Commit
·
f6d6286
0
Parent(s):
Repo before implementing concepts of the paper memorizing transformer
Browse files- .gitattributes +36 -0
- .gitignore +3 -0
- Readme.md +0 -0
- configs/config.json +21 -0
- data/__init__.py +0 -0
- data/fineweb.py +79 -0
- evaluation/__init__.py +0 -0
- evaluation/hellaswag.py +113 -0
- evaluation/val_hellaswag.py +94 -0
- log/log.txt +1 -0
- model_core/__init__.py +0 -0
- model_core/__pycache__/__init__.cpython-311.pyc +0 -0
- model_core/__pycache__/attention.cpython-311.pyc +0 -0
- model_core/__pycache__/dataloader.cpython-311.pyc +0 -0
- model_core/__pycache__/model.cpython-311.pyc +0 -0
- model_core/__pycache__/training.cpython-311.pyc +0 -0
- model_core/attention.py +28 -0
- model_core/dataloader.py +53 -0
- model_core/model.py +117 -0
- model_core/training.py +171 -0
- requirement.txt +10 -0
- rough_work.py +0 -0
- scripts/evaluate.py +2 -0
- scripts/generate.py +63 -0
- scripts/train.py +11 -0
.gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
data/hellaswag/hellaswag_val.jsonl filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
data/edu_fineweb10B
|
2 |
+
log/model*
|
3 |
+
!log/model_final.pt
|
Readme.md
ADDED
Binary file (7.88 kB). View file
|
|
configs/config.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": {
|
3 |
+
"block_size": 1024,
|
4 |
+
"vocab_size": 50304,
|
5 |
+
"n_layer": 12,
|
6 |
+
"n_head": 12,
|
7 |
+
"n_embd": 768
|
8 |
+
},
|
9 |
+
"training": {
|
10 |
+
"max_steps": 19073,
|
11 |
+
"log_dir": "log",
|
12 |
+
"total_batch_size": 524288,
|
13 |
+
"B": 64,
|
14 |
+
"T": 1024,
|
15 |
+
"max_lr": 0.0006,
|
16 |
+
"min_lr": 0.00006,
|
17 |
+
"warmup_steps": 715,
|
18 |
+
"weight_decay": 0.1,
|
19 |
+
"learning_rate": 0.0006
|
20 |
+
}
|
21 |
+
}
|
data/__init__.py
ADDED
File without changes
|
data/fineweb.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
FineWeb-Edu dataset (for srs pretraining)
|
3 |
+
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
|
4 |
+
Downloads and tokenizes the data and saves data shards to disk.
|
5 |
+
Will save shards to the local directory "edu_fineweb10B".
|
6 |
+
"""
|
7 |
+
import os
|
8 |
+
import multiprocessing as mp
|
9 |
+
import numpy as np
|
10 |
+
import tiktoken
|
11 |
+
from datasets import load_dataset
|
12 |
+
from tqdm import tqdm
|
13 |
+
|
14 |
+
|
15 |
+
local_dir = "edu_fineweb10B"
|
16 |
+
remote_name = "sample-10BT"
|
17 |
+
shard_size = int(1e8) # 100M tokens per shard, total of 100 shards
|
18 |
+
|
19 |
+
DATA_CACHE_DIR = os.path.join(os.path.dirname(__file__), local_dir)
|
20 |
+
os.makedirs(DATA_CACHE_DIR, exist_ok=True)
|
21 |
+
print("Shards will be saved to:",DATA_CACHE_DIR)
|
22 |
+
|
23 |
+
#dataset download
|
24 |
+
fw = load_dataset("HuggingFaceFW/fineweb-edu", name=remote_name, split="train")
|
25 |
+
|
26 |
+
#tokenizer
|
27 |
+
enc = tiktoken.get_encoding("gpt2")
|
28 |
+
eot = enc._special_tokens['<|endoftext|>'] # end of text token
|
29 |
+
|
30 |
+
def tokenize(doc):
|
31 |
+
# tokenizes a single document and returns a numpy array of uint16 tokens
|
32 |
+
tokens = [eot]
|
33 |
+
tokens.extend(enc.encode_ordinary(doc["text"]))
|
34 |
+
tokens_np = np.array(tokens)
|
35 |
+
assert (0 <= tokens_np).all() and (tokens_np < 2**16).all(), "token dictionary too large for uint16"
|
36 |
+
tokens_np_uint16 = tokens_np.astype(np.uint16)
|
37 |
+
return tokens_np_uint16
|
38 |
+
|
39 |
+
def write_datafile(filename, tokens_np):
|
40 |
+
np.save(filename, tokens_np)
|
41 |
+
|
42 |
+
nprocs = max(1, os.cpu_count()//2)
|
43 |
+
with mp.Pool(nprocs) as pool:
|
44 |
+
shard_index = 0
|
45 |
+
# preallocate buffer to hold current shard
|
46 |
+
all_tokens_np = np.empty((shard_size,), dtype=np.uint16)
|
47 |
+
token_count = 0
|
48 |
+
progress_bar = None
|
49 |
+
for tokens in pool.imap(tokenize, fw, chunksize=16):
|
50 |
+
|
51 |
+
# is there enough space in the current shard for the new tokens?
|
52 |
+
if token_count + len(tokens) < shard_size:
|
53 |
+
# simply append tokens to current shard
|
54 |
+
all_tokens_np[token_count:token_count+len(tokens)] = tokens
|
55 |
+
token_count += len(tokens)
|
56 |
+
# update progress bar
|
57 |
+
if progress_bar is None:
|
58 |
+
progress_bar = tqdm(total=shard_size, unit="tokens", desc=f"Shard {shard_index}")
|
59 |
+
progress_bar.update(len(tokens))
|
60 |
+
else:
|
61 |
+
# write the current shard and start a new one
|
62 |
+
split = "val" if shard_index == 0 else "train"
|
63 |
+
filename = os.path.join(DATA_CACHE_DIR, f"edufineweb_{split}_{shard_index:06d}")
|
64 |
+
# split the document into whatever fits in this shard; the remainder goes to next one
|
65 |
+
remainder = shard_size - token_count
|
66 |
+
progress_bar.update(remainder)
|
67 |
+
all_tokens_np[token_count:token_count+remainder] = tokens[:remainder]
|
68 |
+
write_datafile(filename, all_tokens_np)
|
69 |
+
shard_index += 1
|
70 |
+
progress_bar = None
|
71 |
+
# populate the next shard with the leftovers of the current doc
|
72 |
+
all_tokens_np[0:len(tokens)-remainder] = tokens[remainder:]
|
73 |
+
token_count = len(tokens)-remainder
|
74 |
+
|
75 |
+
# write any remaining tokens as the last shard
|
76 |
+
if token_count != 0:
|
77 |
+
split = "val" if shard_index == 0 else "train"
|
78 |
+
filename = os.path.join(DATA_CACHE_DIR, f"edufineweb_{split}_{shard_index:06d}")
|
79 |
+
write_datafile(filename, all_tokens_np[:token_count])
|
evaluation/__init__.py
ADDED
File without changes
|
evaluation/hellaswag.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Downloads and evaluates HellaSwag in Python.
|
3 |
+
https://github.com/rowanz/hellaswag
|
4 |
+
|
5 |
+
"""
|
6 |
+
import os
|
7 |
+
import json
|
8 |
+
import requests
|
9 |
+
import tiktoken
|
10 |
+
from tqdm import tqdm
|
11 |
+
import torch
|
12 |
+
from torch.nn import functional as F
|
13 |
+
|
14 |
+
DATA_DOWNLOADED_PATH = '"data/hellaswag"'
|
15 |
+
|
16 |
+
def download_file(url:str, fname:str, chunk_size=1024):
|
17 |
+
resp = requests.get(url, stream=True)
|
18 |
+
total = int(resp.headers.get("content-length", 0 ))
|
19 |
+
with open(fname, "wb") as file, tqdm(
|
20 |
+
desc = fname,
|
21 |
+
total=total,
|
22 |
+
unit="iB",
|
23 |
+
unit_scale=True,
|
24 |
+
unit_divisor=1024
|
25 |
+
)as bar:
|
26 |
+
for data in resp.iter_content(chunk_size=chunk_size):
|
27 |
+
size = file.write(data)
|
28 |
+
bar.update(size)
|
29 |
+
|
30 |
+
hellaswags = {
|
31 |
+
"train": "https://raw.githubusercontent.com/rowanz/hellaswag/master/data/hellaswag_train.jsonl",
|
32 |
+
"val": "https://raw.githubusercontent.com/rowanz/hellaswag/master/data/hellaswag_val.jsonl",
|
33 |
+
"test": "https://raw.githubusercontent.com/rowanz/hellaswag/master/data/hellaswag_test.jsonl",
|
34 |
+
}
|
35 |
+
|
36 |
+
enc = tiktoken.get_encoding("gpt2")
|
37 |
+
|
38 |
+
def download(split):
|
39 |
+
"""Downloads HellaSwag DATA_DOWNLOADED_PATH"""
|
40 |
+
os.makedirs(DATA_DOWNLOADED_PATH, exist_ok=True)
|
41 |
+
data_url = hellaswags[split]
|
42 |
+
data_filename = os.path.join(DATA_DOWNLOADED_PATH, f"hellaswag_{split}.jsonl")
|
43 |
+
if not os.path.exists(data_filename):
|
44 |
+
print(f"Downloading {data_url} to {data_filename}...")
|
45 |
+
download_file(data_url, data_filename)
|
46 |
+
|
47 |
+
def render_example(example):
|
48 |
+
"""
|
49 |
+
Given the example as a dictionary, render it as three torch tensors:
|
50 |
+
- tokens (the tokens of context + completion, of size 4xN, as there are always 4 candidates)
|
51 |
+
- mask (is 1 in the region of the candidate completion, where we evaluate likelihoods)
|
52 |
+
- label (the index of the correct completion, which we hope has the highest likelihood)
|
53 |
+
"""
|
54 |
+
ctx = example["ctx"]
|
55 |
+
label = example["label"]
|
56 |
+
endings = example["endings"]
|
57 |
+
|
58 |
+
# data needed to reproduce this eval on the C size
|
59 |
+
data = {
|
60 |
+
"label": label,
|
61 |
+
"ctx_tokens": None,
|
62 |
+
"ending_tokens": [],
|
63 |
+
}
|
64 |
+
|
65 |
+
# gather up all the tokens
|
66 |
+
ctx_tokens = enc.encode(ctx)
|
67 |
+
data["ctx_tokens"] = ctx_tokens
|
68 |
+
tok_rows = []
|
69 |
+
mask_rows = []
|
70 |
+
for end in endings:
|
71 |
+
end_tokens = enc.encode(" " + end) # note: prepending " " because GPT-2 tokenizer
|
72 |
+
tok_rows.append(ctx_tokens + end_tokens)
|
73 |
+
mask_rows.append([0]*len(ctx_tokens) + [1]*len(end_tokens))
|
74 |
+
data["ending_tokens"].append(end_tokens)
|
75 |
+
|
76 |
+
# have to be careful during the collation because the number of tokens in each row can differ
|
77 |
+
max_len = max(len(row) for row in tok_rows)
|
78 |
+
tokens = torch.zeros((4, max_len), dtype=torch.long)
|
79 |
+
mask = torch.zeros((4, max_len), dtype=torch.long)
|
80 |
+
for i, (tok_row, mask_row) in enumerate(zip(tok_rows, mask_rows)):
|
81 |
+
tokens[i, :len(tok_row)] = torch.tensor(tok_row)
|
82 |
+
mask[i, :len(mask_row)] = torch.tensor(mask_row)
|
83 |
+
|
84 |
+
return data, tokens, mask, label
|
85 |
+
|
86 |
+
def iterate_examples(split):
|
87 |
+
# there are 10,042 examples in total in val
|
88 |
+
download(split)
|
89 |
+
with open(os.path.join(DATA_DOWNLOADED_PATH, f"hellaswag_{split}.jsonl"), "r") as f:
|
90 |
+
for line in f:
|
91 |
+
example = json.loads(line)
|
92 |
+
yield example
|
93 |
+
|
94 |
+
|
95 |
+
def get_most_likely_row(tokens, mask, logits):
|
96 |
+
shift_logits = (logits[..., :-1, :]).contiguous() #this will be x for loss calculation
|
97 |
+
shift_tokens = (tokens[..., 1:]).contiguous() #this will be y for loss calculation
|
98 |
+
shift_mask = (mask[..., 1:]).contiguous() #shifting same as tokens shifted
|
99 |
+
flat_shift_logits = shift_logits.view(-1, shift_logits.size(-1))
|
100 |
+
flat_shift_tokens = shift_tokens.view(-1)
|
101 |
+
shift_losses = F.cross_entropy(flat_shift_logits, flat_shift_tokens, reduction='none')
|
102 |
+
shift_losses = shift_losses.view(tokens.size(0), -1)
|
103 |
+
masked_shift_losses = shift_losses * shift_mask
|
104 |
+
sum_loss = masked_shift_losses.sum(dim=1)
|
105 |
+
avg_loss = sum_loss / shift_mask.sum(dim=1)
|
106 |
+
pred_norm = avg_loss.argmin().item() #taking the index of minimum loss
|
107 |
+
return pred_norm
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
|
evaluation/val_hellaswag.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from ..hellaswag import render_example, iterate_examples, get_most_likely_row
|
3 |
+
import torch.distributed as dist
|
4 |
+
from torch.distributed import init_process_group, destroy_process_group
|
5 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
6 |
+
import os
|
7 |
+
from ..ModelGPT2 import GPT,log_file
|
8 |
+
|
9 |
+
ddp = int(os.environ.get('RANK', -1)) != -1 #will be True if ddp run
|
10 |
+
if ddp:
|
11 |
+
assert torch.cuda.is_available()
|
12 |
+
init_process_group(backend='nccl')
|
13 |
+
ddp_rank = int(os.environ['RANK'])
|
14 |
+
ddp_local_rank = int(os.environ['LOCAL_RANK'])
|
15 |
+
ddp_world_size = int(os.environ['WORLD_SIZE'])
|
16 |
+
device = f"cuda:{ddp_local_rank}"
|
17 |
+
torch.cuda.set_device(device)
|
18 |
+
master_process = ddp_rank == 0 #this is the process doing checkpoint,logging,etc
|
19 |
+
else:
|
20 |
+
ddp_rank = 0
|
21 |
+
ddp_local_rank = 0
|
22 |
+
ddp_world_size = 1
|
23 |
+
master_process = True
|
24 |
+
#attempt to autodetect the device
|
25 |
+
device = 'cpu'
|
26 |
+
if torch.cuda.is_available():
|
27 |
+
device = 'cuda'
|
28 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
29 |
+
device = "mps" #for mac users use apple silicon cpu which allready have gpu.mps is backend for apple silicon
|
30 |
+
print(f"Using device: {device}")
|
31 |
+
# device = "cpu" #OVERRIDE
|
32 |
+
|
33 |
+
device_type = "cuda" if device.startswith("cuda") else "cpu"
|
34 |
+
|
35 |
+
torch.manual_seed(1337)
|
36 |
+
if torch.cuda.is_available():
|
37 |
+
torch.cuda.manual_seed(1337)
|
38 |
+
|
39 |
+
|
40 |
+
#Creating model by loading the model weights
|
41 |
+
checkpoint_path = '../log/model_final.pt'
|
42 |
+
if master_process:
|
43 |
+
print(f"Loading checkpoint from {checkpoint_path}")
|
44 |
+
|
45 |
+
checkpoint = torch.load(checkpoint_path, map_location=device)
|
46 |
+
|
47 |
+
# Extract config and create model
|
48 |
+
model_config = checkpoint['config']
|
49 |
+
model_config.vocab_size = 50304 #for computational effciency(power of 2)
|
50 |
+
model = GPT(model_config)
|
51 |
+
# Load model state dict
|
52 |
+
model.load_state_dict(checkpoint['model'])
|
53 |
+
model = DDP(model, device_ids=[ddp_local_rank])
|
54 |
+
model.to(device)
|
55 |
+
|
56 |
+
|
57 |
+
def evaluate_hellaswag(model, device, device_type, ddp, ddp_rank, ddp_world_size, log_file, master_process):
|
58 |
+
|
59 |
+
num_correct_norm = 0
|
60 |
+
num_total = 0
|
61 |
+
|
62 |
+
for i, example in enumerate(iterate_examples("val")):
|
63 |
+
# only process example where i % ddp_world_size ==ddp_rank#this is for proper managemnt of which part is deal by which gpu
|
64 |
+
if ddp:
|
65 |
+
if i % ddp_world_size != ddp_rank:
|
66 |
+
continue
|
67 |
+
#rendering example into tokens and labels
|
68 |
+
_, tokens, mask, label = render_example(example)
|
69 |
+
tokens = tokens.to(device)
|
70 |
+
mask = mask.to(device)
|
71 |
+
#get the logits
|
72 |
+
with torch.no_grad():
|
73 |
+
with torch.autocast(device_type=device_type, dtype=torch.bfloat16):
|
74 |
+
logits, loss = model(tokens)
|
75 |
+
pred_norm = get_most_likely_row(tokens, mask, logits)
|
76 |
+
num_total += 1
|
77 |
+
num_correct_norm += int(pred_norm == label)
|
78 |
+
#reduce the stats accross all process
|
79 |
+
if ddp:
|
80 |
+
num_total = torch.tensor(num_total, dtype=torch.long, device=device)
|
81 |
+
num_correct_norm = torch.tensor(num_correct_norm, dtype=torch.long, device=device)
|
82 |
+
dist.all_reduce(num_total, op=dist.ReduceOp.SUM)
|
83 |
+
dist.all_reduce(num_correct_norm, op=dist.ReduceOp.SUM)
|
84 |
+
num_total = num_total.item()
|
85 |
+
num_correct_norm = num_correct_norm.item()
|
86 |
+
acc_norm = num_correct_norm / num_total #accuracy of hellaswag
|
87 |
+
if master_process:
|
88 |
+
print(f"HellaSwag accuracy: {num_correct_norm}/{num_total}={acc_norm:.4f}")
|
89 |
+
with open(log_file, "a") as f:
|
90 |
+
f.write(f"Final Hellaswag accuracy: {acc_norm:.4f}\n")
|
91 |
+
|
92 |
+
evaluate_hellaswag(model, device, device_type, ddp, ddp_rank, ddp_world_size, log_file, master_process)
|
93 |
+
if ddp:
|
94 |
+
destroy_process_group()
|
log/log.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
0 val 10.9528
|
model_core/__init__.py
ADDED
File without changes
|
model_core/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (168 Bytes). View file
|
|
model_core/__pycache__/attention.cpython-311.pyc
ADDED
Binary file (2.6 kB). View file
|
|
model_core/__pycache__/dataloader.cpython-311.pyc
ADDED
Binary file (3.87 kB). View file
|
|
model_core/__pycache__/model.cpython-311.pyc
ADDED
Binary file (10.5 kB). View file
|
|
model_core/__pycache__/training.cpython-311.pyc
ADDED
Binary file (10.7 kB). View file
|
|
model_core/attention.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from torch.nn import functional as F
|
3 |
+
|
4 |
+
|
5 |
+
class CasualSelfAttention(nn.Module):
|
6 |
+
|
7 |
+
def __init__(self, config):
|
8 |
+
super().__init__()
|
9 |
+
assert config.n_embd % config.n_head == 0
|
10 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
11 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
12 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
13 |
+
self.n_head = config.n_head
|
14 |
+
self.n_embd = config.n_embd
|
15 |
+
|
16 |
+
def forward(self, x):
|
17 |
+
B, T, C = x.size()
|
18 |
+
qkv = self.c_attn(x)
|
19 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
20 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1,2) # (B, nh, T, hs)
|
21 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1,2) # (B, nh, T, hs)
|
22 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1,2) # (B, nh, T, hs)
|
23 |
+
|
24 |
+
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) #flash attention
|
25 |
+
|
26 |
+
y = y.transpose(1,2).contiguous().view(B, T, C) # (B, T, C)
|
27 |
+
y = self.c_proj(y)
|
28 |
+
return y
|
model_core/dataloader.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
|
5 |
+
#Data loader
|
6 |
+
class DataLoader_1:
|
7 |
+
def __init__(self, B, T, process_rank, num_processes, split, master_process):
|
8 |
+
self.B = B
|
9 |
+
self.T = T
|
10 |
+
self.process_rank = process_rank
|
11 |
+
self.num_processes = num_processes
|
12 |
+
assert split in {'train', 'val'}
|
13 |
+
|
14 |
+
|
15 |
+
data_root = "data/edu_fineweb10B"
|
16 |
+
shards = os.listdir(data_root)
|
17 |
+
shards = [s for s in shards if split in s]
|
18 |
+
shards = sorted(shards)
|
19 |
+
shards = [os.path.join(data_root, s) for s in shards]
|
20 |
+
self.shards = shards
|
21 |
+
assert len(shards)> 0, f"no shards found for split {split}"
|
22 |
+
if master_process:
|
23 |
+
print(f"found {len(shards)} shards for split {split}")
|
24 |
+
self.reset()
|
25 |
+
|
26 |
+
def load_tokens(self, filename):
|
27 |
+
npt = np.load(filename)
|
28 |
+
npt = npt.astype(np.int32)
|
29 |
+
ptt = torch.tensor(npt, dtype=torch.long)
|
30 |
+
return ptt
|
31 |
+
|
32 |
+
|
33 |
+
def reset(self):
|
34 |
+
#state, init at shard 0
|
35 |
+
self.current_shard = 0
|
36 |
+
self.tokens = self.load_tokens(self.shards[self.current_shard])
|
37 |
+
self.current_position = self.B * self.T * self.process_rank
|
38 |
+
|
39 |
+
def next_batch(self):
|
40 |
+
B, T = self.B, self.T
|
41 |
+
buf = self.tokens[self.current_position:self.current_position + B*T+1]
|
42 |
+
x = (buf[:-1]).view(B,T)
|
43 |
+
y = (buf[1:]).view(B,T)
|
44 |
+
|
45 |
+
self.current_position += B * T * self.num_processes
|
46 |
+
|
47 |
+
if self.current_position + (B * T * self.num_processes + 1) > len(self.tokens):
|
48 |
+
self.current_shard = (self.current_shard + 1) % len(self.shards)
|
49 |
+
self.tokens = self.load_tokens(self.shards[self.current_shard])
|
50 |
+
self.current_position = B * T * self.process_rank
|
51 |
+
return x, y
|
52 |
+
|
53 |
+
|
model_core/model.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from dataclasses import dataclass
|
5 |
+
import inspect
|
6 |
+
from .attention import CasualSelfAttention
|
7 |
+
|
8 |
+
class MLP(nn.Module):
|
9 |
+
|
10 |
+
def __init__(self, config):
|
11 |
+
super().__init__()
|
12 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
13 |
+
self.gelu = nn.GELU(approximate='tanh')
|
14 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
15 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
16 |
+
|
17 |
+
def forward(self, x):
|
18 |
+
x = self.c_fc(x)
|
19 |
+
x = self.gelu(x)
|
20 |
+
x = self.c_proj(x)
|
21 |
+
return x
|
22 |
+
|
23 |
+
|
24 |
+
class Block(nn.Module):
|
25 |
+
def __init__(self, config):
|
26 |
+
super().__init__()
|
27 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
28 |
+
self.attn = CasualSelfAttention(config)
|
29 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
30 |
+
self.mlp = MLP(config)
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
x = x + self.attn(self.ln_1(x))
|
34 |
+
x = x + self.mlp(self.ln_2(x))
|
35 |
+
return x
|
36 |
+
|
37 |
+
|
38 |
+
@dataclass
|
39 |
+
class GPTConfig:
|
40 |
+
block_size: int = 1024 #max sequence length
|
41 |
+
vocab_size: int = 50257 #number of tokens: 50000 BPE merges + 256 byte tokens +1 special token which is endoftext
|
42 |
+
n_layer: int = 12 #number of layers
|
43 |
+
n_head: int = 12 #number of heads
|
44 |
+
n_embd: int = 768 #embedding dimensions
|
45 |
+
|
46 |
+
|
47 |
+
class GPT(nn.Module):
|
48 |
+
def __init__(self, config):
|
49 |
+
super().__init__()
|
50 |
+
self.config = config
|
51 |
+
|
52 |
+
self.transformer = nn.ModuleDict(dict(
|
53 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
54 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
55 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
56 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
57 |
+
))
|
58 |
+
|
59 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
60 |
+
|
61 |
+
#Weight sharing scheme
|
62 |
+
self.transformer.wte.weight = self.lm_head.weight
|
63 |
+
|
64 |
+
# init params
|
65 |
+
self.apply(self._init_weights)
|
66 |
+
|
67 |
+
def _init_weights(self, module):
|
68 |
+
if isinstance(module, nn.Linear):
|
69 |
+
std = 0.02
|
70 |
+
if hasattr(module, 'NANOGPT_SCALE_INIT'):
|
71 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
72 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std=std)
|
73 |
+
if module.bias is not None:
|
74 |
+
torch.nn.init.zeros_(module.bias)
|
75 |
+
elif isinstance(module, nn.Embedding):
|
76 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
77 |
+
|
78 |
+
def forward(self, idx, targets=None):
|
79 |
+
B, T = idx.size()
|
80 |
+
assert T <=self.config.block_size, f"Cannot forward sequence of length {T} ,block size is only {self.config.block_size}"
|
81 |
+
|
82 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
|
83 |
+
pos_emb = self.transformer.wpe(pos)
|
84 |
+
tok_emb = self.transformer.wte(idx)
|
85 |
+
x = tok_emb + pos_emb
|
86 |
+
|
87 |
+
for block in self.transformer.h:
|
88 |
+
x = block(x)
|
89 |
+
|
90 |
+
x = self.transformer.ln_f(x)
|
91 |
+
logits = self.lm_head(x) #(B, T, vocab_size)
|
92 |
+
loss = None
|
93 |
+
if targets is not None:
|
94 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
95 |
+
|
96 |
+
return logits, loss
|
97 |
+
|
98 |
+
def configure_optimizers(self, weight_decay, learning_rate, device_type, master_process):
|
99 |
+
param_dict = {pn:p for pn, p in self.named_parameters()}
|
100 |
+
param_dict = {pn:p for pn, p in param_dict.items() if p.requires_grad}
|
101 |
+
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
|
102 |
+
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
|
103 |
+
optim_groups = [{'params':decay_params, ' weight_decay': weight_decay},
|
104 |
+
{'params':nodecay_params, 'weight_decay': 0.0}
|
105 |
+
]
|
106 |
+
num_decay_params = sum(p.numel() for p in decay_params)
|
107 |
+
num_nodecay_params = sum(p.numel() for p in nodecay_params)
|
108 |
+
if master_process:
|
109 |
+
print(f"num decayed parameters tensors: {len(decay_params)}, with{num_decay_params}:parameters")
|
110 |
+
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
|
111 |
+
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
|
112 |
+
use_fused = fused_available and device_type == "cuda"
|
113 |
+
if master_process:
|
114 |
+
print(f"using fused AdamW: {use_fused}")
|
115 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9,0.95), eps=1e-8, fused=use_fused)
|
116 |
+
return optimizer
|
117 |
+
|
model_core/training.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.distributed import init_process_group, destroy_process_group
|
2 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
3 |
+
import torch.distributed as dist
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
import time
|
7 |
+
import json
|
8 |
+
import math
|
9 |
+
from .model import GPT,GPTConfig
|
10 |
+
|
11 |
+
|
12 |
+
def train_memgpt(config_path,dataloader_class=None):
|
13 |
+
|
14 |
+
with open(config_path,'r') as f:
|
15 |
+
cfg = json.load(f)
|
16 |
+
|
17 |
+
model_cfg_params = cfg['model']
|
18 |
+
train_cfg_params = cfg['training']
|
19 |
+
|
20 |
+
ddp = int(os.environ.get('RANK', -1)) != -1
|
21 |
+
if ddp:
|
22 |
+
assert torch.cuda.is_available()
|
23 |
+
init_process_group(backend='nccl')
|
24 |
+
ddp_rank = int(os.environ['RANK'])
|
25 |
+
ddp_local_rank = int(os.environ['LOCAL_RANK'])
|
26 |
+
ddp_world_size = int(os.environ['WORLD_SIZE'])
|
27 |
+
device = f"cuda:{ddp_local_rank}"
|
28 |
+
torch.cuda.set_device(device)
|
29 |
+
master_process = ddp_rank == 0
|
30 |
+
else:
|
31 |
+
ddp_rank = 0
|
32 |
+
ddp_local_rank = 0
|
33 |
+
ddp_world_size = 1
|
34 |
+
master_process = True
|
35 |
+
device = 'cpu'
|
36 |
+
if torch.cuda.is_available():
|
37 |
+
device = 'cuda'
|
38 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
39 |
+
device = "mps"
|
40 |
+
if master_process:
|
41 |
+
print(f"Using device: {device}")
|
42 |
+
|
43 |
+
device_type = "cuda" if device.startswith("cuda") else "cpu"
|
44 |
+
|
45 |
+
torch.manual_seed(1337)
|
46 |
+
if torch.cuda.is_available():
|
47 |
+
torch.cuda.manual_seed(1337)
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
total_batch_size = train_cfg_params['total_batch_size']
|
52 |
+
B = train_cfg_params['B']
|
53 |
+
T = train_cfg_params['T']
|
54 |
+
max_steps = train_cfg_params['max_steps']
|
55 |
+
log_dir = train_cfg_params['log_dir']
|
56 |
+
max_lr = train_cfg_params['max_lr']
|
57 |
+
min_lr = train_cfg_params['min_lr']
|
58 |
+
warmup_steps = train_cfg_params['warmup_steps']
|
59 |
+
weight_decay = train_cfg_params['weight_decay']
|
60 |
+
base_learning_rate = train_cfg_params['learning_rate']
|
61 |
+
|
62 |
+
assert total_batch_size % (B * T * ddp_world_size) == 0
|
63 |
+
grad_accum_steps = total_batch_size // (B * T * ddp_world_size)
|
64 |
+
if master_process:
|
65 |
+
print(f"Total desired batch size: {total_batch_size}")
|
66 |
+
print(f"Calculated gradient accumulation steps: {grad_accum_steps}")
|
67 |
+
|
68 |
+
train_loader = dataloader_class(B=B, T=T, process_rank=ddp_rank, num_processes=ddp_world_size, split="train",master_process=master_process)
|
69 |
+
val_loader = dataloader_class(B=B, T=T, process_rank=ddp_rank, num_processes=ddp_world_size, split="val",master_process=master_process)
|
70 |
+
|
71 |
+
torch.set_float32_matmul_precision('high')
|
72 |
+
|
73 |
+
# Create Model
|
74 |
+
model = GPT(GPTConfig(**model_cfg_params))
|
75 |
+
model.to(device)
|
76 |
+
use_compile = True
|
77 |
+
if use_compile:
|
78 |
+
model = torch.compile(model)
|
79 |
+
if ddp:
|
80 |
+
model = DDP(model, device_ids=[ddp_local_rank])
|
81 |
+
raw_model = model.module if ddp else model
|
82 |
+
|
83 |
+
def get_lr(it):
|
84 |
+
if it < warmup_steps:
|
85 |
+
return max_lr * (it + 1) / warmup_steps
|
86 |
+
if it > max_steps:
|
87 |
+
return min_lr
|
88 |
+
decay_ratio = (it - warmup_steps) / (max_steps - warmup_steps)
|
89 |
+
assert 0 <= decay_ratio <= 1
|
90 |
+
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
91 |
+
return min_lr + coeff * (max_lr - min_lr)
|
92 |
+
|
93 |
+
optimizer = raw_model.configure_optimizers(weight_decay=weight_decay, learning_rate=base_learning_rate, device_type=device_type, master_process=master_process)
|
94 |
+
|
95 |
+
os.makedirs(log_dir, exist_ok=True)
|
96 |
+
log_file = os.path.join(log_dir, "log.txt")
|
97 |
+
with open(log_file, "w") as f:
|
98 |
+
pass
|
99 |
+
|
100 |
+
for step in range(max_steps):
|
101 |
+
t0 = time.time()
|
102 |
+
last_step = (step == max_steps - 1)
|
103 |
+
|
104 |
+
if step % 350 == 0 or last_step:
|
105 |
+
model.eval()
|
106 |
+
val_loader.reset()
|
107 |
+
with torch.no_grad():
|
108 |
+
val_loss_accum = 0.0
|
109 |
+
val_loss_steps = 20
|
110 |
+
for _ in range(val_loss_steps):
|
111 |
+
x, y = val_loader.next_batch()
|
112 |
+
x, y = x.to(device), y.to(device)
|
113 |
+
with torch.autocast(device_type=device_type, dtype=torch.bfloat16):
|
114 |
+
logits, loss = model(x, y)
|
115 |
+
loss = loss / val_loss_steps
|
116 |
+
val_loss_accum += loss.detach()
|
117 |
+
if ddp:
|
118 |
+
dist.all_reduce(val_loss_accum, op=dist.ReduceOp.AVG)
|
119 |
+
if master_process:
|
120 |
+
print(f"Validation loss: {val_loss_accum.item():.4f}")
|
121 |
+
with open(log_file, "a") as f:
|
122 |
+
f.write(f"{step} val {val_loss_accum.item():.4f}\n")
|
123 |
+
|
124 |
+
checkpoint_name = f"model_final.pt" if last_step else f"model_{step:05d}.pt"
|
125 |
+
checkpoint_path = os.path.join(log_dir, checkpoint_name)
|
126 |
+
|
127 |
+
checkpoint = {
|
128 |
+
'model': raw_model.state_dict(),
|
129 |
+
'optimizer': optimizer.state_dict(),
|
130 |
+
'step': step,
|
131 |
+
'val_loss': val_loss_accum.item(),
|
132 |
+
'config': raw_model.config
|
133 |
+
}
|
134 |
+
torch.save(checkpoint, checkpoint_path)
|
135 |
+
|
136 |
+
|
137 |
+
model.train()
|
138 |
+
optimizer.zero_grad()
|
139 |
+
loss_accum = 0.0
|
140 |
+
for micro_step in range(grad_accum_steps):
|
141 |
+
x, y = train_loader.next_batch()
|
142 |
+
x, y = x.to(device), y.to(device)
|
143 |
+
if ddp:
|
144 |
+
model.require_backward_grad_sync = (micro_step == grad_accum_steps - 1)
|
145 |
+
with torch.autocast(device_type=device_type, dtype=torch.bfloat16):
|
146 |
+
logits, loss = model(x, y)
|
147 |
+
loss = loss / grad_accum_steps
|
148 |
+
loss_accum += loss.detach()
|
149 |
+
loss.backward()
|
150 |
+
|
151 |
+
if ddp:
|
152 |
+
dist.all_reduce(loss_accum, op=dist.ReduceOp.AVG)
|
153 |
+
|
154 |
+
norm = torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
155 |
+
lr = get_lr(step)
|
156 |
+
for param_group in optimizer.param_groups:
|
157 |
+
param_group['lr'] = lr
|
158 |
+
optimizer.step()
|
159 |
+
if device_type == 'cuda':
|
160 |
+
torch.cuda.synchronize()
|
161 |
+
t1 = time.time()
|
162 |
+
dt = (t1 - t0) * 1000
|
163 |
+
tokens_processed = train_loader.B * train_loader.T * grad_accum_steps * ddp_world_size
|
164 |
+
tokens_per_sec = tokens_processed / dt
|
165 |
+
if master_process:
|
166 |
+
print(f"Step:{step:5d} | Loss: {loss_accum.item():.6f} | lr: {lr:.4e} | Norm:{norm:.4f} | dt: {dt:.2f}ms | Tok/sec: {tokens_per_sec:.2f}")
|
167 |
+
with open(log_file, 'a') as f:
|
168 |
+
f.write(f"{step} train {loss_accum.item():.6f}\n")
|
169 |
+
|
170 |
+
if ddp:
|
171 |
+
destroy_process_group()
|
requirement.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu121
|
2 |
+
|
3 |
+
safetensors==0.5.3
|
4 |
+
tiktoken==0.9.0
|
5 |
+
tokenizers==0.21.1
|
6 |
+
transformers==4.50.1
|
7 |
+
tqdm==4.67.1
|
8 |
+
requests==2.32.3
|
9 |
+
numpy<1.27,>=1.22
|
10 |
+
torch==2.3.1+cu121
|
rough_work.py
ADDED
File without changes
|
scripts/evaluate.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#To run all evaluation at once
|
2 |
+
#Code yet to be added
|
scripts/generate.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import tiktoken
|
4 |
+
from model import GPT
|
5 |
+
|
6 |
+
def generate_text(model, prompt, num_return_sequences=4, max_length=32, device='cuda'):
|
7 |
+
model.eval()
|
8 |
+
enc = tiktoken.get_encoding('gpt2')
|
9 |
+
tokens = enc.encode(prompt)
|
10 |
+
tokens = torch.tensor(tokens, dtype=torch.long)
|
11 |
+
tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1)
|
12 |
+
xgen = tokens.to(device)
|
13 |
+
sample_rng = torch.Generator(device=device)
|
14 |
+
sample_rng.manual_seed(42)
|
15 |
+
|
16 |
+
while xgen.size(1) < max_length:
|
17 |
+
with torch.no_grad():
|
18 |
+
logits, loss = model(xgen) # (B, T, vocab_size)
|
19 |
+
logits = logits[:, -1, :] # (B, vocab_size)
|
20 |
+
probs = F.softmax(logits, dim=-1)
|
21 |
+
topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
|
22 |
+
ix = torch.multinomial(topk_probs, 1, generator=sample_rng)
|
23 |
+
xcol = torch.gather(topk_indices, -1, ix)
|
24 |
+
xgen = torch.cat((xgen, xcol), dim=1)
|
25 |
+
|
26 |
+
generated_texts = []
|
27 |
+
for i in range(num_return_sequences):
|
28 |
+
tokens = xgen[i, :max_length].tolist()
|
29 |
+
decoded = enc.decode(tokens)
|
30 |
+
generated_texts.append(decoded)
|
31 |
+
print(f"Sample {i + 1}: {decoded}")
|
32 |
+
|
33 |
+
|
34 |
+
return generated_texts
|
35 |
+
|
36 |
+
|
37 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
38 |
+
print(f"running with {device}")
|
39 |
+
|
40 |
+
|
41 |
+
checkpoint_path = 'log/model_final.pt'
|
42 |
+
|
43 |
+
print(f"Loading checkpoint from {checkpoint_path}")
|
44 |
+
checkpoint = torch.load(checkpoint_path,map_location=device)
|
45 |
+
model_config = checkpoint['config']
|
46 |
+
model_config.vocab_size = 50304
|
47 |
+
model = GPT(model_config)
|
48 |
+
|
49 |
+
|
50 |
+
model.load_state_dict(checkpoint['model'])
|
51 |
+
model.to(device)
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
prompt = "Hello, I'm a language model,"
|
56 |
+
|
57 |
+
generated_texts = generate_text(
|
58 |
+
model=model,
|
59 |
+
prompt=prompt,
|
60 |
+
num_return_sequences=4,
|
61 |
+
max_length=32,
|
62 |
+
device=device
|
63 |
+
)
|
scripts/train.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
4 |
+
|
5 |
+
from model_core.training import train_memgpt
|
6 |
+
from model_core.dataloader import DataLoader_1
|
7 |
+
|
8 |
+
if __name__ == "__main__":
|
9 |
+
config_path = "configs/config.json"
|
10 |
+
print("Training starter")
|
11 |
+
train_memgpt(config_path=config_path,dataloader_class=DataLoader_1)
|