ModernBERT-base_en-tr_jobs_sentence-transformer_isco08-clf_part-05
This model is a fine-tuned version of ai4jobs/ModernBERT-base_en-tr_jobs_sentence-transformer on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3499
- F1 Weighted: 0.7700
- F1 Macro: 0.5328
- Accuracy: 0.7734
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Weighted | F1 Macro | Accuracy |
---|---|---|---|---|---|---|
6.4761 | 0.1290 | 1000 | 1.4466 | 0.5991 | 0.2762 | 0.6474 |
2.5152 | 0.2580 | 2000 | 1.2032 | 0.6414 | 0.3803 | 0.669 |
2.2911 | 0.3870 | 3000 | 1.1419 | 0.6668 | 0.4173 | 0.689 |
2.2391 | 0.5160 | 4000 | 1.0739 | 0.6692 | 0.4298 | 0.6926 |
2.06 | 0.6450 | 5000 | 1.0828 | 0.6734 | 0.4386 | 0.695 |
1.931 | 0.7740 | 6000 | 0.9855 | 0.6906 | 0.4503 | 0.708 |
1.8233 | 0.9030 | 7000 | 0.9522 | 0.7108 | 0.4622 | 0.7248 |
1.6038 | 1.0320 | 8000 | 0.9133 | 0.7238 | 0.5015 | 0.7398 |
1.3756 | 1.1610 | 9000 | 0.9152 | 0.7165 | 0.4857 | 0.7316 |
1.3543 | 1.2900 | 10000 | 0.8855 | 0.7318 | 0.4949 | 0.7426 |
1.3413 | 1.4190 | 11000 | 0.8926 | 0.7333 | 0.4953 | 0.7434 |
1.2833 | 1.5480 | 12000 | 0.8498 | 0.7408 | 0.5274 | 0.7516 |
1.2525 | 1.6770 | 13000 | 0.8164 | 0.7480 | 0.5159 | 0.7594 |
1.207 | 1.8060 | 14000 | 0.8246 | 0.7483 | 0.5309 | 0.7542 |
1.16 | 1.9350 | 15000 | 0.8083 | 0.7557 | 0.5330 | 0.7636 |
0.9448 | 2.0640 | 16000 | 0.8621 | 0.7440 | 0.5263 | 0.7528 |
0.7289 | 2.1930 | 17000 | 0.8537 | 0.7561 | 0.5367 | 0.759 |
0.7117 | 2.3220 | 18000 | 0.8620 | 0.7553 | 0.5312 | 0.7634 |
0.7167 | 2.4510 | 19000 | 0.8982 | 0.7529 | 0.5286 | 0.7584 |
0.7129 | 2.5800 | 20000 | 0.8877 | 0.7555 | 0.5352 | 0.7634 |
0.6961 | 2.7090 | 21000 | 0.8876 | 0.7538 | 0.5426 | 0.7594 |
0.689 | 2.8380 | 22000 | 0.8947 | 0.7579 | 0.5431 | 0.7636 |
0.6488 | 2.9670 | 23000 | 0.8763 | 0.7614 | 0.5458 | 0.7694 |
0.4092 | 3.0960 | 24000 | 0.9449 | 0.7638 | 0.5466 | 0.7698 |
0.3237 | 3.2250 | 25000 | 0.9822 | 0.7623 | 0.5275 | 0.7686 |
0.3155 | 3.3540 | 26000 | 1.0121 | 0.7534 | 0.5248 | 0.759 |
0.3185 | 3.4830 | 27000 | 1.0267 | 0.7562 | 0.5342 | 0.7602 |
0.3125 | 3.6120 | 28000 | 1.0373 | 0.7575 | 0.5282 | 0.7634 |
0.3151 | 3.7410 | 29000 | 1.0390 | 0.7623 | 0.5309 | 0.766 |
0.2953 | 3.8700 | 30000 | 1.0490 | 0.7621 | 0.5453 | 0.7652 |
0.2851 | 3.9990 | 31000 | 1.0769 | 0.7587 | 0.5301 | 0.763 |
0.1055 | 4.1280 | 32000 | 1.1409 | 0.7670 | 0.5468 | 0.771 |
0.1024 | 4.2570 | 33000 | 1.1721 | 0.7619 | 0.5361 | 0.7668 |
0.1014 | 4.3860 | 34000 | 1.1987 | 0.7632 | 0.5392 | 0.7652 |
0.1079 | 4.5150 | 35000 | 1.1890 | 0.7707 | 0.5411 | 0.7726 |
0.1115 | 4.6440 | 36000 | 1.2438 | 0.7670 | 0.5311 | 0.7724 |
0.0988 | 4.7730 | 37000 | 1.2474 | 0.7668 | 0.5438 | 0.7702 |
0.1038 | 4.9020 | 38000 | 1.2408 | 0.7679 | 0.5401 | 0.7716 |
0.0751 | 5.0310 | 39000 | 1.2840 | 0.7643 | 0.5368 | 0.769 |
0.0261 | 5.1600 | 40000 | 1.3044 | 0.7658 | 0.5244 | 0.7704 |
0.0348 | 5.2890 | 41000 | 1.3229 | 0.7685 | 0.5309 | 0.7728 |
0.0351 | 5.4180 | 42000 | 1.3458 | 0.7695 | 0.5332 | 0.7726 |
0.0362 | 5.5470 | 43000 | 1.3494 | 0.7678 | 0.5301 | 0.7718 |
0.0353 | 5.6760 | 44000 | 1.3500 | 0.7682 | 0.5352 | 0.7714 |
0.0368 | 5.8050 | 45000 | 1.3499 | 0.7700 | 0.5328 | 0.7734 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.3.0
- Tokenizers 0.21.0
- Downloads last month
- 449
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support