alibabasglab commited on
Commit
e09a105
·
verified ·
1 Parent(s): 117f895

Upload 6 files

Browse files
checkpoints/.DS_Store ADDED
Binary file (6.15 kB). View file
 
checkpoints/log_LRS2_lip_dprnn_3spk/config.yaml ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Config file
2
+
3
+ # Log
4
+ seed: 777
5
+ use_cuda: 1 # 1 for True, 0 for False
6
+
7
+ # dataset
8
+ speaker_no: 3
9
+ mix_lst_path: ./data/LRS2/mixture_data_list_3mix.csv
10
+ audio_direc: /mnt/nas_sg/wulanchabu/zexu.pan/datasets/LRS2/audio_clean/
11
+ reference_direc: /mnt/nas_sg/wulanchabu/zexu.pan/datasets/LRS2/mvlrs_v1/
12
+ audio_sr: 16000
13
+ ref_sr: 25
14
+
15
+ # dataloader
16
+ num_workers: 4
17
+ batch_size: 4 # four GPU training with a total effective batch size of 16
18
+ accu_grad: 0
19
+ effec_batch_size: 4 # per GPU, only used if accu_grad is set to 1, must be multiple times of batch size
20
+ max_length: 6 # truncate the utterances in dataloader, in seconds
21
+
22
+ # network settings
23
+ init_from: None # 'None' or a log name 'log_2024-07-22(18:12:13)'
24
+ causal: 0 # 1 for True, 0 for False
25
+ network_reference:
26
+ cue: lip # lip or speech or gesture or EEG
27
+ backbone: resnet18 # resnet18 or shufflenetV2 or blazenet64
28
+ emb_size: 256 # resnet18:256
29
+ network_audio:
30
+ backbone: av_dprnn
31
+ N: 256
32
+ L: 40
33
+ B: 64
34
+ H: 128
35
+ K: 100
36
+ R: 6
37
+
38
+ # optimizer
39
+ loss_type: sisdr # "snr", "sisdr", "hybrid"
40
+ init_learning_rate: 0.001
41
+ max_epoch: 150
42
+ clip_grad_norm: 5
checkpoints/log_LRS2_lip_dprnn_3spk/last_best_checkpoint.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce64d2712ed4fa29894c3b1f9c2a8332133100df96342dc098cbf63e30c2211c
3
+ size 94585962
checkpoints/log_LRS2_lip_dprnn_3spk/last_checkpoint.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba15915d38ca0e4dd092575fa9aecb74f3829f2a1a78f42c284203e9805acdf2
3
+ size 94585962
checkpoints/log_LRS2_lip_dprnn_3spk/log_2024-09-26(16:47:55).txt ADDED
@@ -0,0 +1,586 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Config file
2
+
3
+ # Log
4
+ seed: 777
5
+ use_cuda: 1 # 1 for True, 0 for False
6
+
7
+ # dataset
8
+ speaker_no: 3
9
+ mix_lst_path: ./data/LRS2/mixture_data_list_3mix.csv
10
+ audio_direc: /data4/zexu.pan/datasets/LRS2/audio_clean/
11
+ reference_direc: /data4/zexu.pan/datasets/LRS2/mvlrs_v1/
12
+ audio_sr: 16000
13
+ visual_sr: 25
14
+
15
+ # dataloader
16
+ num_workers: 4
17
+ batch_size: 4 # four GPU training with a total effective batch size of 16
18
+ accu_grad: 0
19
+ effec_batch_size: 4 # per GPU, only used if accu_grad is set to 1, must be multiple times of batch size
20
+ max_length: 6 # truncate the utterances in dataloader, in seconds
21
+
22
+ # network settings
23
+ init_from: None # 'None' or a log name 'log_2024-07-22(18:12:13)'
24
+ causal: 0 # 1 for True, 0 for False
25
+ network_reference:
26
+ cue: lip # lip or speech or gesture or EEG
27
+ backbone: resnet18 # resnet18 or shufflenetV2 or blazenet64
28
+ emb_size: 256 # resnet18:256
29
+ network_audio:
30
+ backbone: dprnn
31
+ N: 256
32
+ L: 40
33
+ B: 64
34
+ H: 128
35
+ K: 100
36
+ R: 6
37
+
38
+ # optimizer
39
+ loss_type: sisdr # "snr", "sisdr", "hybrid"
40
+ init_learning_rate: 0.001
41
+ max_epoch: 150
42
+ clip_grad_norm: 5
43
+ W0926 16:47:57.512017 140558052996864 torch/distributed/run.py:779]
44
+ W0926 16:47:57.512017 140558052996864 torch/distributed/run.py:779] *****************************************
45
+ W0926 16:47:57.512017 140558052996864 torch/distributed/run.py:779] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
46
+ W0926 16:47:57.512017 140558052996864 torch/distributed/run.py:779] *****************************************
47
+ started on checkpoints/log_2024-09-26(16:47:55)
48
+
49
+ namespace(accu_grad=0, audio_direc='/data4/zexu.pan/datasets/LRS2/audio_clean/', audio_sr=16000, batch_size=4, causal=0, checkpoint_dir='checkpoints/log_2024-09-26(16:47:55)', clip_grad_norm=5.0, config=[<yamlargparse.Path object at 0x7fc53e739c40>], device=device(type='cuda'), distributed=True, effec_batch_size=4, init_from='None', init_learning_rate=0.001, local_rank=0, loss_type='sisdr', max_epoch=150, max_length=6, mix_lst_path='./data/LRS2/mixture_data_list_3mix.csv', network_audio=namespace(B=64, H=128, K=100, L=40, N=256, R=6, backbone='dprnn'), network_reference=namespace(backbone='resnet18', cue='lip', emb_size=256), num_workers=4, reference_direc='/data4/zexu.pan/datasets/LRS2/mvlrs_v1/', seed=777, speaker_no=3, train_from_last_checkpoint=0, use_cuda=1, visual_sr=25, world_size=4)
50
+ network_wrapper(
51
+ (sep_network): Dprnn(
52
+ (encoder): Encoder(
53
+ (conv1d_U): Conv1d(1, 256, kernel_size=(40,), stride=(20,), bias=False)
54
+ )
55
+ (separator): rnn(
56
+ (layer_norm): GroupNorm(1, 256, eps=1e-08, affine=True)
57
+ (bottleneck_conv1x1): Conv1d(256, 64, kernel_size=(1,), stride=(1,), bias=False)
58
+ (dual_rnn): ModuleList(
59
+ (0-5): 6 x Dual_RNN_Block(
60
+ (intra_rnn): LSTM(64, 128, batch_first=True, bidirectional=True)
61
+ (inter_rnn): LSTM(64, 128, batch_first=True, bidirectional=True)
62
+ (intra_norm): GroupNorm(1, 64, eps=1e-08, affine=True)
63
+ (inter_norm): GroupNorm(1, 64, eps=1e-08, affine=True)
64
+ (intra_linear): Linear(in_features=256, out_features=64, bias=True)
65
+ (inter_linear): Linear(in_features=256, out_features=64, bias=True)
66
+ )
67
+ )
68
+ (prelu): PReLU(num_parameters=1)
69
+ (mask_conv1x1): Conv1d(64, 256, kernel_size=(1,), stride=(1,), bias=False)
70
+ (av_conv): Conv1d(320, 64, kernel_size=(1,), stride=(1,), bias=False)
71
+ )
72
+ (decoder): Decoder(
73
+ (basis_signals): Linear(in_features=256, out_features=40, bias=False)
74
+ )
75
+ )
76
+ (ref_encoder): Visual_encoder(
77
+ (v_frontend): VisualFrontend(
78
+ (frontend3D): Sequential(
79
+ (0): Conv3d(1, 64, kernel_size=(5, 7, 7), stride=(1, 2, 2), padding=(2, 3, 3), bias=False)
80
+ (1): SyncBatchNorm(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
81
+ (2): ReLU()
82
+ (3): MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1), dilation=1, ceil_mode=False)
83
+ )
84
+ (resnet): ResNet(
85
+ (layer1): ResNetLayer(
86
+ (conv1a): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
87
+ (bn1a): SyncBatchNorm(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
88
+ (conv2a): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
89
+ (downsample): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
90
+ (outbna): SyncBatchNorm(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
91
+ (conv1b): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
92
+ (bn1b): SyncBatchNorm(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
93
+ (conv2b): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
94
+ (outbnb): SyncBatchNorm(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
95
+ )
96
+ (layer2): ResNetLayer(
97
+ (conv1a): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
98
+ (bn1a): SyncBatchNorm(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
99
+ (conv2a): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
100
+ (downsample): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
101
+ (outbna): SyncBatchNorm(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
102
+ (conv1b): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
103
+ (bn1b): SyncBatchNorm(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
104
+ (conv2b): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
105
+ (outbnb): SyncBatchNorm(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
106
+ )
107
+ (layer3): ResNetLayer(
108
+ (conv1a): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
109
+ (bn1a): SyncBatchNorm(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
110
+ (conv2a): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
111
+ (downsample): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
112
+ (outbna): SyncBatchNorm(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
113
+ (conv1b): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
114
+ (bn1b): SyncBatchNorm(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
115
+ (conv2b): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
116
+ (outbnb): SyncBatchNorm(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
117
+ )
118
+ (layer4): ResNetLayer(
119
+ (conv1a): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
120
+ (bn1a): SyncBatchNorm(512, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
121
+ (conv2a): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
122
+ (downsample): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
123
+ (outbna): SyncBatchNorm(512, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
124
+ (conv1b): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
125
+ (bn1b): SyncBatchNorm(512, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
126
+ (conv2b): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
127
+ (outbnb): SyncBatchNorm(512, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
128
+ )
129
+ (avgpool): AvgPool2d(kernel_size=(4, 4), stride=(1, 1), padding=0)
130
+ )
131
+ )
132
+ (v_ds): Conv1d(512, 256, kernel_size=(1,), stride=(1,), bias=False)
133
+ (visual_conv): Sequential(
134
+ (0): VisualConv1D(
135
+ (relu_0): ReLU()
136
+ (norm_0): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
137
+ (conv1x1): Conv1d(256, 512, kernel_size=(1,), stride=(1,), bias=False)
138
+ (relu): ReLU()
139
+ (norm_1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
140
+ (dsconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(1,), groups=512)
141
+ (prelu): PReLU(num_parameters=1)
142
+ (norm_2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
143
+ (pw_conv): Conv1d(512, 256, kernel_size=(1,), stride=(1,), bias=False)
144
+ )
145
+ (1): VisualConv1D(
146
+ (relu_0): ReLU()
147
+ (norm_0): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
148
+ (conv1x1): Conv1d(256, 512, kernel_size=(1,), stride=(1,), bias=False)
149
+ (relu): ReLU()
150
+ (norm_1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
151
+ (dsconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(1,), groups=512)
152
+ (prelu): PReLU(num_parameters=1)
153
+ (norm_2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
154
+ (pw_conv): Conv1d(512, 256, kernel_size=(1,), stride=(1,), bias=False)
155
+ )
156
+ (2): VisualConv1D(
157
+ (relu_0): ReLU()
158
+ (norm_0): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
159
+ (conv1x1): Conv1d(256, 512, kernel_size=(1,), stride=(1,), bias=False)
160
+ (relu): ReLU()
161
+ (norm_1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
162
+ (dsconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(1,), groups=512)
163
+ (prelu): PReLU(num_parameters=1)
164
+ (norm_2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
165
+ (pw_conv): Conv1d(512, 256, kernel_size=(1,), stride=(1,), bias=False)
166
+ )
167
+ (3): VisualConv1D(
168
+ (relu_0): ReLU()
169
+ (norm_0): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
170
+ (conv1x1): Conv1d(256, 512, kernel_size=(1,), stride=(1,), bias=False)
171
+ (relu): ReLU()
172
+ (norm_1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
173
+ (dsconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(1,), groups=512)
174
+ (prelu): PReLU(num_parameters=1)
175
+ (norm_2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
176
+ (pw_conv): Conv1d(512, 256, kernel_size=(1,), stride=(1,), bias=False)
177
+ )
178
+ (4): VisualConv1D(
179
+ (relu_0): ReLU()
180
+ (norm_0): SyncBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
181
+ (conv1x1): Conv1d(256, 512, kernel_size=(1,), stride=(1,), bias=False)
182
+ (relu): ReLU()
183
+ (norm_1): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
184
+ (dsconv): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(1,), groups=512)
185
+ (prelu): PReLU(num_parameters=1)
186
+ (norm_2): SyncBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
187
+ (pw_conv): Conv1d(512, 256, kernel_size=(1,), stride=(1,), bias=False)
188
+ )
189
+ )
190
+ )
191
+ )
192
+
193
+ Total number of parameters: 15306950
194
+
195
+
196
+ Total number of trainable parameters: 4121862
197
+
198
+ Start new training from scratch
199
+ [rank1]:[W926 16:48:04.919168280 reducer.cpp:1400] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration, which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
200
+ [rank0]:[W926 16:48:04.925726508 reducer.cpp:1400] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration, which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
201
+ [rank3]:[W926 16:48:04.926579292 reducer.cpp:1400] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration, which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
202
+ [rank2]:[W926 16:48:04.929743722 reducer.cpp:1400] Warning: find_unused_parameters=True was specified in DDP constructor, but did not find any unused parameters in the forward pass. This flag results in an extra traversal of the autograd graph every iteration, which can adversely affect performance. If your model indeed never has any unused parameters in the forward pass, consider turning this flag off. Note that this warning may be a false positive if your model has flow control causing later iterations to have unused parameters. (function operator())
203
+ Train Summary | End of Epoch 1 | Time 716.64s | Train Loss 0.882
204
+ Valid Summary | End of Epoch 1 | Time 34.35s | Valid Loss 0.293
205
+ Test Summary | End of Epoch 1 | Time 13.53s | Test Loss 0.293
206
+ Fund new best model, dict saved
207
+ Train Summary | End of Epoch 2 | Time 711.83s | Train Loss -0.253
208
+ Valid Summary | End of Epoch 2 | Time 32.94s | Valid Loss -0.279
209
+ Test Summary | End of Epoch 2 | Time 13.85s | Test Loss -0.279
210
+ Fund new best model, dict saved
211
+ Train Summary | End of Epoch 3 | Time 707.50s | Train Loss -0.751
212
+ Valid Summary | End of Epoch 3 | Time 32.74s | Valid Loss -0.641
213
+ Test Summary | End of Epoch 3 | Time 13.96s | Test Loss -0.641
214
+ Fund new best model, dict saved
215
+ Train Summary | End of Epoch 4 | Time 715.27s | Train Loss -1.100
216
+ Valid Summary | End of Epoch 4 | Time 35.06s | Valid Loss -1.026
217
+ Test Summary | End of Epoch 4 | Time 14.07s | Test Loss -1.026
218
+ Fund new best model, dict saved
219
+ Train Summary | End of Epoch 5 | Time 721.61s | Train Loss -1.348
220
+ Valid Summary | End of Epoch 5 | Time 34.71s | Valid Loss -1.178
221
+ Test Summary | End of Epoch 5 | Time 13.98s | Test Loss -1.178
222
+ Fund new best model, dict saved
223
+ Train Summary | End of Epoch 6 | Time 725.93s | Train Loss -1.491
224
+ Valid Summary | End of Epoch 6 | Time 39.37s | Valid Loss -1.258
225
+ Test Summary | End of Epoch 6 | Time 14.30s | Test Loss -1.258
226
+ Fund new best model, dict saved
227
+ Train Summary | End of Epoch 7 | Time 746.14s | Train Loss -1.560
228
+ Valid Summary | End of Epoch 7 | Time 41.31s | Valid Loss -1.275
229
+ Test Summary | End of Epoch 7 | Time 14.51s | Test Loss -1.275
230
+ Fund new best model, dict saved
231
+ Train Summary | End of Epoch 8 | Time 743.28s | Train Loss -1.566
232
+ Valid Summary | End of Epoch 8 | Time 43.07s | Valid Loss -1.267
233
+ Test Summary | End of Epoch 8 | Time 14.99s | Test Loss -1.267
234
+ Train Summary | End of Epoch 9 | Time 748.24s | Train Loss -1.517
235
+ Valid Summary | End of Epoch 9 | Time 44.12s | Valid Loss -1.209
236
+ Test Summary | End of Epoch 9 | Time 15.13s | Test Loss -1.209
237
+ Train Summary | End of Epoch 10 | Time 757.55s | Train Loss -1.453
238
+ Valid Summary | End of Epoch 10 | Time 44.53s | Valid Loss -1.245
239
+ Test Summary | End of Epoch 10 | Time 15.24s | Test Loss -1.245
240
+ Train Summary | End of Epoch 11 | Time 751.76s | Train Loss -1.381
241
+ Valid Summary | End of Epoch 11 | Time 45.03s | Valid Loss -0.555
242
+ Test Summary | End of Epoch 11 | Time 15.45s | Test Loss -0.555
243
+ Train Summary | End of Epoch 12 | Time 758.94s | Train Loss -1.248
244
+ Valid Summary | End of Epoch 12 | Time 45.47s | Valid Loss -0.771
245
+ Test Summary | End of Epoch 12 | Time 15.37s | Test Loss -0.771
246
+ reload weights and optimizer from last best checkpoint
247
+ Learning rate adjusted to: 0.000500
248
+ Train Summary | End of Epoch 13 | Time 750.60s | Train Loss -1.963
249
+ Valid Summary | End of Epoch 13 | Time 43.25s | Valid Loss -1.671
250
+ Test Summary | End of Epoch 13 | Time 14.70s | Test Loss -1.671
251
+ Fund new best model, dict saved
252
+ Train Summary | End of Epoch 14 | Time 750.36s | Train Loss -2.132
253
+ Valid Summary | End of Epoch 14 | Time 43.17s | Valid Loss -1.792
254
+ Test Summary | End of Epoch 14 | Time 14.75s | Test Loss -1.792
255
+ Fund new best model, dict saved
256
+ Train Summary | End of Epoch 15 | Time 754.03s | Train Loss -2.248
257
+ Valid Summary | End of Epoch 15 | Time 44.21s | Valid Loss -1.936
258
+ Test Summary | End of Epoch 15 | Time 14.65s | Test Loss -1.936
259
+ Fund new best model, dict saved
260
+ Train Summary | End of Epoch 16 | Time 749.64s | Train Loss -2.343
261
+ Valid Summary | End of Epoch 16 | Time 42.93s | Valid Loss -1.953
262
+ Test Summary | End of Epoch 16 | Time 14.59s | Test Loss -1.953
263
+ Fund new best model, dict saved
264
+ Train Summary | End of Epoch 17 | Time 753.82s | Train Loss -2.431
265
+ Valid Summary | End of Epoch 17 | Time 45.98s | Valid Loss -2.024
266
+ Test Summary | End of Epoch 17 | Time 14.57s | Test Loss -2.024
267
+ Fund new best model, dict saved
268
+ Train Summary | End of Epoch 18 | Time 747.06s | Train Loss -2.527
269
+ Valid Summary | End of Epoch 18 | Time 42.12s | Valid Loss -2.166
270
+ Test Summary | End of Epoch 18 | Time 14.69s | Test Loss -2.166
271
+ Fund new best model, dict saved
272
+ Train Summary | End of Epoch 19 | Time 744.92s | Train Loss -2.622
273
+ Valid Summary | End of Epoch 19 | Time 43.09s | Valid Loss -2.192
274
+ Test Summary | End of Epoch 19 | Time 14.56s | Test Loss -2.192
275
+ Fund new best model, dict saved
276
+ Train Summary | End of Epoch 20 | Time 753.59s | Train Loss -2.714
277
+ Valid Summary | End of Epoch 20 | Time 42.05s | Valid Loss -2.337
278
+ Test Summary | End of Epoch 20 | Time 14.57s | Test Loss -2.337
279
+ Fund new best model, dict saved
280
+ Train Summary | End of Epoch 21 | Time 744.78s | Train Loss -2.809
281
+ Valid Summary | End of Epoch 21 | Time 42.55s | Valid Loss -2.343
282
+ Test Summary | End of Epoch 21 | Time 14.63s | Test Loss -2.343
283
+ Fund new best model, dict saved
284
+ Train Summary | End of Epoch 22 | Time 746.46s | Train Loss -2.913
285
+ Valid Summary | End of Epoch 22 | Time 45.56s | Valid Loss -2.460
286
+ Test Summary | End of Epoch 22 | Time 14.34s | Test Loss -2.460
287
+ Fund new best model, dict saved
288
+ Train Summary | End of Epoch 23 | Time 741.42s | Train Loss -3.008
289
+ Valid Summary | End of Epoch 23 | Time 42.06s | Valid Loss -2.517
290
+ Test Summary | End of Epoch 23 | Time 14.52s | Test Loss -2.517
291
+ Fund new best model, dict saved
292
+ Train Summary | End of Epoch 24 | Time 744.26s | Train Loss -3.111
293
+ Valid Summary | End of Epoch 24 | Time 41.47s | Valid Loss -2.586
294
+ Test Summary | End of Epoch 24 | Time 14.40s | Test Loss -2.586
295
+ Fund new best model, dict saved
296
+ Train Summary | End of Epoch 25 | Time 748.69s | Train Loss -3.215
297
+ Valid Summary | End of Epoch 25 | Time 42.03s | Valid Loss -2.658
298
+ Test Summary | End of Epoch 25 | Time 14.55s | Test Loss -2.658
299
+ Fund new best model, dict saved
300
+ Train Summary | End of Epoch 26 | Time 741.80s | Train Loss -3.316
301
+ Valid Summary | End of Epoch 26 | Time 40.57s | Valid Loss -2.727
302
+ Test Summary | End of Epoch 26 | Time 14.33s | Test Loss -2.727
303
+ Fund new best model, dict saved
304
+ Train Summary | End of Epoch 27 | Time 741.77s | Train Loss -3.413
305
+ Valid Summary | End of Epoch 27 | Time 46.25s | Valid Loss -2.826
306
+ Test Summary | End of Epoch 27 | Time 14.45s | Test Loss -2.826
307
+ Fund new best model, dict saved
308
+ Train Summary | End of Epoch 28 | Time 740.40s | Train Loss -3.512
309
+ Valid Summary | End of Epoch 28 | Time 40.01s | Valid Loss -2.883
310
+ Test Summary | End of Epoch 28 | Time 14.39s | Test Loss -2.883
311
+ Fund new best model, dict saved
312
+ Train Summary | End of Epoch 29 | Time 738.03s | Train Loss -3.609
313
+ Valid Summary | End of Epoch 29 | Time 41.25s | Valid Loss -2.946
314
+ Test Summary | End of Epoch 29 | Time 14.37s | Test Loss -2.946
315
+ Fund new best model, dict saved
316
+ Train Summary | End of Epoch 30 | Time 745.93s | Train Loss -3.708
317
+ Valid Summary | End of Epoch 30 | Time 40.26s | Valid Loss -3.022
318
+ Test Summary | End of Epoch 30 | Time 14.25s | Test Loss -3.022
319
+ Fund new best model, dict saved
320
+ Train Summary | End of Epoch 31 | Time 735.98s | Train Loss -3.806
321
+ Valid Summary | End of Epoch 31 | Time 40.92s | Valid Loss -3.056
322
+ Test Summary | End of Epoch 31 | Time 14.38s | Test Loss -3.056
323
+ Fund new best model, dict saved
324
+ Train Summary | End of Epoch 32 | Time 736.88s | Train Loss -3.900
325
+ Valid Summary | End of Epoch 32 | Time 45.03s | Valid Loss -3.079
326
+ Test Summary | End of Epoch 32 | Time 15.06s | Test Loss -3.079
327
+ Fund new best model, dict saved
328
+ Train Summary | End of Epoch 33 | Time 736.33s | Train Loss -3.993
329
+ Valid Summary | End of Epoch 33 | Time 40.11s | Valid Loss -3.202
330
+ Test Summary | End of Epoch 33 | Time 14.36s | Test Loss -3.202
331
+ Fund new best model, dict saved
332
+ Train Summary | End of Epoch 34 | Time 736.97s | Train Loss -4.086
333
+ Valid Summary | End of Epoch 34 | Time 38.81s | Valid Loss -3.190
334
+ Test Summary | End of Epoch 34 | Time 14.34s | Test Loss -3.190
335
+ Train Summary | End of Epoch 35 | Time 739.99s | Train Loss -4.170
336
+ Valid Summary | End of Epoch 35 | Time 40.32s | Valid Loss -3.270
337
+ Test Summary | End of Epoch 35 | Time 14.23s | Test Loss -3.270
338
+ Fund new best model, dict saved
339
+ Train Summary | End of Epoch 36 | Time 737.00s | Train Loss -4.256
340
+ Valid Summary | End of Epoch 36 | Time 38.84s | Valid Loss -3.336
341
+ Test Summary | End of Epoch 36 | Time 14.31s | Test Loss -3.336
342
+ Fund new best model, dict saved
343
+ Train Summary | End of Epoch 37 | Time 732.92s | Train Loss -4.340
344
+ Valid Summary | End of Epoch 37 | Time 44.71s | Valid Loss -3.257
345
+ Test Summary | End of Epoch 37 | Time 15.17s | Test Loss -3.257
346
+ Train Summary | End of Epoch 38 | Time 734.88s | Train Loss -4.418
347
+ Valid Summary | End of Epoch 38 | Time 38.51s | Valid Loss -3.363
348
+ Test Summary | End of Epoch 38 | Time 14.23s | Test Loss -3.363
349
+ Fund new best model, dict saved
350
+ Train Summary | End of Epoch 39 | Time 731.06s | Train Loss -4.498
351
+ Valid Summary | End of Epoch 39 | Time 39.45s | Valid Loss -3.458
352
+ Test Summary | End of Epoch 39 | Time 14.19s | Test Loss -3.458
353
+ Fund new best model, dict saved
354
+ Train Summary | End of Epoch 40 | Time 740.66s | Train Loss -4.574
355
+ Valid Summary | End of Epoch 40 | Time 38.38s | Valid Loss -3.399
356
+ Test Summary | End of Epoch 40 | Time 14.20s | Test Loss -3.399
357
+ Train Summary | End of Epoch 41 | Time 728.36s | Train Loss -4.654
358
+ Valid Summary | End of Epoch 41 | Time 38.44s | Valid Loss -3.500
359
+ Test Summary | End of Epoch 41 | Time 14.16s | Test Loss -3.500
360
+ Fund new best model, dict saved
361
+ Train Summary | End of Epoch 42 | Time 731.56s | Train Loss -4.722
362
+ Valid Summary | End of Epoch 42 | Time 40.71s | Valid Loss -3.614
363
+ Test Summary | End of Epoch 42 | Time 15.21s | Test Loss -3.614
364
+ Fund new best model, dict saved
365
+ Train Summary | End of Epoch 43 | Time 729.22s | Train Loss -4.798
366
+ Valid Summary | End of Epoch 43 | Time 38.44s | Valid Loss -3.693
367
+ Test Summary | End of Epoch 43 | Time 14.09s | Test Loss -3.693
368
+ Fund new best model, dict saved
369
+ Train Summary | End of Epoch 44 | Time 730.00s | Train Loss -4.879
370
+ Valid Summary | End of Epoch 44 | Time 37.59s | Valid Loss -3.678
371
+ Test Summary | End of Epoch 44 | Time 14.19s | Test Loss -3.678
372
+ Train Summary | End of Epoch 45 | Time 734.15s | Train Loss -4.964
373
+ Valid Summary | End of Epoch 45 | Time 38.64s | Valid Loss -3.800
374
+ Test Summary | End of Epoch 45 | Time 14.08s | Test Loss -3.800
375
+ Fund new best model, dict saved
376
+ Train Summary | End of Epoch 46 | Time 729.50s | Train Loss -5.072
377
+ Valid Summary | End of Epoch 46 | Time 37.15s | Valid Loss -3.734
378
+ Test Summary | End of Epoch 46 | Time 14.16s | Test Loss -3.734
379
+ Train Summary | End of Epoch 47 | Time 725.78s | Train Loss -5.185
380
+ Valid Summary | End of Epoch 47 | Time 37.57s | Valid Loss -3.958
381
+ Test Summary | End of Epoch 47 | Time 15.28s | Test Loss -3.958
382
+ Fund new best model, dict saved
383
+ Train Summary | End of Epoch 48 | Time 731.21s | Train Loss -5.281
384
+ Valid Summary | End of Epoch 48 | Time 36.71s | Valid Loss -4.040
385
+ Test Summary | End of Epoch 48 | Time 14.12s | Test Loss -4.040
386
+ Fund new best model, dict saved
387
+ Train Summary | End of Epoch 49 | Time 725.42s | Train Loss -5.375
388
+ Valid Summary | End of Epoch 49 | Time 36.82s | Valid Loss -4.125
389
+ Test Summary | End of Epoch 49 | Time 14.23s | Test Loss -4.125
390
+ Fund new best model, dict saved
391
+ Train Summary | End of Epoch 50 | Time 734.09s | Train Loss -5.473
392
+ Valid Summary | End of Epoch 50 | Time 37.13s | Valid Loss -4.210
393
+ Test Summary | End of Epoch 50 | Time 14.18s | Test Loss -4.210
394
+ Fund new best model, dict saved
395
+ Train Summary | End of Epoch 51 | Time 725.50s | Train Loss -5.559
396
+ Valid Summary | End of Epoch 51 | Time 36.97s | Valid Loss -4.359
397
+ Test Summary | End of Epoch 51 | Time 14.22s | Test Loss -4.359
398
+ Fund new best model, dict saved
399
+ Train Summary | End of Epoch 52 | Time 726.31s | Train Loss -5.645
400
+ Valid Summary | End of Epoch 52 | Time 36.74s | Valid Loss -4.412
401
+ Test Summary | End of Epoch 52 | Time 14.16s | Test Loss -4.412
402
+ Fund new best model, dict saved
403
+ Train Summary | End of Epoch 53 | Time 730.08s | Train Loss -5.729
404
+ Valid Summary | End of Epoch 53 | Time 36.28s | Valid Loss -4.457
405
+ Test Summary | End of Epoch 53 | Time 14.22s | Test Loss -4.457
406
+ Fund new best model, dict saved
407
+ Train Summary | End of Epoch 54 | Time 724.64s | Train Loss -5.815
408
+ Valid Summary | End of Epoch 54 | Time 36.31s | Valid Loss -4.554
409
+ Test Summary | End of Epoch 54 | Time 14.27s | Test Loss -4.554
410
+ Fund new best model, dict saved
411
+ Train Summary | End of Epoch 55 | Time 725.54s | Train Loss -5.892
412
+ Valid Summary | End of Epoch 55 | Time 39.90s | Valid Loss -4.606
413
+ Test Summary | End of Epoch 55 | Time 14.18s | Test Loss -4.606
414
+ Fund new best model, dict saved
415
+ Train Summary | End of Epoch 56 | Time 726.29s | Train Loss -5.968
416
+ Valid Summary | End of Epoch 56 | Time 36.75s | Valid Loss -4.640
417
+ Test Summary | End of Epoch 56 | Time 14.24s | Test Loss -4.640
418
+ Fund new best model, dict saved
419
+ Train Summary | End of Epoch 57 | Time 722.47s | Train Loss -6.043
420
+ Valid Summary | End of Epoch 57 | Time 36.27s | Valid Loss -4.693
421
+ Test Summary | End of Epoch 57 | Time 14.13s | Test Loss -4.693
422
+ Fund new best model, dict saved
423
+ Train Summary | End of Epoch 58 | Time 730.58s | Train Loss -6.108
424
+ Valid Summary | End of Epoch 58 | Time 36.70s | Valid Loss -4.720
425
+ Test Summary | End of Epoch 58 | Time 14.32s | Test Loss -4.720
426
+ Fund new best model, dict saved
427
+ Train Summary | End of Epoch 59 | Time 721.53s | Train Loss -6.179
428
+ Valid Summary | End of Epoch 59 | Time 36.29s | Valid Loss -4.858
429
+ Test Summary | End of Epoch 59 | Time 14.10s | Test Loss -4.858
430
+ Fund new best model, dict saved
431
+ Train Summary | End of Epoch 60 | Time 723.80s | Train Loss -6.245
432
+ Valid Summary | End of Epoch 60 | Time 38.75s | Valid Loss -4.819
433
+ Test Summary | End of Epoch 60 | Time 15.27s | Test Loss -4.819
434
+ Train Summary | End of Epoch 61 | Time 724.00s | Train Loss -6.307
435
+ Valid Summary | End of Epoch 61 | Time 35.99s | Valid Loss -4.942
436
+ Test Summary | End of Epoch 61 | Time 14.20s | Test Loss -4.942
437
+ Fund new best model, dict saved
438
+ Train Summary | End of Epoch 62 | Time 723.08s | Train Loss -6.362
439
+ Valid Summary | End of Epoch 62 | Time 36.11s | Valid Loss -4.982
440
+ Test Summary | End of Epoch 62 | Time 14.20s | Test Loss -4.982
441
+ Fund new best model, dict saved
442
+ Train Summary | End of Epoch 63 | Time 729.04s | Train Loss -6.421
443
+ Valid Summary | End of Epoch 63 | Time 35.76s | Valid Loss -4.887
444
+ Test Summary | End of Epoch 63 | Time 14.19s | Test Loss -4.887
445
+ Train Summary | End of Epoch 64 | Time 721.26s | Train Loss -6.473
446
+ Valid Summary | End of Epoch 64 | Time 36.40s | Valid Loss -4.988
447
+ Test Summary | End of Epoch 64 | Time 14.05s | Test Loss -4.988
448
+ Fund new best model, dict saved
449
+ Train Summary | End of Epoch 65 | Time 719.98s | Train Loss -6.526
450
+ Valid Summary | End of Epoch 65 | Time 35.59s | Valid Loss -5.094
451
+ Test Summary | End of Epoch 65 | Time 14.18s | Test Loss -5.094
452
+ Fund new best model, dict saved
453
+ Train Summary | End of Epoch 66 | Time 728.57s | Train Loss -6.580
454
+ Valid Summary | End of Epoch 66 | Time 35.75s | Valid Loss -5.008
455
+ Test Summary | End of Epoch 66 | Time 14.19s | Test Loss -5.008
456
+ Train Summary | End of Epoch 67 | Time 696.84s | Train Loss -6.626
457
+ Valid Summary | End of Epoch 67 | Time 32.85s | Valid Loss -5.174
458
+ Test Summary | End of Epoch 67 | Time 13.50s | Test Loss -5.174
459
+ Fund new best model, dict saved
460
+ Train Summary | End of Epoch 68 | Time 661.44s | Train Loss -6.671
461
+ Valid Summary | End of Epoch 68 | Time 32.46s | Valid Loss -5.085
462
+ Test Summary | End of Epoch 68 | Time 13.51s | Test Loss -5.085
463
+ Train Summary | End of Epoch 69 | Time 659.72s | Train Loss -6.716
464
+ Valid Summary | End of Epoch 69 | Time 32.57s | Valid Loss -5.186
465
+ Test Summary | End of Epoch 69 | Time 13.48s | Test Loss -5.186
466
+ Fund new best model, dict saved
467
+ Train Summary | End of Epoch 70 | Time 661.29s | Train Loss -6.760
468
+ Valid Summary | End of Epoch 70 | Time 32.41s | Valid Loss -5.172
469
+ Test Summary | End of Epoch 70 | Time 13.53s | Test Loss -5.172
470
+ Train Summary | End of Epoch 71 | Time 660.51s | Train Loss -6.800
471
+ Valid Summary | End of Epoch 71 | Time 32.54s | Valid Loss -5.214
472
+ Test Summary | End of Epoch 71 | Time 13.52s | Test Loss -5.214
473
+ Fund new best model, dict saved
474
+ Train Summary | End of Epoch 72 | Time 660.09s | Train Loss -6.841
475
+ Valid Summary | End of Epoch 72 | Time 32.48s | Valid Loss -5.223
476
+ Test Summary | End of Epoch 72 | Time 13.52s | Test Loss -5.223
477
+ Fund new best model, dict saved
478
+ Train Summary | End of Epoch 73 | Time 659.66s | Train Loss -6.881
479
+ Valid Summary | End of Epoch 73 | Time 32.48s | Valid Loss -5.157
480
+ Test Summary | End of Epoch 73 | Time 13.48s | Test Loss -5.157
481
+ Train Summary | End of Epoch 74 | Time 659.99s | Train Loss -6.916
482
+ Valid Summary | End of Epoch 74 | Time 32.43s | Valid Loss -5.238
483
+ Test Summary | End of Epoch 74 | Time 13.51s | Test Loss -5.238
484
+ Fund new best model, dict saved
485
+ Train Summary | End of Epoch 75 | Time 659.97s | Train Loss -6.958
486
+ Valid Summary | End of Epoch 75 | Time 32.54s | Valid Loss -5.285
487
+ Test Summary | End of Epoch 75 | Time 13.53s | Test Loss -5.285
488
+ Fund new best model, dict saved
489
+ Train Summary | End of Epoch 76 | Time 659.84s | Train Loss -6.993
490
+ Valid Summary | End of Epoch 76 | Time 32.43s | Valid Loss -5.267
491
+ Test Summary | End of Epoch 76 | Time 13.48s | Test Loss -5.267
492
+ Train Summary | End of Epoch 77 | Time 659.72s | Train Loss -7.029
493
+ Valid Summary | End of Epoch 77 | Time 32.39s | Valid Loss -5.372
494
+ Test Summary | End of Epoch 77 | Time 13.55s | Test Loss -5.372
495
+ Fund new best model, dict saved
496
+ Train Summary | End of Epoch 78 | Time 660.30s | Train Loss -7.060
497
+ Valid Summary | End of Epoch 78 | Time 32.47s | Valid Loss -5.331
498
+ Test Summary | End of Epoch 78 | Time 13.51s | Test Loss -5.331
499
+ Train Summary | End of Epoch 79 | Time 658.86s | Train Loss -7.095
500
+ Valid Summary | End of Epoch 79 | Time 32.43s | Valid Loss -5.444
501
+ Test Summary | End of Epoch 79 | Time 13.50s | Test Loss -5.444
502
+ Fund new best model, dict saved
503
+ Train Summary | End of Epoch 80 | Time 660.69s | Train Loss -7.121
504
+ Valid Summary | End of Epoch 80 | Time 32.68s | Valid Loss -5.283
505
+ Test Summary | End of Epoch 80 | Time 13.51s | Test Loss -5.283
506
+ Train Summary | End of Epoch 81 | Time 663.11s | Train Loss -7.156
507
+ Valid Summary | End of Epoch 81 | Time 32.67s | Valid Loss -5.456
508
+ Test Summary | End of Epoch 81 | Time 13.58s | Test Loss -5.456
509
+ Fund new best model, dict saved
510
+ Train Summary | End of Epoch 82 | Time 662.48s | Train Loss -7.190
511
+ Valid Summary | End of Epoch 82 | Time 32.71s | Valid Loss -5.377
512
+ Test Summary | End of Epoch 82 | Time 13.61s | Test Loss -5.377
513
+ Train Summary | End of Epoch 83 | Time 662.77s | Train Loss -7.214
514
+ Valid Summary | End of Epoch 83 | Time 32.69s | Valid Loss -5.452
515
+ Test Summary | End of Epoch 83 | Time 13.56s | Test Loss -5.452
516
+ Train Summary | End of Epoch 84 | Time 663.27s | Train Loss -7.245
517
+ Valid Summary | End of Epoch 84 | Time 32.61s | Valid Loss -5.478
518
+ Test Summary | End of Epoch 84 | Time 13.62s | Test Loss -5.478
519
+ Fund new best model, dict saved
520
+ Train Summary | End of Epoch 85 | Time 662.36s | Train Loss -7.276
521
+ Valid Summary | End of Epoch 85 | Time 32.70s | Valid Loss -5.561
522
+ Test Summary | End of Epoch 85 | Time 13.63s | Test Loss -5.561
523
+ Fund new best model, dict saved
524
+ Train Summary | End of Epoch 86 | Time 662.53s | Train Loss -7.305
525
+ Valid Summary | End of Epoch 86 | Time 32.65s | Valid Loss -5.490
526
+ Test Summary | End of Epoch 86 | Time 13.56s | Test Loss -5.490
527
+ Train Summary | End of Epoch 87 | Time 662.51s | Train Loss -7.325
528
+ Valid Summary | End of Epoch 87 | Time 32.50s | Valid Loss -5.381
529
+ Test Summary | End of Epoch 87 | Time 13.56s | Test Loss -5.381
530
+ Train Summary | End of Epoch 88 | Time 663.25s | Train Loss -7.356
531
+ Valid Summary | End of Epoch 88 | Time 32.53s | Valid Loss -5.539
532
+ Test Summary | End of Epoch 88 | Time 13.55s | Test Loss -5.539
533
+ Train Summary | End of Epoch 89 | Time 663.66s | Train Loss -7.379
534
+ Valid Summary | End of Epoch 89 | Time 32.62s | Valid Loss -5.483
535
+ Test Summary | End of Epoch 89 | Time 13.60s | Test Loss -5.483
536
+ Train Summary | End of Epoch 90 | Time 663.16s | Train Loss -7.407
537
+ Valid Summary | End of Epoch 90 | Time 32.66s | Valid Loss -5.423
538
+ Test Summary | End of Epoch 90 | Time 13.58s | Test Loss -5.423
539
+ reload weights and optimizer from last best checkpoint
540
+ Learning rate adjusted to: 0.000250
541
+ Train Summary | End of Epoch 91 | Time 662.88s | Train Loss -7.530
542
+ Valid Summary | End of Epoch 91 | Time 32.67s | Valid Loss -5.568
543
+ Test Summary | End of Epoch 91 | Time 13.52s | Test Loss -5.568
544
+ Fund new best model, dict saved
545
+ Train Summary | End of Epoch 92 | Time 662.88s | Train Loss -7.621
546
+ Valid Summary | End of Epoch 92 | Time 32.59s | Valid Loss -5.606
547
+ Test Summary | End of Epoch 92 | Time 13.57s | Test Loss -5.606
548
+ Fund new best model, dict saved
549
+ Train Summary | End of Epoch 93 | Time 663.13s | Train Loss -7.674
550
+ Valid Summary | End of Epoch 93 | Time 32.67s | Valid Loss -5.602
551
+ Test Summary | End of Epoch 93 | Time 13.59s | Test Loss -5.602
552
+ Train Summary | End of Epoch 94 | Time 662.66s | Train Loss -7.717
553
+ Valid Summary | End of Epoch 94 | Time 32.70s | Valid Loss -5.503
554
+ Test Summary | End of Epoch 94 | Time 13.53s | Test Loss -5.503
555
+ Train Summary | End of Epoch 95 | Time 662.53s | Train Loss -7.754
556
+ Valid Summary | End of Epoch 95 | Time 32.52s | Valid Loss -5.597
557
+ Test Summary | End of Epoch 95 | Time 13.56s | Test Loss -5.597
558
+ Train Summary | End of Epoch 96 | Time 663.48s | Train Loss -7.787
559
+ Valid Summary | End of Epoch 96 | Time 32.57s | Valid Loss -5.523
560
+ Test Summary | End of Epoch 96 | Time 13.56s | Test Loss -5.523
561
+ Train Summary | End of Epoch 97 | Time 662.24s | Train Loss -7.820
562
+ Valid Summary | End of Epoch 97 | Time 32.56s | Valid Loss -5.584
563
+ Test Summary | End of Epoch 97 | Time 13.56s | Test Loss -5.584
564
+ reload weights and optimizer from last best checkpoint
565
+ Learning rate adjusted to: 0.000125
566
+ Train Summary | End of Epoch 98 | Time 662.76s | Train Loss -7.760
567
+ Valid Summary | End of Epoch 98 | Time 32.61s | Valid Loss -5.594
568
+ Test Summary | End of Epoch 98 | Time 13.60s | Test Loss -5.594
569
+ Train Summary | End of Epoch 99 | Time 663.16s | Train Loss -7.814
570
+ Valid Summary | End of Epoch 99 | Time 32.72s | Valid Loss -5.579
571
+ Test Summary | End of Epoch 99 | Time 13.60s | Test Loss -5.579
572
+ Train Summary | End of Epoch 100 | Time 663.19s | Train Loss -7.853
573
+ Valid Summary | End of Epoch 100 | Time 32.68s | Valid Loss -5.535
574
+ Test Summary | End of Epoch 100 | Time 13.61s | Test Loss -5.535
575
+ Train Summary | End of Epoch 101 | Time 662.57s | Train Loss -7.885
576
+ Valid Summary | End of Epoch 101 | Time 32.73s | Valid Loss -5.500
577
+ Test Summary | End of Epoch 101 | Time 13.53s | Test Loss -5.500
578
+ Train Summary | End of Epoch 102 | Time 662.99s | Train Loss -7.915
579
+ Valid Summary | End of Epoch 102 | Time 32.59s | Valid Loss -5.485
580
+ Test Summary | End of Epoch 102 | Time 13.60s | Test Loss -5.485
581
+ No imporvement for 10 epochs, early stopping.
582
+ Start evaluation
583
+ Avg SISNR:i tensor([10.5698], device='cuda:0')
584
+ Avg SNRi: 11.085818972940272
585
+ Avg PESQi: 0.3742397728761037
586
+ Avg STOIi: 0.2910296654460408
checkpoints/log_LRS2_lip_dprnn_3spk/tensorboard/events.out.tfevents.1727340482.nls-dev-servers011167134195.na63.49263.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2062c9f886fe54797718bf56b24596d878a6ad5d4a4beb39f67fd590fe9ca120
3
+ size 15036