abhi11nav commited on
Commit
2dfd4b1
·
1 Parent(s): 0868fe4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ model-index:
5
+ - name: GraphCodebert-gpt2
6
+ results: []
7
+ ---
8
+
9
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
+ should probably proofread and complete it, then remove this comment. -->
11
+
12
+ # GraphCodebert-gpt2
13
+
14
+ This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
15
+ It achieves the following results on the evaluation set:
16
+ - Loss: 3.6964
17
+ - Rouge2 Precision: 0.1809
18
+ - Rouge2 Recall: 0.1775
19
+ - Rouge2 Fmeasure: 0.1747
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 16
40
+ - eval_batch_size: 16
41
+ - seed: 42
42
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
+ - lr_scheduler_type: linear
44
+ - lr_scheduler_warmup_steps: 2000
45
+ - num_epochs: 2
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
50
+ |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
51
+ | No log | 0.29 | 500 | 5.0350 | 0.0889 | 0.0797 | 0.0819 |
52
+ | 6.0048 | 0.58 | 1000 | 4.4849 | 0.1159 | 0.116 | 0.1138 |
53
+ | 6.0048 | 0.87 | 1500 | 4.1607 | 0.151 | 0.1474 | 0.1452 |
54
+ | 4.2848 | 1.15 | 2000 | 4.0174 | 0.1558 | 0.1465 | 0.1471 |
55
+ | 4.2848 | 1.44 | 2500 | 3.8264 | 0.1786 | 0.1683 | 0.1685 |
56
+ | 3.8448 | 1.73 | 3000 | 3.6964 | 0.1809 | 0.1775 | 0.1747 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.25.1
62
+ - Pytorch 1.13.1+cu116
63
+ - Datasets 2.8.0
64
+ - Tokenizers 0.13.2