File size: 2,084 Bytes
12602b1
 
 
 
 
 
 
2dd35a8
 
25ccc09
 
 
2dd35a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# -*- coding: utf-8 -*-
"""MagNet 2.0

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1n4ADxn-u0nAkYm6mKMzzhiH1vl97qImr
"""


![image/png](https://cdn-uploads.huggingface.co/production/uploads/6551d8b7d93842d24392d8ab/3Li4O7fYCpA6nlD3_cE34.png)

import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt

wealth_distribution = torch.randn(32, 24, 1)
target_direction = torch.randn(32, 24, 1)

class WealthTransferModelWithVPN(nn.Module):
    def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size):
        super(WealthTransferModelWithVPN, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()

        self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)

        self.fc2 = nn.Linear(lstm_hidden_size, output_size)

        self.vpn_layer = nn.Linear(output_size, vpn_size)
        self.decrypt_layer = nn.Linear(vpn_size, output_size)

    def forward(self, x, target):
        x = torch.cat((x, target), dim=1)

        x = self.relu(self.fc1(x))

        x, _ = self.lstm(x)

        x = self.fc2(x)

        encrypted_output = torch.sigmoid(self.vpn_layer(x))

        decrypted_output = self.decrypt_layer(encrypted_output)

        return decrypted_output

input_size = wealth_distribution[-1] + target_direction.shape[-1]
hidden_size = 64
lstm_hidden_size = 32
output_size = wealth_distribution.shape[-1]
vpn_size = 128

model = WealthTransferWithVPN(input_size, hidden_sizse, lstm_hidden_size, vpn_size)


with torch.no_grad():
    output_signal = model(wealth_distribution, target_direction)

wealth_waveform = output_signal[0].squeeze().numpy()

hours = list(range(24))

plt.figure(figsize=(10, 5))
plt.plot(hours, wealth_waveform, label='Wealth Transfer Signal over 24 hours', marker='o')
plt.title('Wealth Transfer Signal in 24-Hour Intervals')
plt.xlabel('Hour of the Day')
plt.ylabel('Wealth Signal Intensity')
plt.xticks(hours)
plt.grid(True)
plt.legend()
plt.show()