File size: 13,828 Bytes
ad3e56b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import opendatasets as od"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Downloading mpst-movie-plot-synopses-with-tags.zip to .\\mpst-movie-plot-synopses-with-tags\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 28.8M/28.8M [00:07<00:00, 3.81MB/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "od.download('https://www.kaggle.com/datasets/cryptexcode/mpst-movie-plot-synopses-with-tags')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "df = pd.read_csv('mpst-movie-plot-synopses-with-tags\\mpst_full_data.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>imdb_id</th>\n",
       "      <th>title</th>\n",
       "      <th>plot_synopsis</th>\n",
       "      <th>tags</th>\n",
       "      <th>split</th>\n",
       "      <th>synopsis_source</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>tt0057603</td>\n",
       "      <td>I tre volti della paura</td>\n",
       "      <td>Note: this synopsis is for the orginal Italian...</td>\n",
       "      <td>cult, horror, gothic, murder, atmospheric</td>\n",
       "      <td>train</td>\n",
       "      <td>imdb</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>tt1733125</td>\n",
       "      <td>Dungeons &amp; Dragons: The Book of Vile Darkness</td>\n",
       "      <td>Two thousand years ago, Nhagruul the Foul, a s...</td>\n",
       "      <td>violence</td>\n",
       "      <td>train</td>\n",
       "      <td>imdb</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>tt0033045</td>\n",
       "      <td>The Shop Around the Corner</td>\n",
       "      <td>Matuschek's, a gift store in Budapest, is the ...</td>\n",
       "      <td>romantic</td>\n",
       "      <td>test</td>\n",
       "      <td>imdb</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>tt0113862</td>\n",
       "      <td>Mr. Holland's Opus</td>\n",
       "      <td>Glenn Holland, not a morning person by anyone'...</td>\n",
       "      <td>inspiring, romantic, stupid, feel-good</td>\n",
       "      <td>train</td>\n",
       "      <td>imdb</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>tt0086250</td>\n",
       "      <td>Scarface</td>\n",
       "      <td>In May 1980, a Cuban man named Tony Montana (A...</td>\n",
       "      <td>cruelty, murder, dramatic, cult, violence, atm...</td>\n",
       "      <td>val</td>\n",
       "      <td>imdb</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "     imdb_id                                          title  \\\n",
       "0  tt0057603                        I tre volti della paura   \n",
       "1  tt1733125  Dungeons & Dragons: The Book of Vile Darkness   \n",
       "2  tt0033045                     The Shop Around the Corner   \n",
       "3  tt0113862                             Mr. Holland's Opus   \n",
       "4  tt0086250                                       Scarface   \n",
       "\n",
       "                                       plot_synopsis  \\\n",
       "0  Note: this synopsis is for the orginal Italian...   \n",
       "1  Two thousand years ago, Nhagruul the Foul, a s...   \n",
       "2  Matuschek's, a gift store in Budapest, is the ...   \n",
       "3  Glenn Holland, not a morning person by anyone'...   \n",
       "4  In May 1980, a Cuban man named Tony Montana (A...   \n",
       "\n",
       "                                                tags  split synopsis_source  \n",
       "0          cult, horror, gothic, murder, atmospheric  train            imdb  \n",
       "1                                           violence  train            imdb  \n",
       "2                                           romantic   test            imdb  \n",
       "3             inspiring, romantic, stupid, feel-good  train            imdb  \n",
       "4  cruelty, murder, dramatic, cult, violence, atm...    val            imdb  "
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install gpt-2-simple"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Index(['imdb_id', 'title', 'plot_synopsis', 'tags', 'split',\n",
       "       'synopsis_source'],\n",
       "      dtype='object')"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.columns"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "from sklearn.model_selection import train_test_split\n",
    "from tensorflow.keras.preprocessing.text import Tokenizer\n",
    "from tensorflow.keras.preprocessing.sequence import pad_sequences\n",
    "from tensorflow.keras.models import Sequential\n",
    "from tensorflow.keras.layers import Embedding, LSTM, Dense,  Flatten\n",
    "from sklearn.preprocessing import MultiLabelBinarizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [],
   "source": [
    "df = df[['title', 'plot_synopsis', 'tags']]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 63,
   "metadata": {},
   "outputs": [],
   "source": [
    "tokenizer = Tokenizer()\n",
    "tokenizer.fit_on_texts(df['title'])\n",
    "title_sequences = tokenizer.texts_to_sequences(df['title'])\n",
    "max_title_length = max(len(seq) for seq in title_sequences)\n",
    "title_sequences = pad_sequences(title_sequences, maxlen=max_title_length)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 64,
   "metadata": {},
   "outputs": [],
   "source": [
    "tags = [tag.split(', ') for tag in df['tags']]\n",
    "mlb = MultiLabelBinarizer()\n",
    "tags = mlb.fit_transform(tags)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 65,
   "metadata": {},
   "outputs": [],
   "source": [
    "tokenizer_json = tokenizer.to_json()\n",
    "with open('tokenizer.json', 'w') as json_file:\n",
    "    json_file.write(tokenizer_json)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {},
   "outputs": [],
   "source": [
    "X_train, X_test, y_train, y_test = train_test_split(title_sequences, tags, test_size=0.2, random_state=42)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "metadata": {},
   "outputs": [],
   "source": [
    "vocab_size = len(tokenizer.word_index) + 1\n",
    "embedding_dim = 100"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Train on 11862 samples, validate on 2966 samples\n",
      "Epoch 1/15\n",
      "11862/11862 [==============================] - 10s 826us/sample - loss: 0.1911 - accuracy: 0.9457 - val_loss: 0.1417 - val_accuracy: 0.9569\n",
      "Epoch 2/15\n",
      "11862/11862 [==============================] - 11s 887us/sample - loss: 0.1390 - accuracy: 0.9583 - val_loss: 0.1416 - val_accuracy: 0.9569\n",
      "Epoch 3/15\n",
      "11862/11862 [==============================] - 11s 941us/sample - loss: 0.1388 - accuracy: 0.9583 - val_loss: 0.1415 - val_accuracy: 0.9569\n",
      "Epoch 4/15\n",
      "11862/11862 [==============================] - 11s 916us/sample - loss: 0.1367 - accuracy: 0.9583 - val_loss: 0.1420 - val_accuracy: 0.9568\n",
      "Epoch 5/15\n",
      "11862/11862 [==============================] - 11s 906us/sample - loss: 0.1310 - accuracy: 0.9595 - val_loss: 0.1433 - val_accuracy: 0.9567\n",
      "Epoch 6/15\n",
      "11862/11862 [==============================] - 11s 909us/sample - loss: 0.1248 - accuracy: 0.9608 - val_loss: 0.1444 - val_accuracy: 0.9569\n",
      "Epoch 7/15\n",
      "11862/11862 [==============================] - 11s 911us/sample - loss: 0.1184 - accuracy: 0.9624 - val_loss: 0.1461 - val_accuracy: 0.9564\n",
      "Epoch 8/15\n",
      "11862/11862 [==============================] - 11s 948us/sample - loss: 0.1123 - accuracy: 0.9649 - val_loss: 0.1484 - val_accuracy: 0.9562\n",
      "Epoch 9/15\n",
      "11862/11862 [==============================] - 11s 916us/sample - loss: 0.1069 - accuracy: 0.9668 - val_loss: 0.1509 - val_accuracy: 0.9552\n",
      "Epoch 10/15\n",
      "11862/11862 [==============================] - 11s 921us/sample - loss: 0.1021 - accuracy: 0.9682 - val_loss: 0.1537 - val_accuracy: 0.9550\n",
      "Epoch 11/15\n",
      "11862/11862 [==============================] - 11s 932us/sample - loss: 0.0978 - accuracy: 0.9692 - val_loss: 0.1566 - val_accuracy: 0.9541\n",
      "Epoch 12/15\n",
      "11862/11862 [==============================] - 11s 927us/sample - loss: 0.0937 - accuracy: 0.9700 - val_loss: 0.1591 - val_accuracy: 0.9540\n",
      "Epoch 13/15\n",
      "11862/11862 [==============================] - 11s 927us/sample - loss: 0.0896 - accuracy: 0.9710 - val_loss: 0.1621 - val_accuracy: 0.9536\n",
      "Epoch 14/15\n",
      "11862/11862 [==============================] - 11s 954us/sample - loss: 0.0857 - accuracy: 0.9719 - val_loss: 0.1660 - val_accuracy: 0.9536\n",
      "Epoch 15/15\n",
      "11862/11862 [==============================] - 12s 1ms/sample - loss: 0.0820 - accuracy: 0.9729 - val_loss: 0.1690 - val_accuracy: 0.9538\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<keras.callbacks.History at 0x1cc31c0b250>"
      ]
     },
     "execution_count": 46,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "\n",
    "model = Sequential()\n",
    "model.add(Embedding(vocab_size, embedding_dim, input_length=max_title_length))\n",
    "model.add(LSTM(100))\n",
    "model.add(Dense(tags.shape[1], activation='sigmoid'))\n",
    "\n",
    "model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])\n",
    "\n",
    "\n",
    "model.fit(X_train, y_train, batch_size=64, epochs=15, validation_data=(X_test, y_test))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "metadata": {},
   "outputs": [],
   "source": [
    "model.save('story_gen.h5')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "metadata": {},
   "outputs": [],
   "source": [
    "title = \"A oversized t-shirt\"\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 60,
   "metadata": {},
   "outputs": [],
   "source": [
    "title_sequences = tokenizer.texts_to_sequences(title)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "predictions = model.predict(title_sequences)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 75,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Input Title: Spider Man\n",
      "Predicted Tags: [('murder',)]\n"
     ]
    }
   ],
   "source": [
    "from tensorflow.keras.models import load_model\n",
    "with open('tokenizer.json', 'r') as f:\n",
    "    tokenizer = tokenizer_from_json(f.read())\n",
    "\n",
    "model = load_model('story_gen.h5')  \n",
    "\n",
    "example_title = \"Spider Man\"\n",
    "\n",
    "example_sequence = tokenizer.texts_to_sequences([example_title])\n",
    "example_sequence = pad_sequences(example_sequence, maxlen=max_title_length)\n",
    "\n",
    "predictions = model.predict(example_sequence)\n",
    "\n",
    "predicted_tags = mlb.inverse_transform((predictions > 0.5).astype(int))\n",
    "\n",
    "print(\"Input Title:\", example_title)\n",
    "print(\"Predicted Tags:\", predicted_tags)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "base",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.9"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}