Commit
·
ae8d424
1
Parent(s):
8050c9f
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- f1
|
7 |
+
model-index:
|
8 |
+
- name: source-role-model
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# source-role-model
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.5543
|
20 |
+
- F1: 0.5814
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 5e-05
|
40 |
+
- train_batch_size: 5
|
41 |
+
- eval_batch_size: 5
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 10.0
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
50 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
51 |
+
| No log | 0.12 | 100 | 1.0000 | 0.3391 |
|
52 |
+
| No log | 0.25 | 200 | 0.8371 | 0.5055 |
|
53 |
+
| No log | 0.37 | 300 | 0.8684 | 0.5019 |
|
54 |
+
| No log | 0.49 | 400 | 0.8668 | 0.5208 |
|
55 |
+
| 0.9644 | 0.62 | 500 | 0.8473 | 0.5422 |
|
56 |
+
| 0.9644 | 0.74 | 600 | 0.8852 | 0.4956 |
|
57 |
+
| 0.9644 | 0.86 | 700 | 0.8368 | 0.5124 |
|
58 |
+
| 0.9644 | 0.99 | 800 | 0.7913 | 0.5848 |
|
59 |
+
| 0.9644 | 1.11 | 900 | 1.0570 | 0.4950 |
|
60 |
+
| 0.8375 | 1.23 | 1000 | 0.9402 | 0.5280 |
|
61 |
+
| 0.8375 | 1.35 | 1100 | 0.8023 | 0.5084 |
|
62 |
+
| 0.8375 | 1.48 | 1200 | 0.9299 | 0.4807 |
|
63 |
+
| 0.8375 | 1.6 | 1300 | 0.9661 | 0.5194 |
|
64 |
+
| 0.8375 | 1.72 | 1400 | 0.8014 | 0.6016 |
|
65 |
+
| 0.8149 | 1.85 | 1500 | 0.8608 | 0.6105 |
|
66 |
+
| 0.8149 | 1.97 | 1600 | 0.9195 | 0.5741 |
|
67 |
+
| 0.8149 | 2.09 | 1700 | 1.2378 | 0.5964 |
|
68 |
+
| 0.8149 | 2.22 | 1800 | 1.0415 | 0.5902 |
|
69 |
+
| 0.8149 | 2.34 | 1900 | 1.0499 | 0.5526 |
|
70 |
+
| 0.6932 | 2.46 | 2000 | 1.0600 | 0.5832 |
|
71 |
+
| 0.6932 | 2.59 | 2100 | 0.9368 | 0.6074 |
|
72 |
+
| 0.6932 | 2.71 | 2200 | 1.0872 | 0.6270 |
|
73 |
+
| 0.6932 | 2.83 | 2300 | 1.0912 | 0.5707 |
|
74 |
+
| 0.6932 | 2.96 | 2400 | 0.8815 | 0.5602 |
|
75 |
+
| 0.6214 | 3.08 | 2500 | 1.1650 | 0.5993 |
|
76 |
+
| 0.6214 | 3.2 | 2600 | 1.4485 | 0.5821 |
|
77 |
+
| 0.6214 | 3.33 | 2700 | 1.5382 | 0.5775 |
|
78 |
+
| 0.6214 | 3.45 | 2800 | 1.3999 | 0.5696 |
|
79 |
+
| 0.6214 | 3.57 | 2900 | 1.3702 | 0.6114 |
|
80 |
+
| 0.5686 | 3.69 | 3000 | 1.3840 | 0.5635 |
|
81 |
+
| 0.5686 | 3.82 | 3100 | 1.3547 | 0.5403 |
|
82 |
+
| 0.5686 | 3.94 | 3200 | 1.0283 | 0.5723 |
|
83 |
+
| 0.5686 | 4.06 | 3300 | 1.3593 | 0.6242 |
|
84 |
+
| 0.5686 | 4.19 | 3400 | 1.5985 | 0.6004 |
|
85 |
+
| 0.4807 | 4.31 | 3500 | 1.5351 | 0.6177 |
|
86 |
+
| 0.4807 | 4.43 | 3600 | 1.4109 | 0.5779 |
|
87 |
+
| 0.4807 | 4.56 | 3700 | 1.6972 | 0.5637 |
|
88 |
+
| 0.4807 | 4.68 | 3800 | 1.5336 | 0.6047 |
|
89 |
+
| 0.4807 | 4.8 | 3900 | 1.7811 | 0.5909 |
|
90 |
+
| 0.4387 | 4.93 | 4000 | 1.5862 | 0.5869 |
|
91 |
+
| 0.4387 | 5.05 | 4100 | 1.7106 | 0.5637 |
|
92 |
+
| 0.4387 | 5.17 | 4200 | 1.5251 | 0.5624 |
|
93 |
+
| 0.4387 | 5.3 | 4300 | 1.5519 | 0.5944 |
|
94 |
+
| 0.4387 | 5.42 | 4400 | 1.7315 | 0.5908 |
|
95 |
+
| 0.3219 | 5.54 | 4500 | 1.7588 | 0.6015 |
|
96 |
+
| 0.3219 | 5.67 | 4600 | 1.9277 | 0.5635 |
|
97 |
+
| 0.3219 | 5.79 | 4700 | 1.7663 | 0.5891 |
|
98 |
+
| 0.3219 | 5.91 | 4800 | 1.8401 | 0.5917 |
|
99 |
+
| 0.3219 | 6.03 | 4900 | 2.0516 | 0.5845 |
|
100 |
+
| 0.2311 | 6.16 | 5000 | 2.0510 | 0.6166 |
|
101 |
+
| 0.2311 | 6.28 | 5100 | 2.1673 | 0.5732 |
|
102 |
+
| 0.2311 | 6.4 | 5200 | 2.0931 | 0.5819 |
|
103 |
+
| 0.2311 | 6.53 | 5300 | 2.2803 | 0.5961 |
|
104 |
+
| 0.2311 | 6.65 | 5400 | 1.9985 | 0.6010 |
|
105 |
+
| 0.1669 | 6.77 | 5500 | 2.1742 | 0.5664 |
|
106 |
+
| 0.1669 | 6.9 | 5600 | 2.1021 | 0.5732 |
|
107 |
+
| 0.1669 | 7.02 | 5700 | 2.2043 | 0.5641 |
|
108 |
+
| 0.1669 | 7.14 | 5800 | 2.2018 | 0.5837 |
|
109 |
+
| 0.1669 | 7.27 | 5900 | 2.3575 | 0.5721 |
|
110 |
+
| 0.1698 | 7.39 | 6000 | 2.4663 | 0.5662 |
|
111 |
+
| 0.1698 | 7.51 | 6100 | 2.2658 | 0.5851 |
|
112 |
+
| 0.1698 | 7.64 | 6200 | 2.1585 | 0.5676 |
|
113 |
+
| 0.1698 | 7.76 | 6300 | 2.1755 | 0.5774 |
|
114 |
+
| 0.1698 | 7.88 | 6400 | 2.2680 | 0.5696 |
|
115 |
+
| 0.1378 | 8.0 | 6500 | 2.3505 | 0.5615 |
|
116 |
+
| 0.1378 | 8.13 | 6600 | 2.2773 | 0.5705 |
|
117 |
+
| 0.1378 | 8.25 | 6700 | 2.3112 | 0.5662 |
|
118 |
+
| 0.1378 | 8.37 | 6800 | 2.4572 | 0.5679 |
|
119 |
+
| 0.1378 | 8.5 | 6900 | 2.4642 | 0.5766 |
|
120 |
+
| 0.0756 | 8.62 | 7000 | 2.4643 | 0.5885 |
|
121 |
+
| 0.0756 | 8.74 | 7100 | 2.5096 | 0.5779 |
|
122 |
+
| 0.0756 | 8.87 | 7200 | 2.4261 | 0.5789 |
|
123 |
+
| 0.0756 | 8.99 | 7300 | 2.3973 | 0.5757 |
|
124 |
+
| 0.0756 | 9.11 | 7400 | 2.4137 | 0.5906 |
|
125 |
+
| 0.0842 | 9.24 | 7500 | 2.4577 | 0.5844 |
|
126 |
+
| 0.0842 | 9.36 | 7600 | 2.5034 | 0.5840 |
|
127 |
+
| 0.0842 | 9.48 | 7700 | 2.5176 | 0.5810 |
|
128 |
+
| 0.0842 | 9.61 | 7800 | 2.5240 | 0.5852 |
|
129 |
+
| 0.0842 | 9.73 | 7900 | 2.5141 | 0.5824 |
|
130 |
+
| 0.0634 | 9.85 | 8000 | 2.5482 | 0.5814 |
|
131 |
+
| 0.0634 | 9.98 | 8100 | 2.5543 | 0.5814 |
|
132 |
+
|
133 |
+
|
134 |
+
### Framework versions
|
135 |
+
|
136 |
+
- Transformers 4.30.2
|
137 |
+
- Pytorch 2.0.1+cu117
|
138 |
+
- Datasets 2.13.1
|
139 |
+
- Tokenizers 0.13.3
|