Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +9 -0
- README.md +89 -3
- config.json +24 -0
- config_sentence_transformers.json +7 -0
- eval/similarity_evaluation_skill-sim_results.csv +27 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +72 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false
|
9 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,89 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sentence-transformers
|
3 |
+
pipeline_tag: sentence-similarity
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- feature-extraction
|
7 |
+
- sentence-similarity
|
8 |
+
|
9 |
+
---
|
10 |
+
|
11 |
+
# {MODEL_NAME}
|
12 |
+
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
+
|
15 |
+
<!--- Describe your model here -->
|
16 |
+
|
17 |
+
## Usage (Sentence-Transformers)
|
18 |
+
|
19 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
20 |
+
|
21 |
+
```
|
22 |
+
pip install -U sentence-transformers
|
23 |
+
```
|
24 |
+
|
25 |
+
Then you can use the model like this:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from sentence_transformers import SentenceTransformer
|
29 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
+
|
31 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
32 |
+
embeddings = model.encode(sentences)
|
33 |
+
print(embeddings)
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
## Evaluation Results
|
39 |
+
|
40 |
+
<!--- Describe how your model was evaluated -->
|
41 |
+
|
42 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
43 |
+
|
44 |
+
|
45 |
+
## Training
|
46 |
+
The model was trained with the parameters:
|
47 |
+
|
48 |
+
**DataLoader**:
|
49 |
+
|
50 |
+
`torch.utils.data.dataloader.DataLoader` of length 409 with parameters:
|
51 |
+
```
|
52 |
+
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
53 |
+
```
|
54 |
+
|
55 |
+
**Loss**:
|
56 |
+
|
57 |
+
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
58 |
+
|
59 |
+
Parameters of the fit()-Method:
|
60 |
+
```
|
61 |
+
{
|
62 |
+
"epochs": 5,
|
63 |
+
"evaluation_steps": 100,
|
64 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
65 |
+
"max_grad_norm": 1,
|
66 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
67 |
+
"optimizer_params": {
|
68 |
+
"lr": 2e-05
|
69 |
+
},
|
70 |
+
"scheduler": "WarmupLinear",
|
71 |
+
"steps_per_epoch": null,
|
72 |
+
"warmup_steps": 100,
|
73 |
+
"weight_decay": 0.01
|
74 |
+
}
|
75 |
+
```
|
76 |
+
|
77 |
+
|
78 |
+
## Full Model Architecture
|
79 |
+
```
|
80 |
+
SentenceTransformer(
|
81 |
+
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
|
82 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
|
83 |
+
(2): Normalize()
|
84 |
+
)
|
85 |
+
```
|
86 |
+
|
87 |
+
## Citing & Authors
|
88 |
+
|
89 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-mpnet-base-v2",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.38.1",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.6.1",
|
5 |
+
"pytorch": "1.8.1"
|
6 |
+
}
|
7 |
+
}
|
eval/similarity_evaluation_skill-sim_results.csv
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
0,-1,0.9074250703130895,0.8475390598101166,0.883335618952157,0.8475390067626833,0.8828097829881528,0.8474438086435276,0.9074250670682402,0.8475389901853625
|
3 |
+
0,100,0.8811465518938596,0.8449982546777575,0.8504639990950765,0.8449982017893531,0.8492675141426367,0.8443285322614986,0.8811465574132885,0.8449982017893531
|
4 |
+
0,200,0.893432968813223,0.8454250048937868,0.871232697078271,0.8454249519786722,0.8704632577491047,0.8451689018650806,0.8934329729091016,0.8454249519786722
|
5 |
+
0,300,0.9021121926978941,0.8470794826543928,0.876472428222261,0.8470794296357245,0.8759646041281948,0.8470137757604446,0.9021121957876269,0.8470794155526424
|
6 |
+
0,400,0.9004716006300841,0.8449522969621851,0.8794785440385481,0.8449522440766571,0.879255178045529,0.8449456786891292,0.9004715998265667,0.8449522440766571
|
7 |
+
0,-1,0.8982533082493899,0.8436490682813729,0.8775465966246135,0.8436490146523522,0.8773359817086908,0.84370482044634,0.8982533078600806,0.8436489981511169
|
8 |
+
1,100,0.9054214619162557,0.8460355859721057,0.8820106045793857,0.8460355330187749,0.8815985222306473,0.8460617945688867,0.9054214664894469,0.8460355561858557
|
9 |
+
1,200,0.9072749657925012,0.8454873760792064,0.8837972758727213,0.8454873231601882,0.8834789973488216,0.8457368078862515,0.9072749655431183,0.8454873057961373
|
10 |
+
1,300,0.9073953879033045,0.8449555796561545,0.883718273864631,0.8449555267704212,0.8832673803815466,0.8449817883205332,0.9073953851883625,0.8449555102436315
|
11 |
+
1,400,0.91024265807914,0.8465542524471829,0.8871873359372038,0.8465541994613887,0.8867782795383161,0.8465213716958456,0.9102426531370664,0.8465541696568837
|
12 |
+
1,-1,0.9113509743129562,0.8467873228911111,0.8873567799110722,0.846787269890729,0.8868762381947779,0.8467248987092132,0.9113509699909941,0.8467872433905418
|
13 |
+
2,100,0.9079224361925862,0.844771748793865,0.8831355234884024,0.8447716959196376,0.8826805559752416,0.8448275017136254,0.9079224378198824,0.8447716793964435
|
14 |
+
2,200,0.9129400383711164,0.8472797269865296,0.8871189017955359,0.847279673955328,0.886635349180614,0.8473190662804959,0.9129400376553266,0.8472796573830794
|
15 |
+
2,300,0.9106874317065572,0.8453724817902756,0.886309807902862,0.8453724288784483,0.8856660832911826,0.8452640999842366,0.9106874314566173,0.8453723999422971
|
16 |
+
2,400,0.9123454987243016,0.8455497472646262,0.8876104412554947,0.8455496943417038,0.887077238920549,0.845516867404064,0.9123455001349073,0.8455496728417696
|
17 |
+
2,-1,0.9119836114515429,0.8455070722430232,0.8869908624549376,0.8455070193227721,0.8864362232718732,0.8453264711657523,0.9119836097565199,0.845507020149651
|
18 |
+
3,100,0.9093288544088511,0.8443482812718052,0.8847464282979657,0.8443482284240826,0.8842695975344278,0.8442989880176226,0.9093288537543877,0.8443482515449598
|
19 |
+
3,200,0.9102131030815909,0.8444894371124918,0.8852912384747127,0.8444893842559342,0.8849248175383292,0.8446174101387388,0.9102131016048904,0.8444893842559342
|
20 |
+
3,300,0.9091743567270804,0.8438624433895963,0.8841592786539952,0.8438623897470116,0.8836991389361448,0.8437967358717319,0.9091743556688497,0.843862373241603
|
21 |
+
3,400,0.9080912022511196,0.8436096751286775,0.8843905662708273,0.8436096223271842,0.8840155451678531,0.8435505338394322,0.9080912046664272,0.8436096231522074
|
22 |
+
3,-1,0.9079121884346766,0.8434947808397464,0.8842283192885863,0.8434947288703554,0.8838422782032563,0.8434881626579166,0.9079121891810513,0.8434946999984757
|
23 |
+
4,100,0.9088855687098585,0.8433963008454776,0.8847191931273801,0.8433962472325246,0.8842772360859559,0.8434290741701647,0.908885567960144,0.8433962307362334
|
24 |
+
4,200,0.9086349842141304,0.8432584268739456,0.8840292636253213,0.843258374094437,0.8835707148726991,0.8432025683004492,0.9086349833321623,0.8432583452306475
|
25 |
+
4,300,0.909086540650837,0.843570282801044,0.884754575929251,0.8435702300020163,0.8842959170584099,0.8434980115641226,0.9090865395904701,0.8435702135023221
|
26 |
+
4,400,0.9089472683478803,0.8434242037442452,0.8846119743060092,0.8434241509543605,0.8841481698068507,0.8433010491133689,0.9089472692413052,0.8434224922858318
|
27 |
+
4,-1,0.908947881034084,0.8434192797032862,0.8846116882660153,0.8434192260888727,0.8841481929694949,0.8433010491133689,0.908947878464997,0.8434192087672951
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:daabf35eb1df88fbb99f53f350536aed31b34540f86dfc5707dbe9173c8e59d3
|
3 |
+
size 437967672
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 384,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"104": {
|
36 |
+
"content": "[UNK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"30526": {
|
44 |
+
"content": "<mask>",
|
45 |
+
"lstrip": true,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"bos_token": "<s>",
|
53 |
+
"clean_up_tokenization_spaces": true,
|
54 |
+
"cls_token": "<s>",
|
55 |
+
"do_lower_case": true,
|
56 |
+
"eos_token": "</s>",
|
57 |
+
"mask_token": "<mask>",
|
58 |
+
"max_length": 128,
|
59 |
+
"model_max_length": 512,
|
60 |
+
"pad_to_multiple_of": null,
|
61 |
+
"pad_token": "<pad>",
|
62 |
+
"pad_token_type_id": 0,
|
63 |
+
"padding_side": "right",
|
64 |
+
"sep_token": "</s>",
|
65 |
+
"stride": 0,
|
66 |
+
"strip_accents": null,
|
67 |
+
"tokenize_chinese_chars": true,
|
68 |
+
"tokenizer_class": "MPNetTokenizer",
|
69 |
+
"truncation_side": "right",
|
70 |
+
"truncation_strategy": "longest_first",
|
71 |
+
"unk_token": "[UNK]"
|
72 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|