alex2awesome commited on
Commit
ae8d424
·
1 Parent(s): 8050c9f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +139 -0
README.md ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - f1
7
+ model-index:
8
+ - name: source-role-model
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # source-role-model
16
+
17
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.5543
20
+ - F1: 0.5814
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 5
41
+ - eval_batch_size: 5
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 10.0
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | F1 |
50
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
51
+ | No log | 0.12 | 100 | 1.0000 | 0.3391 |
52
+ | No log | 0.25 | 200 | 0.8371 | 0.5055 |
53
+ | No log | 0.37 | 300 | 0.8684 | 0.5019 |
54
+ | No log | 0.49 | 400 | 0.8668 | 0.5208 |
55
+ | 0.9644 | 0.62 | 500 | 0.8473 | 0.5422 |
56
+ | 0.9644 | 0.74 | 600 | 0.8852 | 0.4956 |
57
+ | 0.9644 | 0.86 | 700 | 0.8368 | 0.5124 |
58
+ | 0.9644 | 0.99 | 800 | 0.7913 | 0.5848 |
59
+ | 0.9644 | 1.11 | 900 | 1.0570 | 0.4950 |
60
+ | 0.8375 | 1.23 | 1000 | 0.9402 | 0.5280 |
61
+ | 0.8375 | 1.35 | 1100 | 0.8023 | 0.5084 |
62
+ | 0.8375 | 1.48 | 1200 | 0.9299 | 0.4807 |
63
+ | 0.8375 | 1.6 | 1300 | 0.9661 | 0.5194 |
64
+ | 0.8375 | 1.72 | 1400 | 0.8014 | 0.6016 |
65
+ | 0.8149 | 1.85 | 1500 | 0.8608 | 0.6105 |
66
+ | 0.8149 | 1.97 | 1600 | 0.9195 | 0.5741 |
67
+ | 0.8149 | 2.09 | 1700 | 1.2378 | 0.5964 |
68
+ | 0.8149 | 2.22 | 1800 | 1.0415 | 0.5902 |
69
+ | 0.8149 | 2.34 | 1900 | 1.0499 | 0.5526 |
70
+ | 0.6932 | 2.46 | 2000 | 1.0600 | 0.5832 |
71
+ | 0.6932 | 2.59 | 2100 | 0.9368 | 0.6074 |
72
+ | 0.6932 | 2.71 | 2200 | 1.0872 | 0.6270 |
73
+ | 0.6932 | 2.83 | 2300 | 1.0912 | 0.5707 |
74
+ | 0.6932 | 2.96 | 2400 | 0.8815 | 0.5602 |
75
+ | 0.6214 | 3.08 | 2500 | 1.1650 | 0.5993 |
76
+ | 0.6214 | 3.2 | 2600 | 1.4485 | 0.5821 |
77
+ | 0.6214 | 3.33 | 2700 | 1.5382 | 0.5775 |
78
+ | 0.6214 | 3.45 | 2800 | 1.3999 | 0.5696 |
79
+ | 0.6214 | 3.57 | 2900 | 1.3702 | 0.6114 |
80
+ | 0.5686 | 3.69 | 3000 | 1.3840 | 0.5635 |
81
+ | 0.5686 | 3.82 | 3100 | 1.3547 | 0.5403 |
82
+ | 0.5686 | 3.94 | 3200 | 1.0283 | 0.5723 |
83
+ | 0.5686 | 4.06 | 3300 | 1.3593 | 0.6242 |
84
+ | 0.5686 | 4.19 | 3400 | 1.5985 | 0.6004 |
85
+ | 0.4807 | 4.31 | 3500 | 1.5351 | 0.6177 |
86
+ | 0.4807 | 4.43 | 3600 | 1.4109 | 0.5779 |
87
+ | 0.4807 | 4.56 | 3700 | 1.6972 | 0.5637 |
88
+ | 0.4807 | 4.68 | 3800 | 1.5336 | 0.6047 |
89
+ | 0.4807 | 4.8 | 3900 | 1.7811 | 0.5909 |
90
+ | 0.4387 | 4.93 | 4000 | 1.5862 | 0.5869 |
91
+ | 0.4387 | 5.05 | 4100 | 1.7106 | 0.5637 |
92
+ | 0.4387 | 5.17 | 4200 | 1.5251 | 0.5624 |
93
+ | 0.4387 | 5.3 | 4300 | 1.5519 | 0.5944 |
94
+ | 0.4387 | 5.42 | 4400 | 1.7315 | 0.5908 |
95
+ | 0.3219 | 5.54 | 4500 | 1.7588 | 0.6015 |
96
+ | 0.3219 | 5.67 | 4600 | 1.9277 | 0.5635 |
97
+ | 0.3219 | 5.79 | 4700 | 1.7663 | 0.5891 |
98
+ | 0.3219 | 5.91 | 4800 | 1.8401 | 0.5917 |
99
+ | 0.3219 | 6.03 | 4900 | 2.0516 | 0.5845 |
100
+ | 0.2311 | 6.16 | 5000 | 2.0510 | 0.6166 |
101
+ | 0.2311 | 6.28 | 5100 | 2.1673 | 0.5732 |
102
+ | 0.2311 | 6.4 | 5200 | 2.0931 | 0.5819 |
103
+ | 0.2311 | 6.53 | 5300 | 2.2803 | 0.5961 |
104
+ | 0.2311 | 6.65 | 5400 | 1.9985 | 0.6010 |
105
+ | 0.1669 | 6.77 | 5500 | 2.1742 | 0.5664 |
106
+ | 0.1669 | 6.9 | 5600 | 2.1021 | 0.5732 |
107
+ | 0.1669 | 7.02 | 5700 | 2.2043 | 0.5641 |
108
+ | 0.1669 | 7.14 | 5800 | 2.2018 | 0.5837 |
109
+ | 0.1669 | 7.27 | 5900 | 2.3575 | 0.5721 |
110
+ | 0.1698 | 7.39 | 6000 | 2.4663 | 0.5662 |
111
+ | 0.1698 | 7.51 | 6100 | 2.2658 | 0.5851 |
112
+ | 0.1698 | 7.64 | 6200 | 2.1585 | 0.5676 |
113
+ | 0.1698 | 7.76 | 6300 | 2.1755 | 0.5774 |
114
+ | 0.1698 | 7.88 | 6400 | 2.2680 | 0.5696 |
115
+ | 0.1378 | 8.0 | 6500 | 2.3505 | 0.5615 |
116
+ | 0.1378 | 8.13 | 6600 | 2.2773 | 0.5705 |
117
+ | 0.1378 | 8.25 | 6700 | 2.3112 | 0.5662 |
118
+ | 0.1378 | 8.37 | 6800 | 2.4572 | 0.5679 |
119
+ | 0.1378 | 8.5 | 6900 | 2.4642 | 0.5766 |
120
+ | 0.0756 | 8.62 | 7000 | 2.4643 | 0.5885 |
121
+ | 0.0756 | 8.74 | 7100 | 2.5096 | 0.5779 |
122
+ | 0.0756 | 8.87 | 7200 | 2.4261 | 0.5789 |
123
+ | 0.0756 | 8.99 | 7300 | 2.3973 | 0.5757 |
124
+ | 0.0756 | 9.11 | 7400 | 2.4137 | 0.5906 |
125
+ | 0.0842 | 9.24 | 7500 | 2.4577 | 0.5844 |
126
+ | 0.0842 | 9.36 | 7600 | 2.5034 | 0.5840 |
127
+ | 0.0842 | 9.48 | 7700 | 2.5176 | 0.5810 |
128
+ | 0.0842 | 9.61 | 7800 | 2.5240 | 0.5852 |
129
+ | 0.0842 | 9.73 | 7900 | 2.5141 | 0.5824 |
130
+ | 0.0634 | 9.85 | 8000 | 2.5482 | 0.5814 |
131
+ | 0.0634 | 9.98 | 8100 | 2.5543 | 0.5814 |
132
+
133
+
134
+ ### Framework versions
135
+
136
+ - Transformers 4.30.2
137
+ - Pytorch 2.0.1+cu117
138
+ - Datasets 2.13.1
139
+ - Tokenizers 0.13.3