|
from ast import increment_lineno
|
|
from statistics import LinearRegression
|
|
import numpy as np
|
|
import pandas as pd
|
|
import matplotlib
|
|
matplotlib.use('Agg')
|
|
import matplotlib.pyplot as plt
|
|
plt.switch_backend('Agg')
|
|
import seaborn as sns
|
|
import warnings
|
|
warnings.filterwarnings('ignore')
|
|
|
|
sns.set(style='whitegrid')
|
|
|
|
print('Import and setup completed successfully.')
|
|
|
|
file_path = ''
|
|
|
|
file_path = r'C:\Users\Donte Patton\Downloads\dataset_2191_sleep.csv'
|
|
df = pd.read_csv(file_path, encoding='ascii', delimiter=',')
|
|
|
|
print('Dataset loaded successfull. Showing first few rows:')
|
|
print(df.head())
|
|
|
|
print('Dataset Info:')
|
|
df.info()
|
|
|
|
print('\nMissing values in each column:')
|
|
print(df.isnull().sum())
|
|
|
|
df.dropna(inplace=True)
|
|
print('\nDataframe shape after dropping missing values:', df.shape)
|
|
|
|
|
|
|
|
print('\nData types after conversion:')
|
|
print(df.dtypes)
|
|
|
|
numeric_df = df.select_dtypes(include=[np.number])
|
|
|
|
if numeric_df.shape[1] >= 4:
|
|
plt.figure(figsize=(12, 10))
|
|
corr = numeric_df.corr()
|
|
sns.heatmap(corr, annot=True, cmap='coolwarm', fmt='.2f')
|
|
plt.title('Correlation Heatmap of Numeric Variables')
|
|
plt.show()
|
|
else:
|
|
print('Not enough numeric columns for a correlation heatmap.')
|
|
|
|
|
|
numeric_cols = df.select_dtypes(include=['float64', 'int64']).columns.tolist()
|
|
if len(numeric_cols) > 1:
|
|
sns.pairplot(df[numeric_cols])
|
|
plt.suptitle('Pair Plot of Numeric Features', y=1.02)
|
|
plt.show()
|
|
else:
|
|
print('Not enough numeric columns for pair plot.')
|
|
|
|
|
|
plt.figure(figsize=(8, 6))
|
|
sns.histplot(df['body_weight'], kde=True, bins=30)
|
|
plt.title('Distribution of Body Weight')
|
|
plt.xlabel('Body Weight (kg)')
|
|
plt.ylabel('Frequency')
|
|
plt.show()
|
|
|
|
|
|
plt.figure(figsize=(10, 6))
|
|
body_weight_by_predation = df.groupby('predation_index')['body_weight'].mean().reset_index()
|
|
sns.barplot(x='predation_index', y='body_weight', data=body_weight_by_predation, palette='viridis')
|
|
plt.title('Average Body Weight by Predation Index')
|
|
plt.xlabel('Predation Index')
|
|
plt.ylabel('Average Body Weight (kg)')
|
|
plt.show()
|
|
|
|
|
|
plt.figure(figsize=(8, 6))
|
|
sns.countplot(x='predation_index', data=df, palette='Set2')
|
|
plt.title('Count of Records by Predation Index')
|
|
plt.xlabel('Predation Index')
|
|
plt.ylabel('Count')
|
|
plt.show()
|
|
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.linear_model import LinearRegression
|
|
from sklearn.metrics import r2_score, mean_squared_error
|
|
|
|
|
|
features = ['body_weight', 'brain_weight', 'predation_index', 'sleep_exposure_index', 'danger_index']
|
|
|
|
|
|
model_df = df.copy()
|
|
|
|
|
|
model_df['total_sleep'] = pd.to_numeric(model_df['total_sleep'], errors='coerce')
|
|
|
|
|
|
model_df = model_df.dropna()
|
|
|
|
|
|
|
|
X = model_df[['body_weight', 'brain_weight', 'predation_index', 'sleep_exposure_index', 'danger_index']]
|
|
y = model_df['total_sleep']
|
|
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
|
|
|
print('Training set shape:', X_train.shape)
|
|
print('Testing set shape:', X_test.shape)
|
|
|
|
|
|
regressor = LinearRegression()
|
|
regressor.fit(X_train, y_train)
|
|
|
|
|
|
y_pred = regressor.predict(X_test)
|
|
|
|
r2 = r2_score(y_test, y_pred)
|
|
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
|
|
|
|
print(f'R^2 score for the predictor: {r2:.3f}')
|
|
print(f'RMSE for the predictor: {rmse:.3f}')
|
|
|
|
plt.figure(figsize=(8, 6))
|
|
plt.scatter(y_test, y_pred, alpha=0.5, color='teal')
|
|
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--')
|
|
plt.xlabel('Actual CO2')
|
|
plt.ylabel('Predicted CO2')
|
|
plt.title('Actual vs Predicted CO2 Emissions')
|
|
plt.show()
|
|
|
|
|