Commit
·
98a0c26
1
Parent(s):
4cfb3f0
update model card README.md
Browse files
README.md
CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 1.
|
20 |
-
- F1: 0.
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -36,53 +36,88 @@ More information needed
|
|
36 |
### Training hyperparameters
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
-
- learning_rate:
|
40 |
- train_batch_size: 1
|
41 |
- eval_batch_size: 1
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
-
- num_epochs:
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
50 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
51 |
-
| No log | 0.14 | 100 | 1.
|
52 |
-
| No log | 0.28 | 200 | 1.
|
53 |
-
| No log | 0.43 | 300 | 1.
|
54 |
-
| No log | 0.57 | 400 | 1.
|
55 |
-
| 1.
|
56 |
-
| 1.
|
57 |
-
| 1.
|
58 |
-
| 1.
|
59 |
-
| 1.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
|
88 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.9458
|
20 |
+
- F1: 0.5610
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
36 |
### Training hyperparameters
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 1e-05
|
40 |
- train_batch_size: 1
|
41 |
- eval_batch_size: 1
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 10.0
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
50 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
51 |
+
| No log | 0.14 | 100 | 1.4843 | 0.2881 |
|
52 |
+
| No log | 0.28 | 200 | 1.3307 | 0.3841 |
|
53 |
+
| No log | 0.43 | 300 | 1.2427 | 0.3991 |
|
54 |
+
| No log | 0.57 | 400 | 1.2590 | 0.4899 |
|
55 |
+
| 1.2399 | 0.71 | 500 | 1.2648 | 0.4658 |
|
56 |
+
| 1.2399 | 0.85 | 600 | 1.2064 | 0.4988 |
|
57 |
+
| 1.2399 | 1.0 | 700 | 1.2564 | 0.4668 |
|
58 |
+
| 1.2399 | 1.14 | 800 | 1.2062 | 0.4912 |
|
59 |
+
| 1.2399 | 1.28 | 900 | 1.1202 | 0.4904 |
|
60 |
+
| 0.9315 | 1.42 | 1000 | 1.1924 | 0.5188 |
|
61 |
+
| 0.9315 | 1.57 | 1100 | 1.1627 | 0.5034 |
|
62 |
+
| 0.9315 | 1.71 | 1200 | 1.1093 | 0.5111 |
|
63 |
+
| 0.9315 | 1.85 | 1300 | 1.1332 | 0.5166 |
|
64 |
+
| 0.9315 | 1.99 | 1400 | 1.1558 | 0.5285 |
|
65 |
+
| 0.8604 | 2.14 | 1500 | 1.2531 | 0.5122 |
|
66 |
+
| 0.8604 | 2.28 | 1600 | 1.2830 | 0.5414 |
|
67 |
+
| 0.8604 | 2.42 | 1700 | 1.2550 | 0.5335 |
|
68 |
+
| 0.8604 | 2.56 | 1800 | 1.1928 | 0.5120 |
|
69 |
+
| 0.8604 | 2.71 | 1900 | 1.2441 | 0.5308 |
|
70 |
+
| 0.7406 | 2.85 | 2000 | 1.2791 | 0.5400 |
|
71 |
+
| 0.7406 | 2.99 | 2100 | 1.2354 | 0.5485 |
|
72 |
+
| 0.7406 | 3.13 | 2200 | 1.3047 | 0.5258 |
|
73 |
+
| 0.7406 | 3.28 | 2300 | 1.3636 | 0.5640 |
|
74 |
+
| 0.7406 | 3.42 | 2400 | 1.2963 | 0.5747 |
|
75 |
+
| 0.6355 | 3.56 | 2500 | 1.2897 | 0.5123 |
|
76 |
+
| 0.6355 | 3.7 | 2600 | 1.3225 | 0.5481 |
|
77 |
+
| 0.6355 | 3.85 | 2700 | 1.3197 | 0.5467 |
|
78 |
+
| 0.6355 | 3.99 | 2800 | 1.2346 | 0.5353 |
|
79 |
+
| 0.6355 | 4.13 | 2900 | 1.3397 | 0.5629 |
|
80 |
+
| 0.5698 | 4.27 | 3000 | 1.4259 | 0.5622 |
|
81 |
+
| 0.5698 | 4.42 | 3100 | 1.3702 | 0.5607 |
|
82 |
+
| 0.5698 | 4.56 | 3200 | 1.4294 | 0.5584 |
|
83 |
+
| 0.5698 | 4.7 | 3300 | 1.5041 | 0.5459 |
|
84 |
+
| 0.5698 | 4.84 | 3400 | 1.4156 | 0.5394 |
|
85 |
+
| 0.5069 | 4.99 | 3500 | 1.4384 | 0.5527 |
|
86 |
+
| 0.5069 | 5.13 | 3600 | 1.5322 | 0.5439 |
|
87 |
+
| 0.5069 | 5.27 | 3700 | 1.4899 | 0.5557 |
|
88 |
+
| 0.5069 | 5.41 | 3800 | 1.4526 | 0.5391 |
|
89 |
+
| 0.5069 | 5.56 | 3900 | 1.5027 | 0.5607 |
|
90 |
+
| 0.4127 | 5.7 | 4000 | 1.5458 | 0.5662 |
|
91 |
+
| 0.4127 | 5.84 | 4100 | 1.5080 | 0.5537 |
|
92 |
+
| 0.4127 | 5.98 | 4200 | 1.5936 | 0.5483 |
|
93 |
+
| 0.4127 | 6.13 | 4300 | 1.7079 | 0.5401 |
|
94 |
+
| 0.4127 | 6.27 | 4400 | 1.5939 | 0.5521 |
|
95 |
+
| 0.3574 | 6.41 | 4500 | 1.5588 | 0.5702 |
|
96 |
+
| 0.3574 | 6.55 | 4600 | 1.6363 | 0.5568 |
|
97 |
+
| 0.3574 | 6.7 | 4700 | 1.6629 | 0.5535 |
|
98 |
+
| 0.3574 | 6.84 | 4800 | 1.6523 | 0.5662 |
|
99 |
+
| 0.3574 | 6.98 | 4900 | 1.7245 | 0.5461 |
|
100 |
+
| 0.3417 | 7.12 | 5000 | 1.6766 | 0.5629 |
|
101 |
+
| 0.3417 | 7.26 | 5100 | 1.8219 | 0.5450 |
|
102 |
+
| 0.3417 | 7.41 | 5200 | 1.7422 | 0.5533 |
|
103 |
+
| 0.3417 | 7.55 | 5300 | 1.8250 | 0.5564 |
|
104 |
+
| 0.3417 | 7.69 | 5400 | 1.7744 | 0.5600 |
|
105 |
+
| 0.2852 | 7.83 | 5500 | 1.7919 | 0.5549 |
|
106 |
+
| 0.2852 | 7.98 | 5600 | 1.7604 | 0.5639 |
|
107 |
+
| 0.2852 | 8.12 | 5700 | 1.7660 | 0.5599 |
|
108 |
+
| 0.2852 | 8.26 | 5800 | 1.7323 | 0.5600 |
|
109 |
+
| 0.2852 | 8.4 | 5900 | 1.9174 | 0.5529 |
|
110 |
+
| 0.2606 | 8.55 | 6000 | 1.8664 | 0.5611 |
|
111 |
+
| 0.2606 | 8.69 | 6100 | 1.9191 | 0.5568 |
|
112 |
+
| 0.2606 | 8.83 | 6200 | 1.8900 | 0.5565 |
|
113 |
+
| 0.2606 | 8.97 | 6300 | 1.9376 | 0.5524 |
|
114 |
+
| 0.2606 | 9.12 | 6400 | 1.9220 | 0.5594 |
|
115 |
+
| 0.2274 | 9.26 | 6500 | 1.9188 | 0.5585 |
|
116 |
+
| 0.2274 | 9.4 | 6600 | 1.9459 | 0.5527 |
|
117 |
+
| 0.2274 | 9.54 | 6700 | 1.9439 | 0.5543 |
|
118 |
+
| 0.2274 | 9.69 | 6800 | 1.9437 | 0.5596 |
|
119 |
+
| 0.2274 | 9.83 | 6900 | 1.9484 | 0.5581 |
|
120 |
+
| 0.2258 | 9.97 | 7000 | 1.9458 | 0.5610 |
|
121 |
|
122 |
|
123 |
### Framework versions
|