|
import pandas as pd
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.naive_bayes import MultinomialNB
|
|
from sklearn.metrics import accuracy_score
|
|
import nltk
|
|
from nltk.corpus import stopwords
|
|
import re
|
|
|
|
|
|
nltk.download('stopwords')
|
|
|
|
|
|
|
|
data = pd.read_csv('malicious_phish.csv')
|
|
|
|
|
|
def preprocess_url(url):
|
|
url = re.sub(r"http\S+", "", url)
|
|
url = re.sub(r"\d+", "", url)
|
|
url = re.sub(r"\W", " ", url)
|
|
url = url.lower()
|
|
return url
|
|
|
|
data['url'] = data['url'].apply(preprocess_url)
|
|
|
|
|
|
X = data['url']
|
|
y = data['type']
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
|
|
|
|
|
vectorizer = TfidfVectorizer(stop_words=stopwords.words('english'))
|
|
X_train_tfidf = vectorizer.fit_transform(X_train)
|
|
X_test_tfidf = vectorizer.transform(X_test)
|
|
|
|
|
|
model = MultinomialNB()
|
|
model.fit(X_train_tfidf, y_train)
|
|
|
|
|
|
y_pred = model.predict(X_test_tfidf)
|
|
accuracy = accuracy_score(y_test, y_pred)
|
|
print(f"Accuracy: {accuracy * 100:.2f}%")
|
|
|
|
|
|
def predict_url(url):
|
|
processed_url = preprocess_url(url)
|
|
vectorized_url = vectorizer.transform([processed_url])
|
|
prediction = model.predict(vectorized_url)
|
|
return prediction[0]
|
|
|
|
|
|
print(predict_url("br-icloud.com.br"))
|
|
|