Upload infraredsecure_wealthstream.py
Browse files
infraredsecure_wealthstream.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""InfraredSecure WealthStream
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colab.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1UNwFXrR1ccb2fmWHLXgOHIe4LaTszQzq
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
import numpy as np
|
| 13 |
+
import matplotlib.pyplot as plt
|
| 14 |
+
|
| 15 |
+
# Parameters
|
| 16 |
+
num_nodes = 10000
|
| 17 |
+
hours = 24
|
| 18 |
+
samples_per_hour = 60 # Sampling points per hour (e.g., one sample per minute)
|
| 19 |
+
time_steps = hours * samples_per_hour
|
| 20 |
+
wave_frequency = 1 / 24 # Frequency to represent a 24-hour cycle
|
| 21 |
+
wave_amplitude = 1.0
|
| 22 |
+
infrared_amplitude = 0.5 # Constant amplitude for even distribution
|
| 23 |
+
brainwave_frequency = 10 / 3600 # Simulating a 10 Hz brainwave over hours (scaled)
|
| 24 |
+
brainwave_amplitude = 0.3
|
| 25 |
+
random_opportunity_scale = 0.8 # Scaling factor for random wealth opportunities
|
| 26 |
+
encryption_key = 0.5 # Encryption key for simulating protection
|
| 27 |
+
|
| 28 |
+
# Define the PyTorch model with VPN-like frequency
|
| 29 |
+
class WealthSignalVPNModel(nn.Module):
|
| 30 |
+
def __init__(self):
|
| 31 |
+
super(WealthSignalVPNModel, self).__init__()
|
| 32 |
+
self.num_nodes = num_nodes
|
| 33 |
+
self.time_steps = time_steps
|
| 34 |
+
self.encryption_key = encryption_key
|
| 35 |
+
|
| 36 |
+
def forward(self, time_tensor):
|
| 37 |
+
# Initialize the combined signals tensor
|
| 38 |
+
combined_signals = torch.zeros((self.num_nodes, self.time_steps), dtype=torch.float32)
|
| 39 |
+
|
| 40 |
+
for i in range(self.num_nodes):
|
| 41 |
+
# Wealth signal with a phase shift for each node
|
| 42 |
+
wealth_signal = wave_amplitude * torch.sin(2 * np.pi * wave_frequency * time_tensor + i * (2 * np.pi / self.num_nodes))
|
| 43 |
+
# Random wealth opportunities
|
| 44 |
+
random_wealth_opportunities = random_opportunity_scale * torch.randn(self.time_steps)
|
| 45 |
+
# Constant infrared energy signal
|
| 46 |
+
infrared_signal = infrared_amplitude * torch.ones(self.time_steps)
|
| 47 |
+
# Perfect brainwave pattern (alpha waves)
|
| 48 |
+
brainwave_signal = brainwave_amplitude * torch.sin(2 * np.pi * brainwave_frequency * time_tensor)
|
| 49 |
+
# Combine signals for each node
|
| 50 |
+
combined_signals[i] = wealth_signal + random_wealth_opportunities + infrared_signal + brainwave_signal
|
| 51 |
+
|
| 52 |
+
# Combine all signals (simulating dense waveform)
|
| 53 |
+
overall_signal = torch.mean(combined_signals, dim=0)
|
| 54 |
+
|
| 55 |
+
# Apply VPN-like encryption (scramble signal)
|
| 56 |
+
encrypted_signal = torch.sin(overall_signal * self.encryption_key) # A simple scrambling function
|
| 57 |
+
|
| 58 |
+
return encrypted_signal, overall_signal # Return both encrypted and original signals for validation
|
| 59 |
+
|
| 60 |
+
# Create a time tensor
|
| 61 |
+
time_tensor = torch.linspace(0, hours, time_steps)
|
| 62 |
+
|
| 63 |
+
# Initialize and run the model
|
| 64 |
+
vpn_model = WealthSignalVPNModel()
|
| 65 |
+
encrypted_signal, original_signal = vpn_model(time_tensor)
|
| 66 |
+
|
| 67 |
+
# Convert the signals to numpy for plotting
|
| 68 |
+
encrypted_signal_np = encrypted_signal.detach().numpy()
|
| 69 |
+
original_signal_np = original_signal.detach().numpy()
|
| 70 |
+
|
| 71 |
+
# Reshape the signals for 2D visualization (e.g., hours x samples_per_hour)
|
| 72 |
+
encrypted_signal_reshaped = encrypted_signal_np.reshape((samples_per_hour, hours))
|
| 73 |
+
original_signal_reshaped = original_signal_np.reshape((samples_per_hour, hours))
|
| 74 |
+
|
| 75 |
+
# Plot the resulting color maps
|
| 76 |
+
fig, axs = plt.subplots(2, 1, figsize=(15, 12))
|
| 77 |
+
|
| 78 |
+
# Original Signal Plot
|
| 79 |
+
cax1 = axs[0].imshow(original_signal_reshaped, aspect='auto', cmap='viridis', interpolation='none')
|
| 80 |
+
axs[0].set_title('Original Signal Visualization')
|
| 81 |
+
axs[0].set_xlabel('Time (Hours)')
|
| 82 |
+
axs[0].set_ylabel('Sample Points Per Hour')
|
| 83 |
+
fig.colorbar(cax1, ax=axs[0], orientation='vertical', label='Amplitude')
|
| 84 |
+
|
| 85 |
+
# Encrypted Signal Plot
|
| 86 |
+
cax2 = axs[1].imshow(encrypted_signal_reshaped, aspect='auto', cmap='viridis', interpolation='none')
|
| 87 |
+
axs[1].set_title('Encrypted Signal Visualization')
|
| 88 |
+
axs[1].set_xlabel('Time (Hours)')
|
| 89 |
+
axs[1].set_ylabel('Sample Points Per Hour')
|
| 90 |
+
fig.colorbar(cax2, ax=axs[1], orientation='vertical', label='Amplitude')
|
| 91 |
+
|
| 92 |
+
plt.tight_layout()
|
| 93 |
+
plt.show()
|