saved_results["results"] |
|
self.prompt_tokens = saved_results["prompt_tokens"] |
|
self.completion_tokens = saved_results["completion_tokens"] |
|
|
|
print(f"Processed results: {len(self.response_data)}") |
|
|
|
print(f"Total results: {len(self.results)}") |
|
|
|
|
|
processed_ids = [d['object_id'] for d in self.response_data] |
|
self.results = [r for r in self.results if r['object_id'] not in processed_ids] |
|
|
|
print(f"Remaining results: {len(self.results)}") |
|
|
|
def parse_gpt_response_evaluate(self, gpt_response, ground_truth): |
|
""" |
|
Argument: |
|
gpt_response: str, index#label#short_reason |
|
groud_truth: int |
|
""" |
|
|
|
|
|
pattern = r'(\d*#.*)' |
|
match = re.search(pattern, gpt_response) |
|
|
|
gpt_response = match.group(1) if match else gpt_response |
|
|
|
gpt_response = gpt_response.strip() |
|
gpt_response_list = gpt_response.split('#') |
|
|
|
gpt_score = gpt_response_list[0] |
|
reason = gpt_response_list[1] if len(gpt_response_list) > 1 else "" |
|
|
|
try: |
|
|
|
gpt_score = int(gpt_score) |
|
if gpt_score not in range(101): |
|
|
|
gpt_score = -1 |
|
except ValueError: |
|
print(f"Error: unale to parse {gpt_response}.") |
|
gpt_score = -1 |
|
|
|
if gpt_score == -1: |
|
reason = gpt_response |
|
|
|
return gpt_score, reason |
|
|
|
def evaluate_result(self, result): |
|
|
|
object_id = result.get('object_id', -1) |
|
ground_truth = result['ground_truth'] |
|
model_output = result['model_output'] |
|
|
|
messages = self.gpt_prompt.format(ground_truth=ground_truth, model_output=model_output) |
|
|
|
gpt_response = self.get_relpy_from_llm(messages) |
|
|
|
prompt_tokens = 0 |
|
completion_tokens = 0 |
|
|
|
gpt_response = gpt_response |
|
|
|
gpt_score, reason = self.parse_gpt_response_evaluate(gpt_response, |
|
ground_truth) |
|
|
|
return object_id, model_output, ground_truth, gpt_score, reason, prompt_tokens, completion_tokens |
|
|
|
def evaluate(self): |
|
|
|
self.resume_processing() |
|
|
|
print('-' * 80) |
|
print("Starting single-thread evaluation...") |
|
results = self.results |
|
|
|
try: |
|
for result in tqdm(results): |
|
object_id, model_output, ground_truth, gpt_score, reason, prompt_tokens, completion_tokens = self.evaluate_result( |
|
result) |
|
|
|
self.total_scores += gpt_score if gpt_score != -1 else 0 |
|
self.total_predictions += 1 |
|
self.prompt_tokens += prompt_tokens |
|
self.completion_tokens += completion_tokens |
|
|
|
if gpt_score == -1: |
|
self.invalid_responses += 1 |
|
|
|
|
|
self.response_data.append({ |
|
'object_id': object_id, |
|
'ground_truth': ground_truth, |
|
'model_output': model_output, |
|
"gpt_score": gpt_score, |
|
'gpt_reason': reason |
|
}) |
|
|
|
print("Evaluation finished.") |
|
|
|
self.save_results() |
|
self.print_results() |
|
self.remove_temp_file() |
|
except (Exception, KeyboardInterrupt) as e: |
|
print(f"Error {e} occurred during parallel evaluation. Saving processed results to temporary file...") |
|
self.save_results(is_temp=True) |
|
exit() |
|
|
|
def parallel_evaluate(self, num_workers=20): |
|
|
|
self.resume_processing() |
|
|
|
print('-' * 80) |
|
print("Starting parallel evaluation...") |
|
results = self.results |
|
|
|
try: |
|
|
|
with ThreadPoolExecutor(max_workers=num_workers) as executor: |
|
|
|
with tqdm(total=len(results)) as pbar: |
|
|
|
futures = {executor.submit(self.evaluate_result, result): result for result in results} |
|
|
|
|
|
for future in futures: |
|
|
|
|
|
object_id, model_output, ground_truth, gpt_score, reason, prompt_tokens, completion_tokens = future.result() |
|
|
|
self.total_scores += gpt_score if gpt_score != -1 else 0 |
|
self.total_predictions += 1 |
|
self.prompt_tokens += prompt_tokens |
|
self.completion_tokens += completion_tokens |
|
|
|
if gpt_score == -1: |
|
self.invalid_responses += 1 |
|
|
|
|
|
self.response_data.append({ |
|
'object_id': object_id, |
|
'ground_truth': ground_truth, |
|
'model_output': model_output, |
|
"gpt_score": gpt_score, |
|
'gpt_reason': reason |
|
}) |
|
|
|
pbar.update() |
|
|
|
print("Parallel evaluation finished.") |
|
|
|
self.save_results() |
|
self.print_results() |
|
self.remove_temp_file() |
|
|
|
except (Exception, KeyboardInterrupt) as e: |
|
print(f"Error {e} occurred during parallel evaluation. Saving processed results to temporary file...") |
|
self.save_results(is_temp=True) |
|
exit() |
|
|
|
def save_results(self, is_temp=False): |
|
if is_temp: |
|
output_path = os.path.join(self.output_dir, self.temp_output_file) |
|
else: |
|
output_path = os.path.join(self.output_dir, self.output_file) |
|
if self.total_predictions - self.invalid_responses == 0: |
|
average_score = 0 |
|
else: |
|
average_score = self.total_scores / (self.total_predictions - self.invalid_responses) |
|
with open(output_path, 'w') as f: |
|
results_to_save = { |
|
'inference_prompt': self.inference_prompt, |
|
'gpt_prompt': self.gpt_prompt, |
|
'average_score': f"{average_score:.2f}", |
|
'total_score': f"{self.total_scores:.2f}", |
|
'total_predictions': self.total_predictions, |
|
'invalid_responses': self.invalid_responses, |
|
'prompt_tokens': self.prompt_tokens, |
|
'completion_tokens': self.completion_tokens, |
|
'GPT_cost': self.get_costs(), |
|
'results': self.response_data, |
|
} |
|
json.dump(results_to_save, f, indent=2) |
|
|
|
print(f"Results saved to {output_path}") |
|
|
|
print(f"Saved {len(self.response_data)} results in total.") |
|
|
|
def print_results(self): |
|
print('-' * 80) |
|
if self.total_predictions - self.invalid_responses == 0: |
|
average_score = 0 |
|
else: |
|
average_score = self.total_scores / (self.total_predictions - self.invalid_responses) |
|
print("Results:") |
|
print(f"Average Score: {average_score:.2f}") |
|
print(f"Total Predictions: {self.total_predictions}") |
|
print(f"Invalid Responses: {self.invalid_responses}") |
|
print(f"Prompt Tokens: {self.prompt_tokens}") |
|
print(f"Completion Tokens: {self.completion_tokens}") |
|
|
|
self.print_costs() |
|
|
|
|
|
def convert_model_name_to_spaces_url(model_name: str) -> str: |
|
|
|
formatted_name = model_name.replace('/', '-').lower() |
|
|
|
spaces_url = f"https://{formatted_name}.hf.space" |
|
return spaces_url |
|
|
|
|
|
def start_evaluation(results, output_dir, output_file, eval_type="open-free-form-classification", |
|
model_type="gpt-3.5-turbo-0613", |
|
parallel=True, num_workers=20): |
|
""" |
|
Args: |
|
results: dict or file path to the json file containing the dict |
|
output_file: the path the final evaluation results to be saved. |
|
""" |
|
if isinstance(results, str): |
|
with open(results, 'r') as fp: |
|
results = json.load(fp) |
|
|
|
|
|
|
|
|
|
MY_client = None |
|
|
|
print("eval_type:",eval_type) |
|
if eval_type == "open-free-form-classification": |
|
evaluator = OpenAIOpenFreeFormClsEvaluator(results, output_dir, output_file, model_type=model_type, client=MY_client) |
|
elif eval_type == "modelnet-close-set-classification": |
|
evaluator = OpenAICloseSetClsEvaluator(results, output_dir, output_file, model_type=model_type, client=MY_client) |
|
elif eval_type == "object-captioning": |
|
evaluator = OpenAIObjectCaptioningEvaluator(results, output_dir, output_file, model_type=model_type, client=MY_client) |
|
else: |
|
raise NotImplementedError(f"eval_type {eval_type} not supported.") |
|
|
|
if parallel: |
|
evaluator.parallel_evaluate(num_workers=num_workers) |
|
else: |
|
evaluator.evaluate() |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--results_path", type=str, \ |
|
default="", help="Path to the results file.") |
|
parser.add_argument("--output_dir", type=str, default=None, help="Path to the output directory.") |
|
parser.add_argument("--model_type", type=str, default="Qwen/Qwen2-72B-Instruct", |
|
help="Type of the model in hugging face used to evaluate.") |
|
parser.add_argument("--parallel", default=True, action="store_true", help="Whether to use parallel evaluation.") |
|
parser.add_argument("--num_workers", type=int, default=15, help="Number of workers to use for parallel evaluation.") |
|
parser.add_argument("--eval_type", type=str, |
|
choices=["modelnet-close-set-classification", "open-free-form-classification", |
|
"object-captioning"], default="object-captioning") |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
if args.output_dir is None: |
|
args.output_dir = os.path.dirname(args.results_path) |
|
|
|
output_file = os.path.basename(args.results_path).replace(".json", |
|
f"_evaluated_{(args.model_type).split('/')[-1]}.json") |
|
|
|
|
|
if os.path.exists(os.path.join(args.output_dir, output_file)): |
|
print(f"[INFO] Evaulated results already exists in {os.path.join(args.output_dir, output_file)}.") |
|
exit() |
|
|
|
start_evaluation(results=args.results_path, output_dir=args.output_dir, output_file=output_file, |
|
eval_type=args.eval_type, model_type=args.model_type, |
|
parallel=args.parallel, num_workers=args.num_workers) |
|
|