File size: 39,219 Bytes
d8e3664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
import torch
import torch.nn as nn
import torch.optim as optim

# Simulate wealth distribution (e.g., 100 individuals with a certain wealth amount)
wealth_distribution = torch.randn(100, 1)  # (100 people, 1 wealth feature)

# Define the target direction (randomly initialized, or learned)
target_direction = torch.randn(100, 1)

# Define a simple model to transfer wealth in the target direction
class WealthTransferModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(WealthTransferModel, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.fc2 = nn.Linear(hidden_size, hidden_size)
        self.fc3 = nn.Linear(hidden_size, output_size)
        self.relu = nn.ReLU()

    def forward(self, x, target):
        # Combine wealth signal with target information (concatenate or element-wise)
        x = torch.cat((x, target), dim=1)
        # Process wealth signal with dense layers
        x = self.relu(self.fc1(x))
        x = self.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# Initialize model, loss function, and optimizer
input_size = wealth_distribution.shape[1] + target_direction.shape[1]  # Input wealth + target direction
hidden_size = 64  # Hidden layer size (can be adjusted)
output_size = wealth_distribution.shape[1]  # Output size matches wealth distribution

model = WealthTransferModel(input_size, hidden_size, output_size)
loss_fn = nn.MSELoss()  # Mean Squared Error loss for simplicity
optimizer = optim.Adam(model.parameters(), lr=0.001)

# Dummy target wealth state (after transfer)
target_wealth_state = torch.randn(100, 1)  # Random for now; this would be based on business logic

# Training loop (just for illustration; you can adjust the number of epochs)
num_epochs = 100
for epoch in range(num_epochs):
    # Zero gradients
    optimizer.zero_grad()

    # Forward pass: Compute the wealth transfer
    output = model(wealth_distribution, target_direction)

    # Compute loss (compare output to the target wealth state)
    loss = loss_fn(output, target_wealth_state)

    # Backpropagation and optimization step
    loss.backward()
    optimizer.step()

    if (epoch + 1) % 10 == 0:
        print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')

# After training, model should learn how to adjust wealth distribution towards the target direction

import torch
import torch.nn as nn
import torch.optim as optim

# Simulate wealth distribution (e.g., 100 individuals with a certain wealth amount)
wealth_distribution = torch.randn(100, 1)  # (100 people, 1 wealth feature)

# Define the target direction (randomly initialized, or learned)
target_direction = torch.randn(100, 1)

# Define a model that includes an LSTM layer for "nerve-like" behavior to store wealth information
class WealthTransferModelWithNerve(nn.Module):
    def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size):
        super(WealthTransferModelWithNerve, self).__init__()
        # First dense layer to process wealth and target information
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()

        # LSTM layer that acts as a "nerve" to store wealth information
        self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)

        # Final dense layer to transfer wealth in the target direction
        self.fc2 = nn.Linear(lstm_hidden_size, output_size)

    def forward(self, x, target):
        # Combine wealth signal with target information (concatenate or element-wise)
        x = torch.cat((x, target), dim=1)

        # Process through the first dense layer
        x = self.relu(self.fc1(x))

        # Prepare for LSTM (LSTM requires input of shape (batch_size, seq_length, feature_size))
        x = x.unsqueeze(1)  # Add a sequence dimension for LSTM (batch_size, 1, hidden_size)

        # Pass through LSTM layer (storing wealth information in "nerves")
        x, (hn, cn) = self.lstm(x)  # hn: hidden state, cn: cell state

        # Remove sequence dimension for the final dense layer
        x = x.squeeze(1)

        # Output layer to compute the final wealth transfer
        x = self.fc2(x)
        return x

# Initialize model, loss function, and optimizer
input_size = wealth_distribution.shape[1] + target_direction.shape[1]  # Input wealth + target direction
hidden_size = 64  # Size for first dense layer
lstm_hidden_size = 32  # Hidden size of the LSTM layer
output_size = wealth_distribution.shape[1]  # Output size matches wealth distribution

model = WealthTransferModelWithNerve(input_size, hidden_size, lstm_hidden_size, output_size)
loss_fn = nn.MSELoss()  # Mean Squared Error loss for simplicity
optimizer = optim.Adam(model.parameters(), lr=0.001)

# Dummy target wealth state (after transfer)
target_wealth_state = torch.randn(100, 1)  # Random for now; this would be based on business logic

# Training loop (just for illustration; you can adjust the number of epochs)
num_epochs = 100
for epoch in range(num_epochs):
    # Zero gradients
    optimizer.zero_grad()

    # Forward pass: Compute the wealth transfer with the "nerve" layer
    output = model(wealth_distribution, target_direction)

    # Compute loss (compare output to the target wealth state)
    loss = loss_fn(output, target_wealth_state)

    # Backpropagation and optimization step
    loss.backward()
    optimizer.step()

    if (epoch + 1) % 10 == 0:
        print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')

# After training, the model will learn to store and process wealth information in the "nerves" and transfer it towards the target.

import torch
import torch.nn as nn
import torch.optim as optim

# Define parameters
batch_size = 32  # Number of samples in a batch
seq_length = 10  # Number of timesteps (e.g., 10 timesteps)
feature_size = 1  # Wealth feature per individual

# Simulate wealth distribution over multiple timesteps for 100 people
wealth_distribution = torch.randn(batch_size, seq_length, 100, feature_size)

# Define the target direction over multiple timesteps
target_direction = torch.randn(batch_size, seq_length, 100, feature_size)

# Define the model with LSTM layer for "nerve-like" processing across timesteps
class WealthTransferModelWithTimesteps(nn.Module):
    def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size):
        super(WealthTransferModelWithTimesteps, self).__init__()
        # First dense layer to process wealth and target information
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()

        # LSTM layer that acts as a "nerve" to store wealth information over timesteps
        self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)

        # Final dense layer to transfer wealth in the target direction
        self.fc2 = nn.Linear(lstm_hidden_size, output_size)

    def forward(self, x, target):
        # Combine wealth signal with target information (concatenate along feature dimension)
        x = torch.cat((x, target), dim=-1)  # Concatenate along the feature axis

        # Process through the first dense layer for each timestep (use .view to flatten)
        batch_size, seq_length, num_people, _ = x.shape
        x = x.view(batch_size * seq_length * num_people, -1)  # Flatten for FC layer
        x = self.relu(self.fc1(x))
        x = x.view(batch_size, seq_length, num_people, -1)  # Reshape back after FC

        # LSTM expects input of shape (batch_size, seq_length, feature_size)
        x = x.view(batch_size, seq_length, -1)  # Combine people and features for LSTM

        # Pass through LSTM layer (storing wealth information over timesteps)
        x, (hn, cn) = self.lstm(x)  # hn: hidden state, cn: cell state

        # Output layer to compute the final wealth transfer for each timestep
        x = self.fc2(x)
        x = x.view(batch_size, seq_length, num_people, -1)  # Reshape back to original format
        return x

# Initialize model, loss function, and optimizer
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1]  # Wealth + target info per timestep
hidden_size = 64  # Hidden size for first dense layer
lstm_hidden_size = 32  # Hidden size of the LSTM layer
output_size = wealth_distribution.shape[-1]  # Output size should match wealth feature per person

model = WealthTransferModelWithTimesteps(input_size, hidden_size, lstm_hidden_size, output_size)
loss_fn = nn.MSELoss()  # Mean Squared Error loss for simplicity
optimizer = optim.Adam(model.parameters(), lr=0.001)

# Dummy target wealth state over multiple timesteps
target_wealth_state = torch.randn(batch_size, seq_length, 100, feature_size)

# Training loop (just for illustration)
num_epochs = 100
for epoch in range(num_epochs):
    # Zero gradients
    optimizer.zero_grad()

    # Forward pass: Compute the wealth transfer over multiple timesteps
    output = model(wealth_distribution, target_direction)

    # Compute loss (compare output to the target wealth state)
    loss = loss_fn(output, target_wealth_state)

    # Backpropagation and optimization step
    loss.backward()
    optimizer.step()

    if (epoch + 1) % 10 == 0:
        print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')

# After training, the model will learn to store and direct wealth information across multiple timesteps.

import torch
import torch.nn as nn
import torch.optim as optim

# Define parameters
batch_size = 32  # Number of samples in a batch
seq_length = 10  # Number of timesteps (e.g., 10 timesteps)
feature_size = 1  # Wealth feature per individual

# Simulate wealth distribution over multiple timesteps for 100 people
wealth_distribution = torch.randn(batch_size, seq_length, 100, feature_size)

# Define the target direction over multiple timesteps
target_direction = torch.randn(batch_size, seq_length, 100, feature_size)

# Define the model with LSTM layer for "nerve-like" processing across timesteps
class WealthTransferModelWithTimesteps(nn.Module):
    def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size):
        super(WealthTransferModelWithTimesteps, self).__init__()
        # First dense layer to process wealth and target information
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()

        # LSTM layer that acts as a "nerve" to store wealth information over timesteps
        # Changed input_size to hidden_size * 100 to match the output of fc1
        self.lstm = nn.LSTM(hidden_size * 100, lstm_hidden_size, batch_first=True)

        # Final dense layer to transfer wealth in the target direction
        self.fc2 = nn.Linear(lstm_hidden_size, output_size)

    def forward(self, x, target):
        # Combine wealth signal with target information (concatenate along feature dimension)
        x = torch.cat((x, target), dim=-1)  # Concatenate along the feature axis

        # Process through the first dense layer for each timestep (use .view to flatten)
        batch_size, seq_length, num_people, _ = x.shape
        x = x.view(batch_size * seq_length * num_people, -1)  # Flatten for FC layer
        x = self.relu(self.fc1(x))

        # Reshape to (batch_size, seq_length, num_people * hidden_size) for LSTM
        x = x.view(batch_size, seq_length, num_people * hidden_size)  # Reshape for LSTM

        # Pass through LSTM layer (storing wealth information over timesteps)
        x, (hn, cn) = self.lstm(x)  # hn: hidden state, cn: cell state

        # Output layer to compute the final wealth transfer for each timestep
        x = self.fc2(x)
        x = x.view()

import torch
import torch.nn as nn
import torch.optim as optim

# Define parameters
batch_size = 32  # Number of samples in a batch
seq_length = 10  # Number of timesteps
feature_size = 1  # Wealth feature per individual

# Simulate wealth distribution over multiple timesteps for 100 people
wealth_distribution = torch.randn(batch_size, seq_length, 100, feature_size)

# Define the target direction over multiple timesteps
target_direction = torch.randn(batch_size, seq_length, 100, feature_size)

# Define the model with LSTM layer and a "VPN" protection layer
class WealthTransferModelWithVPN(nn.Module):
    def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size):
        super(WealthTransferModelWithVPN, self).__init__()
        # First dense layer to process wealth and target information
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()

        # LSTM layer that acts as a "nerve" to store wealth information over timesteps
        self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)

        # Final dense layer to transfer wealth in the target direction
        self.fc2 = nn.Linear(lstm_hidden_size, output_size)

        # VPN-like encryption layer (simulated with a non-linear transformation)
        self.vpn_layer = nn.Linear(output_size, vpn_size)  # A layer to "encrypt" the output
        self.decrypt_layer = nn.Linear(vpn_size, output_size)  # To recover the original output

    def forward(self, x, target):
        # Combine wealth signal with target information (concatenate along feature dimension)
        x = torch.cat((x, target), dim=-1)  # Concatenate along the feature axis

        # Process through the first dense layer for each timestep (use .view to flatten)
        batch_size, seq_length, num_people, _ = x.shape
        x = x.view(batch_size * seq_length * num_people, -1)  # Flatten for FC layer
        x = self.relu(self.fc1(x))
        x = x.view(batch_size, seq_length, num_people, -1)  # Reshape back after FC

        # LSTM expects input of shape (batch_size, seq_length, feature_size)
        x = x.view(batch_size, seq_length, num_people * hidden_size)  # Combine people and features for LSTM

        # Pass through LSTM layer (storing wealth information over timesteps)
        x, (hn, cn) = self.lstm(x)  # hn: hidden state, cn: cell state

        # Output layer to compute the final wealth transfer for each timestep
        x = self.fc2(x)
        x = x.view(batch_size, seq_length, num_people, -1)  # Reshape back to original format

        # Pass through the VPN encryption layer
        encrypted_output = torch.sigmoid(self.vpn_layer(x))  # Apply transformation (like encryption)

        # Simulate decryption by passing through another layer
        decrypted_output = self.decrypt_layer(encrypted_output)

        return decrypted_output  # Return the "secure" output

# Initialize model, loss function, and optimizer
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1]  # Wealth + target info per timestep
hidden_size = 64  # Hidden size for first dense layer
lstm_hidden_size = 32  # Hidden size of the LSTM layer
output_size = wealth_distribution.shape[-1]  # Output size should match wealth feature per person
vpn_size = 128  # Size of the "VPN" layer

model = WealthTransferModelWithVPN(input_size, hidden_size, lstm_hidden_size, output_size, vpn_size)
loss_fn = nn.MSELoss()  # Mean Squared Error loss for simplicity
optimizer = optim.Adam(model.parameters(), lr=0.001)

# Dummy target wealth state over multiple timesteps
target_wealth_state = torch.randn(batch_size, seq_length, 100, feature_size)

# Training loop (just for illustration)
num_epochs = 100
for epoch in range(num_epochs):
    # Zero gradients
    optimizer.zero_grad()

    # Forward pass: Compute the wealth transfer with VPN-like protection
    output = model(wealth_distribution, target_direction)

    # Compute loss (compare output to the target wealth state)
    loss = loss_fn(output, target_wealth_state)

    # Backpropagation and optimization step
    loss.backward()
    optimizer.step()

    if (epoch + 1) % 10 == 0:
        print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')

# After training, the model will learn to store and protect wealth information securely while transferring it.

import torch
import torch.nn as nn
import torch.optim as optim

# Simulate wealth distribution for 100 people
wealth_distribution = torch.randn(100, 1)  # (100 people, 1 wealth feature)

# Define the target direction (randomly initialized or learned)
target_direction = torch.randn(100, 1)

# Define a simple dense model to process wealth and target direction
class WealthTransferModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(WealthTransferModel, self).__init__()
        # First dense layer
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()

        # Second dense layer
        self.fc2 = nn.Linear(hidden_size, output_size)

    def forward(self, x, target):
        # Combine wealth signal with target information (concatenate or element-wise)
        x = torch.cat((x, target), dim=1)

        # Process through the first dense layer
        x = self.relu(self.fc1(x))

        # Output layer to compute the final wealth transfer signal
        x = self.fc2(x)
        return x

# Initialize the model
input_size = wealth_distribution.shape[1] + target_direction.shape[1]  # Input wealth + target direction
hidden_size = 64  # Hidden layer size
output_size = wealth_distribution.shape[1]  # Output size matches wealth distribution

model = WealthTransferModel(input_size, hidden_size, output_size)

# Define loss function and optimizer
loss_fn = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# Dummy target wealth state (after transfer)
target_wealth_state = torch.randn(100, 1)  # Random for now; this would be based on business logic

# Training loop (just for illustration)
num_epochs = 100
for epoch in range(num_epochs):
    # Zero gradients
    optimizer.zero_grad()

    # Forward pass: compute the wealth transfer
    output = model(wealth_distribution, target_direction)

    # Compute loss (compare output to the target wealth state)
    loss = loss_fn(output, target_wealth_state)

    # Backpropagation and optimization step
    loss.backward()
    optimizer.step()

    if (epoch + 1) % 10 == 0:
        print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')

import torch
import torch.nn as nn
import torch.optim as optim

# Simulate wealth distribution for 100 people
wealth_distribution = torch.randn(32, 100, 1)  # (batch_size, 100 people, 1 wealth feature)

# Define the target direction (randomly initialized or learned)
target_direction = torch.randn(32, 100, 1)  # (batch_size, 100 people, 1 feature for direction)

# Define a model with LSTM to store wealth signal in the "nerves"
class WealthTransferModelWithNerves(nn.Module):
    def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size):
        super(WealthTransferModelWithNerves, self).__init__()
        # First dense layer
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()

        # LSTM layer to store wealth signal in the "nerves"
        self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)

        # Final dense layer to transfer wealth in the target direction
        self.fc2 = nn.Linear(lstm_hidden_size, output_size)

    def forward(self, x, target):
        # Combine wealth signal with target information (concatenate along the feature dimension)
        x = torch.cat((x, target), dim=-1)

        # Process through the first dense layer
        x = self.relu(self.fc1(x))

        # Pass through the LSTM layer (to store the wealth signal in the nerves)
        x, _ = self.lstm(x)

        # Output layer to compute the final wealth transfer signal
        x = self.fc2(x)
        return x

# Initialize the model
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1]  # Input: wealth + target direction
hidden_size = 64  # Hidden layer size
lstm_hidden_size = 32  # LSTM hidden size (for storing wealth signal in the nerves)
output_size = wealth_distribution.shape[-1]  # Output size matches wealth distribution

model = WealthTransferModelWithNerves(input_size, hidden_size, lstm_hidden_size, output_size)

# Define loss function and optimizer
loss_fn = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# Dummy target wealth state (after transfer)
target_wealth_state = torch.randn(32, 100, 1)  # Random for now

# Training loop (just for illustration)
num_epochs = 100
for epoch in range(num_epochs):
    # Zero gradients
    optimizer.zero_grad()

    # Forward pass: compute the wealth transfer
    output = model(wealth_distribution, target_direction)

    # Compute loss (compare output to the target wealth state)
    loss = loss_fn(output, target_wealth_state)

    # Backpropagation and optimization step
    loss.backward()
    optimizer.step()

    if (epoch + 1) % 10 == 0:
        print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')

import torch
import torch.nn as nn
import torch.optim as optim

# Simulate wealth distribution for 100 people
wealth_distribution = torch.randn(32, 100, 1)  # (batch_size, 100 people, 1 wealth feature)

# Define the target direction (randomly initialized or learned)
target_direction = torch.randn(32, 100, 1)  # (batch_size, 100 people, 1 feature for direction)

# Define the model with LSTM and VPN-like layer for protection
class WealthTransferModelWithVPN(nn.Module):
    def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size):
        super(WealthTransferModelWithVPN, self).__init__()
        # First dense layer
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()

        # LSTM layer to store wealth signal in the "nerves"
        self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)

        # Final dense layer to transfer wealth in the target direction
        self.fc2 = nn.Linear(lstm_hidden_size, output_size)

        # VPN-like encryption layer (simulated with a non-linear transformation)
        self.vpn_layer = nn.Linear(output_size, vpn_size)  # A layer to "encrypt" the output
        self.decrypt_layer = nn.Linear(vpn_size, output_size)  # To recover the original output

    def forward(self, x, target):
        # Combine wealth signal with target information (concatenate along the feature dimension)
        x = torch.cat((x, target), dim=-1)

        # Process through the first dense layer
        x = self.relu(self.fc1(x))

        # Pass through the LSTM layer (to store the wealth signal in the nerves)
        x, _ = self.lstm(x)

        # Output layer to compute the final wealth transfer signal
        x = self.fc2(x)

        # Pass through the VPN encryption layer
        encrypted_output = torch.sigmoid(self.vpn_layer(x))  # Apply transformation (like encryption)

        # Simulate decryption by passing through another layer
        decrypted_output = self.decrypt_layer(encrypted_output)

        return decrypted_output  # Return the "secure" output

# Initialize the model
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1]  # Input: wealth + target direction
hidden_size = 64  # Hidden layer size
lstm_hidden_size = 32  # LSTM hidden size (for storing wealth signal in the nerves)
output_size = wealth_distribution.shape[-1]  # Output size matches wealth distribution
vpn_size = 128  # Size of the "VPN" encryption layer

model = WealthTransferModelWithVPN(input_size, hidden_size, lstm_hidden_size, output_size, vpn_size)

# Define loss function and optimizer
loss_fn = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# Dummy target wealth state (after transfer)
target_wealth_state = torch.randn(32, 100, 1)  # Random for now

# Training loop (just for illustration)
num_epochs = 100
for epoch in range(num_epochs):
    # Zero gradients
    optimizer.zero_grad()

    # Forward pass: compute the wealth transfer with VPN-like protection
    output = model(wealth_distribution, target_direction)

    # Compute loss (compare output to the target wealth state)
    loss = loss_fn(output, target_wealth_state)

    # Backpropagation and optimization step
    loss.backward()
    optimizer.step()

    if (epoch + 1) % 10 == 0:
        print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')

import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt

# Simulate wealth distribution for 100 people
wealth_distribution = torch.randn(32, 100, 1)  # (batch_size, 100 people, 1 wealth feature)

# Define the target direction (randomly initialized or learned)
target_direction = torch.randn(32, 100, 1)  # (batch_size, 100 people, 1 feature for direction)

# Define the model with LSTM and VPN-like layer for protection
class WealthTransferModelWithVPN(nn.Module):
    def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size):
        super(WealthTransferModelWithVPN, self).__init__()
        # First dense layer
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()

        # LSTM layer to store wealth signal in the "nerves"
        self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)

        # Final dense layer to transfer wealth in the target direction
        self.fc2 = nn.Linear(lstm_hidden_size, output_size)

        # VPN-like encryption layer (simulated with a non-linear transformation)
        self.vpn_layer = nn.Linear(output_size, vpn_size)  # A layer to "encrypt" the output
        self.decrypt_layer = nn.Linear(vpn_size, output_size)  # To recover the original output

    def forward(self, x, target):
        # Combine wealth signal with target information (concatenate along the feature dimension)
        x = torch.cat((x, target), dim=-1)

        # Process through the first dense layer
        x = self.relu(self.fc1(x))

        # Pass through the LSTM layer (to store the wealth signal in the nerves)
        x, _ = self.lstm(x)

        # Output layer to compute the final wealth transfer signal
        x = self.fc2(x)

        # Pass through the VPN encryption layer
        encrypted_output = torch.sigmoid(self.vpn_layer(x))  # Apply transformation (like encryption)

        # Simulate decryption by passing through another layer
        decrypted_output = self.decrypt_layer(encrypted_output)

        return decrypted_output  # Return the "secure" output

# Initialize the model
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1]  # Input: wealth + target direction
hidden_size = 64  # Hidden layer size
lstm_hidden_size = 32  # LSTM hidden size (for storing wealth signal in the nerves)
output_size = wealth_distribution.shape[-1]  # Output size matches wealth distribution
vpn_size = 128  # Size of the "VPN" encryption layer

model = WealthTransferModelWithVPN(input_size, hidden_size, lstm_hidden_size, output_size, vpn_size)

# Forward pass: compute the wealth transfer signal (without training for simplicity)
with torch.no_grad():
    output_signal = model(wealth_distribution, target_direction)

# Select one example (first sample from batch) for plotting
wealth_waveform = output_signal[0].squeeze().numpy()  # Remove extra dimensions (100,)

# Plot the wealth signal as a waveform
plt.figure(figsize=(10, 5))
plt.plot(wealth_waveform, label='Wealth Transfer Signal')
plt.title('Wealth Transfer Signal Waveform')
plt.xlabel('Individual (or Time Step)')
plt.ylabel('Wealth Signal Intensity')
plt.legend()
plt.grid(True)
plt.show()

import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt

# Simulate wealth distribution for 100 people across 24 hours
# Let's assume each sample corresponds to a different time step (hour)
wealth_distribution = torch.randn(32, 24, 1)  # (batch_size, 24 hours, 1 wealth feature)

# Define the target direction (randomly initialized or learned) for 24 hours
target_direction = torch.randn(32, 24, 1)  # (batch_size, 24 hours, 1 feature for direction)

# Define the model with LSTM and VPN-like layer for protection
class WealthTransferModelWithVPN(nn.Module):
    def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size):
        super(WealthTransferModelWithVPN, self).__init__()
        # First dense layer
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()

        # LSTM layer to store wealth signal in the "nerves"
        self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)

        # Final dense layer to transfer wealth in the target direction
        self.fc2 = nn.Linear(lstm_hidden_size, output_size)

        # VPN-like encryption layer (simulated with a non-linear transformation)
        self.vpn_layer = nn.Linear(output_size, vpn_size)  # A layer to "encrypt" the output
        self.decrypt_layer = nn.Linear(vpn_size, output_size)  # To recover the original output

    def forward(self, x, target):
        # Combine wealth signal with target information (concatenate along the feature dimension)
        x = torch.cat((x, target), dim=-1)

        # Process through the first dense layer
        x = self.relu(self.fc1(x))

        # Pass through the LSTM layer (to store the wealth signal in the nerves)
        x, _ = self.lstm(x)

        # Output layer to compute the final wealth transfer signal
        x = self.fc2(x)

        # Pass through the VPN encryption layer
        encrypted_output = torch.sigmoid(self.vpn_layer(x))  # Apply transformation (like encryption)

        # Simulate decryption by passing through another layer
        decrypted_output = self.decrypt_layer(encrypted_output)

        return decrypted_output  # Return the "secure" output

# Initialize the model
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1]  # Input: wealth + target direction
hidden_size = 64  # Hidden layer size
lstm_hidden_size = 32  # LSTM hidden size (for storing wealth signal in the nerves)
output_size = wealth_distribution.shape[-1]  # Output size matches wealth distribution
vpn_size = 128  # Size of the "VPN" encryption layer

model = WealthTransferModelWithVPN(input_size, hidden_size, lstm_hidden_size, output_size, vpn_size)

# Forward pass: compute the wealth transfer signal (without training for simplicity)
with torch.no_grad():
    output_signal = model(wealth_distribution, target_direction)

# Select one example (first sample from batch) for plotting
wealth_waveform = output_signal[0].squeeze().numpy()  # Remove extra dimensions (24 hours,)

# Create an x-axis for 24 hours (from 0 to 23 hours)
hours = list(range(24))

# Plot the wealth signal as a waveform over 24 hours
plt.figure(figsize=(10, 5))
plt.plot(hours, wealth_waveform, label='Wealth Transfer Signal over 24 Hours', marker='o')
plt.title('Wealth Transfer Signal in 24-Hour Intervals')
plt.xlabel('Hour of the Day')
plt.ylabel('Wealth Signal Intensity')
plt.xticks(hours)  # Show each hour as a tick on the x-axis
plt.grid(True)
plt.legend()
plt.show()

import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import numpy as np

# Simulate wealth distribution for 100 people across 24 hours
wealth_distribution = torch.randn(32, 24, 1)  # (batch_size, 24 hours, 1 wealth feature)

# Define the target direction (randomly initialized or learned) for 24 hours
target_direction = torch.randn(32, 24, 1)  # (batch_size, 24 hours, 1 feature for direction)

# Define the model with LSTM and VPN-like layer for protection
class WealthTransferModelWithVPN(nn.Module):
    def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size):
        super(WealthTransferModelWithVPN, self).__init__()
        # First dense layer
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()

        # LSTM layer to store wealth signal in the "nerves"
        self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)

        # Final dense layer to transfer wealth in the target direction
        self.fc2 = nn.Linear(lstm_hidden_size, output_size)

        # VPN-like encryption layer (simulated with a non-linear transformation)
        self.vpn_layer = nn.Linear(output_size, vpn_size)  # A layer to "encrypt" the output
        self.decrypt_layer = nn.Linear(vpn_size, output_size)  # To recover the original output

    def forward(self, x, target):
        # Combine wealth signal with target information (concatenate along the feature dimension)
        x = torch.cat((x, target), dim=-1)

        # Process through the first dense layer
        x = self.relu(self.fc1(x))

        # Pass through the LSTM layer (to store the wealth signal in the nerves)
        x, _ = self.lstm(x)

        # Output layer to compute the final wealth transfer signal
        x = self.fc2(x)

        # Pass through the VPN encryption layer
        encrypted_output = torch.sigmoid(self.vpn_layer(x))  # Apply transformation (like encryption)

        # Simulate decryption by passing through another layer
        decrypted_output = self.decrypt_layer(encrypted_output)

        return decrypted_output  # Return the "secure" output

# Initialize the model
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1]  # Input: wealth + target direction
hidden_size = 64  # Hidden layer size
lstm_hidden_size = 32  # LSTM hidden size (for storing wealth signal in the nerves)
output_size = wealth_distribution.shape[-1]  # Output size matches wealth distribution
vpn_size = 128  # Size of the "VPN" encryption layer

model = WealthTransferModelWithVPN(input_size, hidden_size, lstm_hidden_size, output_size, vpn_size)

# Forward pass: compute the wealth transfer signal (without training for simplicity)
with torch.no_grad():
    output_signal = model(wealth_distribution, target_direction)

# Select one example (first sample from batch) for plotting
wealth_waveform = output_signal[0].squeeze().numpy()  # Remove extra dimensions (24 hours,)

# Create a mask (example: mask where signal < 0.5)
mask = wealth_waveform > 0.5  # Only display parts of the signal that exceed 0.5 in intensity

# Apply the mask to the wealth waveform
masked_signal = wealth_waveform * mask  # Set masked elements to 0

# Create an x-axis for 24 hours (from 0 to 23 hours)
hours = list(range(24))

# Plot the masked wealth signal as a colorful waveform
plt.figure(figsize=(10, 5))

# Use a colormap to display the intensity of the signal
scatter = plt.scatter(hours, masked_signal, c=masked_signal, cmap='viridis', s=100, edgecolor='k', marker='o')

# Add a color bar to show intensity mapping
plt.colorbar(scatter, label="Wealth Signal Intensity")

plt.title('Masked Wealth Transfer Signal in 24-Hour Intervals (Colorful Waveform)')
plt.xlabel('Hour of the Day')
plt.ylabel('Wealth Signal Intensity')
plt.xticks(hours)  # Show each hour as a tick on the x-axis
plt.grid(True)
plt.show()

import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import numpy as np

# Simulate wealth distribution for 100 people across 24 hours
wealth_distribution = torch.randn(32, 24, 1)  # (batch_size, 24 hours, 1 wealth feature)

# Define the target direction (randomly initialized or learned) for 24 hours
target_direction = torch.randn(32, 24, 1)  # (batch_size, 24 hours, 1 feature for direction)

# Define the model with LSTM and VPN-like layer for protection
class WealthTransferModelWithVPN(nn.Module):
    def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size):
        super(WealthTransferModelWithVPN, self).__init__()
        # First dense layer
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.relu = nn.ReLU()

        # LSTM layer to store wealth signal in the "nerves"
        self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)

        # Final dense layer to transfer wealth in the target direction
        self.fc2 = nn.Linear(lstm_hidden_size, output_size)

        # VPN-like encryption layer (simulated with a non-linear transformation)
        self.vpn_layer = nn.Linear(output_size, vpn_size)  # A layer to "encrypt" the output
        self.decrypt_layer = nn.Linear(vpn_size, output_size)  # To recover the original output

    def forward(self, x, target):
        # Combine wealth signal with target information (concatenate along the feature dimension)
        x = torch.cat((x, target), dim=-1)

        # Process through the first dense layer
        x = self.relu(self.fc1(x))

        # Pass through the LSTM layer (to store the wealth signal in the nerves)
        x, _ = self.lstm(x)

        # Output layer to compute the final wealth transfer signal
        x = self.fc2(x)

        # Pass through the VPN encryption layer
        encrypted_output = torch.sigmoid(self.vpn_layer(x))  # Apply transformation (like encryption)

        # Simulate decryption by passing through another layer
        decrypted_output = self.decrypt_layer(encrypted_output)

        return decrypted_output  # Return the "secure" output

# Initialize the model
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1]  # Input: wealth + target direction
hidden_size = 64  # Hidden layer size
lstm_hidden_size = 32  # LSTM hidden size (for storing wealth signal in the nerves)
output_size = wealth_distribution.shape[-1]  # Output size matches wealth distribution
vpn_size = 128  # Size of the "VPN" encryption layer

model = WealthTransferModelWithVPN(input_size, hidden_size, lstm_hidden_size, output_size, vpn_size)

# Forward pass: compute the wealth transfer signal (without training for simplicity)
with torch.no_grad():
    output_signal = model(wealth_distribution, target_direction)

# Select one example (first sample from batch) for plotting
wealth_waveform = output_signal[0].squeeze().numpy()  # Remove extra dimensions (24 hours,)

# Create the first mask (example: mask where signal < 0.5)
mask1 = wealth_waveform > 0.5  # First mask: Only display parts of the signal that exceed 0.5 in intensity

# Apply the first mask to the wealth waveform
masked_signal1 = wealth_waveform * mask1  # Set masked elements to 0

# Create the second mask (example: mask where signal > 0.2)
mask2 = wealth_waveform < 0.2  # Second mask: Only display parts of the signal below 0.2 in intensity

# Apply the second mask to the wealth waveform
masked_signal2 = wealth_waveform * mask2  # Set masked elements to 0

# Combine both masked signals (for visualization purposes)
combined_masked_signal = masked_signal1 + masked_signal2

# Create an x-axis for 24 hours (from 0 to 23 hours)
hours = list(range(24))

# Plot the combined masked wealth signal as a colorful waveform
plt.figure(figsize=(10, 5))

# Use a colormap to display the intensity of the signal
scatter = plt.scatter(hours, combined_masked_signal, c=combined_masked_signal, cmap='plasma', s=100, edgecolor='k', marker='o')

# Add a color bar to show intensity mapping
plt.colorbar(scatter, label="Wealth Signal Intensity")

plt.title('Combined Masked Wealth Transfer Signal in 24-Hour Intervals (Colorful Waveform)')
plt.xlabel('Hour of the Day')
plt.ylabel('Wealth Signal Intensity')
plt.xticks(hours)  # Show each hour as a tick on the x-axis
plt.grid(True)
plt.show()