|
import pytorch_lightning as pl |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from pointnet2_ops.pointnet2_modules import PointnetSAModule, PointnetSAModuleMSG |
|
|
|
from pointnet2.models.pointnet2_ssg_cls import PointNet2ClassificationSSG |
|
|
|
|
|
class PointNet2ClassificationMSG(PointNet2ClassificationSSG): |
|
def _build_model(self): |
|
super()._build_model() |
|
|
|
self.SA_modules = nn.ModuleList() |
|
self.SA_modules.append( |
|
PointnetSAModuleMSG( |
|
npoint=512, |
|
radii=[0.1, 0.2, 0.4], |
|
nsamples=[16, 32, 128], |
|
mlps=[[3, 32, 32, 64], [3, 64, 64, 128], [3, 64, 96, 128]], |
|
use_xyz=self.hparams["model.use_xyz"], |
|
) |
|
) |
|
|
|
input_channels = 64 + 128 + 128 |
|
self.SA_modules.append( |
|
PointnetSAModuleMSG( |
|
npoint=128, |
|
radii=[0.2, 0.4, 0.8], |
|
nsamples=[32, 64, 128], |
|
mlps=[ |
|
[input_channels, 64, 64, 128], |
|
[input_channels, 128, 128, 256], |
|
[input_channels, 128, 128, 256], |
|
], |
|
use_xyz=self.hparams["model.use_xyz"], |
|
) |
|
) |
|
self.SA_modules.append( |
|
PointnetSAModule( |
|
mlp=[128 + 256 + 256, 256, 512, 1024], |
|
use_xyz=self.hparams["model.use_xyz"], |
|
) |
|
) |
|
|