import argparse import json import tqdm import cv2 import os import numpy as np from pycocotools import mask as mask_utils import random from PIL import Image EVALMODE = "test" def blend_mask(input_img, binary_mask, alpha=0.5, color="g"): if input_img.ndim == 2: return input_img mask_image = np.zeros(input_img.shape, np.uint8) if color == "r": mask_image[:, :, 0] = 255 if color == "g": mask_image[:, :, 1] = 255 if color == "b": mask_image[:, :, 2] = 255 if color == "o": mask_image[:, :, 0] = 255 mask_image[:, :, 1] = 165 mask_image[:, :, 2] = 0 if color == "c": mask_image[:, :, 0] = 0 mask_image[:, :, 1] = 255 mask_image[:, :, 2] = 255 if color == "p": mask_image[:, :, 0] = 128 mask_image[:, :, 1] = 0 mask_image[:, :, 2] = 128 if color == "l": mask_image[:, :, 0] = 128 mask_image[:, :, 1] = 128 mask_image[:, :, 2] = 0 if color == "m": mask_image[:, :, 0] = 128 mask_image[:, :, 1] = 128 mask_image[:, :, 2] = 128 if color == "q": mask_image[:, :, 0] = 165 mask_image[:, :, 1] = 80 mask_image[:, :, 2] = 30 mask_image = mask_image * np.repeat(binary_mask[:, :, np.newaxis], 3, axis=2) blend_image = input_img[:, :, :].copy() pos_idx = binary_mask > 0 for ind in range(input_img.ndim): ch_img1 = input_img[:, :, ind] ch_img2 = mask_image[:, :, ind] ch_img3 = blend_image[:, :, ind] ch_img3[pos_idx] = alpha * ch_img1[pos_idx] + (1 - alpha) * ch_img2[pos_idx] blend_image[:, :, ind] = ch_img3 return blend_image def upsample_mask(mask, frame): H, W = frame.shape[:2] mH, mW = mask.shape[:2] if W > H: ratio = mW / W h = H * ratio diff = int((mH - h) // 2) if diff == 0: mask = mask else: mask = mask[diff:-diff] else: ratio = mH / H w = W * ratio diff = int((mW - w) // 2) if diff == 0: mask = mask else: mask = mask[:, diff:-diff] mask = cv2.resize(mask, (W, H)) return mask def downsample(mask, frame): H, W = frame.shape[:2] mH, mW = mask.shape[:2] mask = cv2.resize(mask, (W, H)) return mask #datapath /datasegswap #inference_path /inference_xmem_ego_last/coco #output /vis_piano #--show_gt要加上 if __name__ == "__main__": color = ['g', 'r', 'b', 'o', 'c', 'p', 'l', 'm', 'q'] frame = cv2.imread( "/home/yuqian_fu/Projects/sam2/teacup/JPEGImages/000345.png" ) mask = Image.open("/home/yuqian_fu/Projects/sam2/results/3.png") mask = np.array(mask) # 检查有几个物体 # idx = np.unique(mask) # idx = idx[idx != 0] # print(idx) out_path = "/home/yuqian_fu/Projects/sam2/predicted_mask" unique_instances = np.unique(mask) unique_instances = unique_instances[unique_instances != 0] vis_mode = "fuse" #split if vis_mode == "fuse": for i,instance_value in enumerate(unique_instances): binary_mask = (mask == instance_value).astype(np.uint8) binary_mask = cv2.resize(binary_mask, (frame.shape[1], frame.shape[0])) try: binary_mask = upsample_mask(binary_mask, frame) frame = blend_mask(frame, binary_mask, color=color[i]) except: breakpoint() cv2.imwrite( f"{out_path}/new.jpg", frame, ) elif vis_mode == "split": for i,instance_value in enumerate(unique_instances): binary_mask = (mask == instance_value).astype(np.uint8) binary_mask = cv2.resize(binary_mask, (frame.shape[1], frame.shape[0])) binary_mask = upsample_mask(binary_mask, frame) out = blend_mask(frame, binary_mask, color=color[0]) cv2.imwrite( f"{out_path}/obj_{i}.jpg", out, ) else: print("error")