import torchaudio as ta from chatterbox.tts import ChatterboxTTS from typing import Dict, Any, List import soundfile as sf import io import base64 from huggingface_hub import hf_hub_download class EndpointHandler: def __init__(self, path: str = ""): try: self.model = ChatterboxTTS.from_pretrained(device="cuda") except Exception as e: raise RuntimeError(f"[ERROR] Failed to load model: {e}") def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: #, data: Dict[str, Any]) -> List[Dict[str, Any]] try: inputs = data.get("inputs", {}) text = inputs.get("text") exaggeration = inputs.get("exaggeration", 0.3) cfg_weight = inputs.get("cfg_weight", 0.5) print(exaggeration, cfg_weight) AUDIO_PROMPT_PATH=hf_hub_download(repo_id="aiplexdeveloper/chatterbox", filename="arjun_das_output_audio.mp3") wav = self.model.generate(text, audio_prompt_path=AUDIO_PROMPT_PATH, exaggeration = exaggeration, cfg_weight=cfg_weight) buffer = io.BytesIO() sf.write(buffer, wav.cpu().numpy().T, self.model.sr, format='WAV') buffer.seek(0) # Encode to base64 audio_base64 = base64.b64encode(buffer.read()).decode('utf-8') wav_squeeze = wav.squeeze() # Shape becomes [960000] audio_length_seconds = len(wav_squeeze) / self.model.sr return [{"audio_base64": audio_base64, "audio_length_seconds":audio_length_seconds}] except Exception as e: print(f"[ERROR] Inference failed: {e}") return [{"error": str(e)}]