ModernBERT-base_en-tr_jobs_sentence-transformer_isco08-clf_part-05

This model is a fine-tuned version of ai4jobs/ModernBERT-base_en-tr_jobs_sentence-transformer on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3499
  • F1 Weighted: 0.7700
  • F1 Macro: 0.5328
  • Accuracy: 0.7734

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss F1 Weighted F1 Macro Accuracy
6.4761 0.1290 1000 1.4466 0.5991 0.2762 0.6474
2.5152 0.2580 2000 1.2032 0.6414 0.3803 0.669
2.2911 0.3870 3000 1.1419 0.6668 0.4173 0.689
2.2391 0.5160 4000 1.0739 0.6692 0.4298 0.6926
2.06 0.6450 5000 1.0828 0.6734 0.4386 0.695
1.931 0.7740 6000 0.9855 0.6906 0.4503 0.708
1.8233 0.9030 7000 0.9522 0.7108 0.4622 0.7248
1.6038 1.0320 8000 0.9133 0.7238 0.5015 0.7398
1.3756 1.1610 9000 0.9152 0.7165 0.4857 0.7316
1.3543 1.2900 10000 0.8855 0.7318 0.4949 0.7426
1.3413 1.4190 11000 0.8926 0.7333 0.4953 0.7434
1.2833 1.5480 12000 0.8498 0.7408 0.5274 0.7516
1.2525 1.6770 13000 0.8164 0.7480 0.5159 0.7594
1.207 1.8060 14000 0.8246 0.7483 0.5309 0.7542
1.16 1.9350 15000 0.8083 0.7557 0.5330 0.7636
0.9448 2.0640 16000 0.8621 0.7440 0.5263 0.7528
0.7289 2.1930 17000 0.8537 0.7561 0.5367 0.759
0.7117 2.3220 18000 0.8620 0.7553 0.5312 0.7634
0.7167 2.4510 19000 0.8982 0.7529 0.5286 0.7584
0.7129 2.5800 20000 0.8877 0.7555 0.5352 0.7634
0.6961 2.7090 21000 0.8876 0.7538 0.5426 0.7594
0.689 2.8380 22000 0.8947 0.7579 0.5431 0.7636
0.6488 2.9670 23000 0.8763 0.7614 0.5458 0.7694
0.4092 3.0960 24000 0.9449 0.7638 0.5466 0.7698
0.3237 3.2250 25000 0.9822 0.7623 0.5275 0.7686
0.3155 3.3540 26000 1.0121 0.7534 0.5248 0.759
0.3185 3.4830 27000 1.0267 0.7562 0.5342 0.7602
0.3125 3.6120 28000 1.0373 0.7575 0.5282 0.7634
0.3151 3.7410 29000 1.0390 0.7623 0.5309 0.766
0.2953 3.8700 30000 1.0490 0.7621 0.5453 0.7652
0.2851 3.9990 31000 1.0769 0.7587 0.5301 0.763
0.1055 4.1280 32000 1.1409 0.7670 0.5468 0.771
0.1024 4.2570 33000 1.1721 0.7619 0.5361 0.7668
0.1014 4.3860 34000 1.1987 0.7632 0.5392 0.7652
0.1079 4.5150 35000 1.1890 0.7707 0.5411 0.7726
0.1115 4.6440 36000 1.2438 0.7670 0.5311 0.7724
0.0988 4.7730 37000 1.2474 0.7668 0.5438 0.7702
0.1038 4.9020 38000 1.2408 0.7679 0.5401 0.7716
0.0751 5.0310 39000 1.2840 0.7643 0.5368 0.769
0.0261 5.1600 40000 1.3044 0.7658 0.5244 0.7704
0.0348 5.2890 41000 1.3229 0.7685 0.5309 0.7728
0.0351 5.4180 42000 1.3458 0.7695 0.5332 0.7726
0.0362 5.5470 43000 1.3494 0.7678 0.5301 0.7718
0.0353 5.6760 44000 1.3500 0.7682 0.5352 0.7714
0.0368 5.8050 45000 1.3499 0.7700 0.5328 0.7734

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.0
  • Tokenizers 0.21.0
Downloads last month
449
Safetensors
Model size
150M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ai4jobs/ModernBERT-base_en-tr_jobs_sentence-transformer_isco08-clf_part-05