|
from collections import namedtuple |
|
|
|
import pytorch_lightning as pl |
|
import torch |
|
import torch.nn as nn |
|
from pointnet2_ops.pointnet2_modules import PointnetFPModule, PointnetSAModuleMSG |
|
|
|
from pointnet2.models.pointnet2_ssg_sem import PointNet2SemSegSSG |
|
|
|
|
|
class PointNet2SemSegMSG(PointNet2SemSegSSG): |
|
def _build_model(self): |
|
self.SA_modules = nn.ModuleList() |
|
c_in = 6 |
|
self.SA_modules.append( |
|
PointnetSAModuleMSG( |
|
npoint=1024, |
|
radii=[0.05, 0.1], |
|
nsamples=[16, 32], |
|
mlps=[[c_in, 16, 16, 32], [c_in, 32, 32, 64]], |
|
use_xyz=self.hparams["model.use_xyz"], |
|
) |
|
) |
|
c_out_0 = 32 + 64 |
|
|
|
c_in = c_out_0 |
|
self.SA_modules.append( |
|
PointnetSAModuleMSG( |
|
npoint=256, |
|
radii=[0.1, 0.2], |
|
nsamples=[16, 32], |
|
mlps=[[c_in, 64, 64, 128], [c_in, 64, 96, 128]], |
|
use_xyz=self.hparams["model.use_xyz"], |
|
) |
|
) |
|
c_out_1 = 128 + 128 |
|
|
|
c_in = c_out_1 |
|
self.SA_modules.append( |
|
PointnetSAModuleMSG( |
|
npoint=64, |
|
radii=[0.2, 0.4], |
|
nsamples=[16, 32], |
|
mlps=[[c_in, 128, 196, 256], [c_in, 128, 196, 256]], |
|
use_xyz=self.hparams["model.use_xyz"], |
|
) |
|
) |
|
c_out_2 = 256 + 256 |
|
|
|
c_in = c_out_2 |
|
self.SA_modules.append( |
|
PointnetSAModuleMSG( |
|
npoint=16, |
|
radii=[0.4, 0.8], |
|
nsamples=[16, 32], |
|
mlps=[[c_in, 256, 256, 512], [c_in, 256, 384, 512]], |
|
use_xyz=self.hparams["model.use_xyz"], |
|
) |
|
) |
|
c_out_3 = 512 + 512 |
|
|
|
self.FP_modules = nn.ModuleList() |
|
self.FP_modules.append(PointnetFPModule(mlp=[256 + 6, 128, 128])) |
|
self.FP_modules.append(PointnetFPModule(mlp=[512 + c_out_0, 256, 256])) |
|
self.FP_modules.append(PointnetFPModule(mlp=[512 + c_out_1, 512, 512])) |
|
self.FP_modules.append(PointnetFPModule(mlp=[c_out_3 + c_out_2, 512, 512])) |
|
|
|
self.fc_lyaer = nn.Sequential( |
|
nn.Conv1d(128, 128, kernel_size=1, bias=False), |
|
nn.BatchNorm1d(128), |
|
nn.ReLU(True), |
|
nn.Dropout(0.5), |
|
nn.Conv1d(128, 13, kernel_size=1), |
|
) |
|
|