|
|
import argparse |
|
|
import json |
|
|
import tqdm |
|
|
import cv2 |
|
|
import os |
|
|
import numpy as np |
|
|
from pycocotools import mask as mask_utils |
|
|
import random |
|
|
from PIL import Image |
|
|
|
|
|
|
|
|
EVALMODE = "test" |
|
|
|
|
|
|
|
|
def blend_mask(input_img, binary_mask, alpha=0.3): |
|
|
mask_image = np.zeros(input_img.shape, np.uint8) |
|
|
mask_image[:, :, 0] = 255 |
|
|
mask_image[:, :, 1] = 165 |
|
|
mask_image[:, :, 2] = 0 |
|
|
|
|
|
mask_image = mask_image * np.repeat(binary_mask[:, :, np.newaxis], 3, axis=2) |
|
|
blend_image = input_img[:, :, :].copy() |
|
|
pos_idx = binary_mask > 0 |
|
|
for ind in range(input_img.ndim): |
|
|
ch_img1 = input_img[:, :, ind] |
|
|
ch_img2 = mask_image[:, :, ind] |
|
|
ch_img3 = blend_image[:, :, ind] |
|
|
ch_img3[pos_idx] = alpha * ch_img1[pos_idx] + (1 - alpha) * ch_img2[pos_idx] |
|
|
blend_image[:, :, ind] = ch_img3 |
|
|
return blend_image |
|
|
|
|
|
|
|
|
def upsample_mask(mask, frame): |
|
|
H, W = frame.shape[:2] |
|
|
mH, mW = mask.shape[:2] |
|
|
|
|
|
if W > H: |
|
|
ratio = mW / W |
|
|
h = H * ratio |
|
|
diff = int((mH - h) // 2) |
|
|
if diff == 0: |
|
|
mask = mask |
|
|
else: |
|
|
mask = mask[diff:-diff] |
|
|
else: |
|
|
ratio = mH / H |
|
|
w = W * ratio |
|
|
diff = int((mW - w) // 2) |
|
|
if diff == 0: |
|
|
mask = mask |
|
|
else: |
|
|
mask = mask[:, diff:-diff] |
|
|
|
|
|
mask = cv2.resize(mask, (W, H)) |
|
|
return mask |
|
|
|
|
|
|
|
|
def downsample(mask, frame): |
|
|
H, W = frame.shape[:2] |
|
|
mH, mW = mask.shape[:2] |
|
|
|
|
|
mask = cv2.resize(mask, (W, H)) |
|
|
return mask |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
|
|
|
|
|
|
out_path = "/home/yuqian_fu/Projects/sam2/predicted_mask" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
frame = cv2.imread( |
|
|
"/data/work-gcp-europe-west4-a/yuqian_fu/Ego/multi_view_data_2/multi_vew_data_3/000001-color.jpg" |
|
|
) |
|
|
mask = Image.open("/data/work-gcp-europe-west4-a/yuqian_fu/Ego/multi_view_data_2/mask/000001-label.png") |
|
|
mask = np.array(mask) |
|
|
mask = cv2.resize(mask, (frame.shape[1], frame.shape[0])) |
|
|
|
|
|
|
|
|
mask = upsample_mask(mask, frame) |
|
|
out = blend_mask(frame, mask) |
|
|
|
|
|
|
|
|
cv2.imwrite( |
|
|
f"{out_path}/cor_0.jpg", |
|
|
out, |
|
|
) |
|
|
|
|
|
|