alex2awesome commited on
Commit
6bbc5c6
·
1 Parent(s): 6916ec0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - f1
7
+ model-index:
8
+ - name: newsdiscourse-model
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # newsdiscourse-model
16
+
17
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.6987
20
+ - F1: 0.5504
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 3e-05
40
+ - train_batch_size: 1
41
+ - eval_batch_size: 1
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 5.0
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | F1 |
50
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
51
+ | No log | 0.14 | 100 | 1.3361 | 0.3723 |
52
+ | No log | 0.28 | 200 | 1.1836 | 0.4345 |
53
+ | No log | 0.43 | 300 | 1.1636 | 0.3997 |
54
+ | No log | 0.57 | 400 | 1.3535 | 0.5028 |
55
+ | 1.2064 | 0.71 | 500 | 1.2941 | 0.4707 |
56
+ | 1.2064 | 0.85 | 600 | 1.2891 | 0.4937 |
57
+ | 1.2064 | 1.0 | 700 | 1.2047 | 0.4774 |
58
+ | 1.2064 | 1.14 | 800 | 1.2191 | 0.4944 |
59
+ | 1.2064 | 1.28 | 900 | 1.1750 | 0.4778 |
60
+ | 0.9207 | 1.42 | 1000 | 1.3087 | 0.4909 |
61
+ | 0.9207 | 1.57 | 1100 | 1.2436 | 0.4976 |
62
+ | 0.9207 | 1.71 | 1200 | 1.1465 | 0.5033 |
63
+ | 0.9207 | 1.85 | 1300 | 1.1134 | 0.5142 |
64
+ | 0.9207 | 1.99 | 1400 | 1.1940 | 0.5383 |
65
+ | 0.8149 | 2.14 | 1500 | 1.2552 | 0.5291 |
66
+ | 0.8149 | 2.28 | 1600 | 1.3747 | 0.5260 |
67
+ | 0.8149 | 2.42 | 1700 | 1.3680 | 0.5329 |
68
+ | 0.8149 | 2.56 | 1800 | 1.2787 | 0.5190 |
69
+ | 0.8149 | 2.71 | 1900 | 1.3889 | 0.5409 |
70
+ | 0.6152 | 2.85 | 2000 | 1.3602 | 0.5435 |
71
+ | 0.6152 | 2.99 | 2100 | 1.3175 | 0.5468 |
72
+ | 0.6152 | 3.13 | 2200 | 1.5887 | 0.5365 |
73
+ | 0.6152 | 3.28 | 2300 | 1.5172 | 0.5563 |
74
+ | 0.6152 | 3.42 | 2400 | 1.5470 | 0.5661 |
75
+ | 0.4719 | 3.56 | 2500 | 1.4928 | 0.5212 |
76
+ | 0.4719 | 3.7 | 2600 | 1.6498 | 0.5356 |
77
+ | 0.4719 | 3.85 | 2700 | 1.4977 | 0.5597 |
78
+ | 0.4719 | 3.99 | 2800 | 1.4720 | 0.5470 |
79
+ | 0.4719 | 4.13 | 2900 | 1.5797 | 0.5493 |
80
+ | 0.372 | 4.27 | 3000 | 1.6874 | 0.5445 |
81
+ | 0.372 | 4.42 | 3100 | 1.6702 | 0.5545 |
82
+ | 0.372 | 4.56 | 3200 | 1.7672 | 0.5469 |
83
+ | 0.372 | 4.7 | 3300 | 1.7351 | 0.5485 |
84
+ | 0.372 | 4.84 | 3400 | 1.7283 | 0.5498 |
85
+ | 0.2944 | 4.99 | 3500 | 1.6987 | 0.5504 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.30.2
91
+ - Pytorch 2.0.1+cu117
92
+ - Datasets 2.13.1
93
+ - Tokenizers 0.13.3