File size: 39,219 Bytes
d8e3664 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 |
import torch
import torch.nn as nn
import torch.optim as optim
# Simulate wealth distribution (e.g., 100 individuals with a certain wealth amount)
wealth_distribution = torch.randn(100, 1) # (100 people, 1 wealth feature)
# Define the target direction (randomly initialized, or learned)
target_direction = torch.randn(100, 1)
# Define a simple model to transfer wealth in the target direction
class WealthTransferModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(WealthTransferModel, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, hidden_size)
self.fc3 = nn.Linear(hidden_size, output_size)
self.relu = nn.ReLU()
def forward(self, x, target):
# Combine wealth signal with target information (concatenate or element-wise)
x = torch.cat((x, target), dim=1)
# Process wealth signal with dense layers
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
# Initialize model, loss function, and optimizer
input_size = wealth_distribution.shape[1] + target_direction.shape[1] # Input wealth + target direction
hidden_size = 64 # Hidden layer size (can be adjusted)
output_size = wealth_distribution.shape[1] # Output size matches wealth distribution
model = WealthTransferModel(input_size, hidden_size, output_size)
loss_fn = nn.MSELoss() # Mean Squared Error loss for simplicity
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Dummy target wealth state (after transfer)
target_wealth_state = torch.randn(100, 1) # Random for now; this would be based on business logic
# Training loop (just for illustration; you can adjust the number of epochs)
num_epochs = 100
for epoch in range(num_epochs):
# Zero gradients
optimizer.zero_grad()
# Forward pass: Compute the wealth transfer
output = model(wealth_distribution, target_direction)
# Compute loss (compare output to the target wealth state)
loss = loss_fn(output, target_wealth_state)
# Backpropagation and optimization step
loss.backward()
optimizer.step()
if (epoch + 1) % 10 == 0:
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
# After training, model should learn how to adjust wealth distribution towards the target direction
import torch
import torch.nn as nn
import torch.optim as optim
# Simulate wealth distribution (e.g., 100 individuals with a certain wealth amount)
wealth_distribution = torch.randn(100, 1) # (100 people, 1 wealth feature)
# Define the target direction (randomly initialized, or learned)
target_direction = torch.randn(100, 1)
# Define a model that includes an LSTM layer for "nerve-like" behavior to store wealth information
class WealthTransferModelWithNerve(nn.Module):
def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size):
super(WealthTransferModelWithNerve, self).__init__()
# First dense layer to process wealth and target information
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
# LSTM layer that acts as a "nerve" to store wealth information
self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)
# Final dense layer to transfer wealth in the target direction
self.fc2 = nn.Linear(lstm_hidden_size, output_size)
def forward(self, x, target):
# Combine wealth signal with target information (concatenate or element-wise)
x = torch.cat((x, target), dim=1)
# Process through the first dense layer
x = self.relu(self.fc1(x))
# Prepare for LSTM (LSTM requires input of shape (batch_size, seq_length, feature_size))
x = x.unsqueeze(1) # Add a sequence dimension for LSTM (batch_size, 1, hidden_size)
# Pass through LSTM layer (storing wealth information in "nerves")
x, (hn, cn) = self.lstm(x) # hn: hidden state, cn: cell state
# Remove sequence dimension for the final dense layer
x = x.squeeze(1)
# Output layer to compute the final wealth transfer
x = self.fc2(x)
return x
# Initialize model, loss function, and optimizer
input_size = wealth_distribution.shape[1] + target_direction.shape[1] # Input wealth + target direction
hidden_size = 64 # Size for first dense layer
lstm_hidden_size = 32 # Hidden size of the LSTM layer
output_size = wealth_distribution.shape[1] # Output size matches wealth distribution
model = WealthTransferModelWithNerve(input_size, hidden_size, lstm_hidden_size, output_size)
loss_fn = nn.MSELoss() # Mean Squared Error loss for simplicity
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Dummy target wealth state (after transfer)
target_wealth_state = torch.randn(100, 1) # Random for now; this would be based on business logic
# Training loop (just for illustration; you can adjust the number of epochs)
num_epochs = 100
for epoch in range(num_epochs):
# Zero gradients
optimizer.zero_grad()
# Forward pass: Compute the wealth transfer with the "nerve" layer
output = model(wealth_distribution, target_direction)
# Compute loss (compare output to the target wealth state)
loss = loss_fn(output, target_wealth_state)
# Backpropagation and optimization step
loss.backward()
optimizer.step()
if (epoch + 1) % 10 == 0:
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
# After training, the model will learn to store and process wealth information in the "nerves" and transfer it towards the target.
import torch
import torch.nn as nn
import torch.optim as optim
# Define parameters
batch_size = 32 # Number of samples in a batch
seq_length = 10 # Number of timesteps (e.g., 10 timesteps)
feature_size = 1 # Wealth feature per individual
# Simulate wealth distribution over multiple timesteps for 100 people
wealth_distribution = torch.randn(batch_size, seq_length, 100, feature_size)
# Define the target direction over multiple timesteps
target_direction = torch.randn(batch_size, seq_length, 100, feature_size)
# Define the model with LSTM layer for "nerve-like" processing across timesteps
class WealthTransferModelWithTimesteps(nn.Module):
def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size):
super(WealthTransferModelWithTimesteps, self).__init__()
# First dense layer to process wealth and target information
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
# LSTM layer that acts as a "nerve" to store wealth information over timesteps
self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)
# Final dense layer to transfer wealth in the target direction
self.fc2 = nn.Linear(lstm_hidden_size, output_size)
def forward(self, x, target):
# Combine wealth signal with target information (concatenate along feature dimension)
x = torch.cat((x, target), dim=-1) # Concatenate along the feature axis
# Process through the first dense layer for each timestep (use .view to flatten)
batch_size, seq_length, num_people, _ = x.shape
x = x.view(batch_size * seq_length * num_people, -1) # Flatten for FC layer
x = self.relu(self.fc1(x))
x = x.view(batch_size, seq_length, num_people, -1) # Reshape back after FC
# LSTM expects input of shape (batch_size, seq_length, feature_size)
x = x.view(batch_size, seq_length, -1) # Combine people and features for LSTM
# Pass through LSTM layer (storing wealth information over timesteps)
x, (hn, cn) = self.lstm(x) # hn: hidden state, cn: cell state
# Output layer to compute the final wealth transfer for each timestep
x = self.fc2(x)
x = x.view(batch_size, seq_length, num_people, -1) # Reshape back to original format
return x
# Initialize model, loss function, and optimizer
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1] # Wealth + target info per timestep
hidden_size = 64 # Hidden size for first dense layer
lstm_hidden_size = 32 # Hidden size of the LSTM layer
output_size = wealth_distribution.shape[-1] # Output size should match wealth feature per person
model = WealthTransferModelWithTimesteps(input_size, hidden_size, lstm_hidden_size, output_size)
loss_fn = nn.MSELoss() # Mean Squared Error loss for simplicity
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Dummy target wealth state over multiple timesteps
target_wealth_state = torch.randn(batch_size, seq_length, 100, feature_size)
# Training loop (just for illustration)
num_epochs = 100
for epoch in range(num_epochs):
# Zero gradients
optimizer.zero_grad()
# Forward pass: Compute the wealth transfer over multiple timesteps
output = model(wealth_distribution, target_direction)
# Compute loss (compare output to the target wealth state)
loss = loss_fn(output, target_wealth_state)
# Backpropagation and optimization step
loss.backward()
optimizer.step()
if (epoch + 1) % 10 == 0:
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
# After training, the model will learn to store and direct wealth information across multiple timesteps.
import torch
import torch.nn as nn
import torch.optim as optim
# Define parameters
batch_size = 32 # Number of samples in a batch
seq_length = 10 # Number of timesteps (e.g., 10 timesteps)
feature_size = 1 # Wealth feature per individual
# Simulate wealth distribution over multiple timesteps for 100 people
wealth_distribution = torch.randn(batch_size, seq_length, 100, feature_size)
# Define the target direction over multiple timesteps
target_direction = torch.randn(batch_size, seq_length, 100, feature_size)
# Define the model with LSTM layer for "nerve-like" processing across timesteps
class WealthTransferModelWithTimesteps(nn.Module):
def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size):
super(WealthTransferModelWithTimesteps, self).__init__()
# First dense layer to process wealth and target information
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
# LSTM layer that acts as a "nerve" to store wealth information over timesteps
# Changed input_size to hidden_size * 100 to match the output of fc1
self.lstm = nn.LSTM(hidden_size * 100, lstm_hidden_size, batch_first=True)
# Final dense layer to transfer wealth in the target direction
self.fc2 = nn.Linear(lstm_hidden_size, output_size)
def forward(self, x, target):
# Combine wealth signal with target information (concatenate along feature dimension)
x = torch.cat((x, target), dim=-1) # Concatenate along the feature axis
# Process through the first dense layer for each timestep (use .view to flatten)
batch_size, seq_length, num_people, _ = x.shape
x = x.view(batch_size * seq_length * num_people, -1) # Flatten for FC layer
x = self.relu(self.fc1(x))
# Reshape to (batch_size, seq_length, num_people * hidden_size) for LSTM
x = x.view(batch_size, seq_length, num_people * hidden_size) # Reshape for LSTM
# Pass through LSTM layer (storing wealth information over timesteps)
x, (hn, cn) = self.lstm(x) # hn: hidden state, cn: cell state
# Output layer to compute the final wealth transfer for each timestep
x = self.fc2(x)
x = x.view()
import torch
import torch.nn as nn
import torch.optim as optim
# Define parameters
batch_size = 32 # Number of samples in a batch
seq_length = 10 # Number of timesteps
feature_size = 1 # Wealth feature per individual
# Simulate wealth distribution over multiple timesteps for 100 people
wealth_distribution = torch.randn(batch_size, seq_length, 100, feature_size)
# Define the target direction over multiple timesteps
target_direction = torch.randn(batch_size, seq_length, 100, feature_size)
# Define the model with LSTM layer and a "VPN" protection layer
class WealthTransferModelWithVPN(nn.Module):
def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size):
super(WealthTransferModelWithVPN, self).__init__()
# First dense layer to process wealth and target information
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
# LSTM layer that acts as a "nerve" to store wealth information over timesteps
self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)
# Final dense layer to transfer wealth in the target direction
self.fc2 = nn.Linear(lstm_hidden_size, output_size)
# VPN-like encryption layer (simulated with a non-linear transformation)
self.vpn_layer = nn.Linear(output_size, vpn_size) # A layer to "encrypt" the output
self.decrypt_layer = nn.Linear(vpn_size, output_size) # To recover the original output
def forward(self, x, target):
# Combine wealth signal with target information (concatenate along feature dimension)
x = torch.cat((x, target), dim=-1) # Concatenate along the feature axis
# Process through the first dense layer for each timestep (use .view to flatten)
batch_size, seq_length, num_people, _ = x.shape
x = x.view(batch_size * seq_length * num_people, -1) # Flatten for FC layer
x = self.relu(self.fc1(x))
x = x.view(batch_size, seq_length, num_people, -1) # Reshape back after FC
# LSTM expects input of shape (batch_size, seq_length, feature_size)
x = x.view(batch_size, seq_length, num_people * hidden_size) # Combine people and features for LSTM
# Pass through LSTM layer (storing wealth information over timesteps)
x, (hn, cn) = self.lstm(x) # hn: hidden state, cn: cell state
# Output layer to compute the final wealth transfer for each timestep
x = self.fc2(x)
x = x.view(batch_size, seq_length, num_people, -1) # Reshape back to original format
# Pass through the VPN encryption layer
encrypted_output = torch.sigmoid(self.vpn_layer(x)) # Apply transformation (like encryption)
# Simulate decryption by passing through another layer
decrypted_output = self.decrypt_layer(encrypted_output)
return decrypted_output # Return the "secure" output
# Initialize model, loss function, and optimizer
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1] # Wealth + target info per timestep
hidden_size = 64 # Hidden size for first dense layer
lstm_hidden_size = 32 # Hidden size of the LSTM layer
output_size = wealth_distribution.shape[-1] # Output size should match wealth feature per person
vpn_size = 128 # Size of the "VPN" layer
model = WealthTransferModelWithVPN(input_size, hidden_size, lstm_hidden_size, output_size, vpn_size)
loss_fn = nn.MSELoss() # Mean Squared Error loss for simplicity
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Dummy target wealth state over multiple timesteps
target_wealth_state = torch.randn(batch_size, seq_length, 100, feature_size)
# Training loop (just for illustration)
num_epochs = 100
for epoch in range(num_epochs):
# Zero gradients
optimizer.zero_grad()
# Forward pass: Compute the wealth transfer with VPN-like protection
output = model(wealth_distribution, target_direction)
# Compute loss (compare output to the target wealth state)
loss = loss_fn(output, target_wealth_state)
# Backpropagation and optimization step
loss.backward()
optimizer.step()
if (epoch + 1) % 10 == 0:
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
# After training, the model will learn to store and protect wealth information securely while transferring it.
import torch
import torch.nn as nn
import torch.optim as optim
# Simulate wealth distribution for 100 people
wealth_distribution = torch.randn(100, 1) # (100 people, 1 wealth feature)
# Define the target direction (randomly initialized or learned)
target_direction = torch.randn(100, 1)
# Define a simple dense model to process wealth and target direction
class WealthTransferModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(WealthTransferModel, self).__init__()
# First dense layer
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
# Second dense layer
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x, target):
# Combine wealth signal with target information (concatenate or element-wise)
x = torch.cat((x, target), dim=1)
# Process through the first dense layer
x = self.relu(self.fc1(x))
# Output layer to compute the final wealth transfer signal
x = self.fc2(x)
return x
# Initialize the model
input_size = wealth_distribution.shape[1] + target_direction.shape[1] # Input wealth + target direction
hidden_size = 64 # Hidden layer size
output_size = wealth_distribution.shape[1] # Output size matches wealth distribution
model = WealthTransferModel(input_size, hidden_size, output_size)
# Define loss function and optimizer
loss_fn = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Dummy target wealth state (after transfer)
target_wealth_state = torch.randn(100, 1) # Random for now; this would be based on business logic
# Training loop (just for illustration)
num_epochs = 100
for epoch in range(num_epochs):
# Zero gradients
optimizer.zero_grad()
# Forward pass: compute the wealth transfer
output = model(wealth_distribution, target_direction)
# Compute loss (compare output to the target wealth state)
loss = loss_fn(output, target_wealth_state)
# Backpropagation and optimization step
loss.backward()
optimizer.step()
if (epoch + 1) % 10 == 0:
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
import torch
import torch.nn as nn
import torch.optim as optim
# Simulate wealth distribution for 100 people
wealth_distribution = torch.randn(32, 100, 1) # (batch_size, 100 people, 1 wealth feature)
# Define the target direction (randomly initialized or learned)
target_direction = torch.randn(32, 100, 1) # (batch_size, 100 people, 1 feature for direction)
# Define a model with LSTM to store wealth signal in the "nerves"
class WealthTransferModelWithNerves(nn.Module):
def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size):
super(WealthTransferModelWithNerves, self).__init__()
# First dense layer
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
# LSTM layer to store wealth signal in the "nerves"
self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)
# Final dense layer to transfer wealth in the target direction
self.fc2 = nn.Linear(lstm_hidden_size, output_size)
def forward(self, x, target):
# Combine wealth signal with target information (concatenate along the feature dimension)
x = torch.cat((x, target), dim=-1)
# Process through the first dense layer
x = self.relu(self.fc1(x))
# Pass through the LSTM layer (to store the wealth signal in the nerves)
x, _ = self.lstm(x)
# Output layer to compute the final wealth transfer signal
x = self.fc2(x)
return x
# Initialize the model
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1] # Input: wealth + target direction
hidden_size = 64 # Hidden layer size
lstm_hidden_size = 32 # LSTM hidden size (for storing wealth signal in the nerves)
output_size = wealth_distribution.shape[-1] # Output size matches wealth distribution
model = WealthTransferModelWithNerves(input_size, hidden_size, lstm_hidden_size, output_size)
# Define loss function and optimizer
loss_fn = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Dummy target wealth state (after transfer)
target_wealth_state = torch.randn(32, 100, 1) # Random for now
# Training loop (just for illustration)
num_epochs = 100
for epoch in range(num_epochs):
# Zero gradients
optimizer.zero_grad()
# Forward pass: compute the wealth transfer
output = model(wealth_distribution, target_direction)
# Compute loss (compare output to the target wealth state)
loss = loss_fn(output, target_wealth_state)
# Backpropagation and optimization step
loss.backward()
optimizer.step()
if (epoch + 1) % 10 == 0:
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
import torch
import torch.nn as nn
import torch.optim as optim
# Simulate wealth distribution for 100 people
wealth_distribution = torch.randn(32, 100, 1) # (batch_size, 100 people, 1 wealth feature)
# Define the target direction (randomly initialized or learned)
target_direction = torch.randn(32, 100, 1) # (batch_size, 100 people, 1 feature for direction)
# Define the model with LSTM and VPN-like layer for protection
class WealthTransferModelWithVPN(nn.Module):
def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size):
super(WealthTransferModelWithVPN, self).__init__()
# First dense layer
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
# LSTM layer to store wealth signal in the "nerves"
self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)
# Final dense layer to transfer wealth in the target direction
self.fc2 = nn.Linear(lstm_hidden_size, output_size)
# VPN-like encryption layer (simulated with a non-linear transformation)
self.vpn_layer = nn.Linear(output_size, vpn_size) # A layer to "encrypt" the output
self.decrypt_layer = nn.Linear(vpn_size, output_size) # To recover the original output
def forward(self, x, target):
# Combine wealth signal with target information (concatenate along the feature dimension)
x = torch.cat((x, target), dim=-1)
# Process through the first dense layer
x = self.relu(self.fc1(x))
# Pass through the LSTM layer (to store the wealth signal in the nerves)
x, _ = self.lstm(x)
# Output layer to compute the final wealth transfer signal
x = self.fc2(x)
# Pass through the VPN encryption layer
encrypted_output = torch.sigmoid(self.vpn_layer(x)) # Apply transformation (like encryption)
# Simulate decryption by passing through another layer
decrypted_output = self.decrypt_layer(encrypted_output)
return decrypted_output # Return the "secure" output
# Initialize the model
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1] # Input: wealth + target direction
hidden_size = 64 # Hidden layer size
lstm_hidden_size = 32 # LSTM hidden size (for storing wealth signal in the nerves)
output_size = wealth_distribution.shape[-1] # Output size matches wealth distribution
vpn_size = 128 # Size of the "VPN" encryption layer
model = WealthTransferModelWithVPN(input_size, hidden_size, lstm_hidden_size, output_size, vpn_size)
# Define loss function and optimizer
loss_fn = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Dummy target wealth state (after transfer)
target_wealth_state = torch.randn(32, 100, 1) # Random for now
# Training loop (just for illustration)
num_epochs = 100
for epoch in range(num_epochs):
# Zero gradients
optimizer.zero_grad()
# Forward pass: compute the wealth transfer with VPN-like protection
output = model(wealth_distribution, target_direction)
# Compute loss (compare output to the target wealth state)
loss = loss_fn(output, target_wealth_state)
# Backpropagation and optimization step
loss.backward()
optimizer.step()
if (epoch + 1) % 10 == 0:
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
# Simulate wealth distribution for 100 people
wealth_distribution = torch.randn(32, 100, 1) # (batch_size, 100 people, 1 wealth feature)
# Define the target direction (randomly initialized or learned)
target_direction = torch.randn(32, 100, 1) # (batch_size, 100 people, 1 feature for direction)
# Define the model with LSTM and VPN-like layer for protection
class WealthTransferModelWithVPN(nn.Module):
def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size):
super(WealthTransferModelWithVPN, self).__init__()
# First dense layer
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
# LSTM layer to store wealth signal in the "nerves"
self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)
# Final dense layer to transfer wealth in the target direction
self.fc2 = nn.Linear(lstm_hidden_size, output_size)
# VPN-like encryption layer (simulated with a non-linear transformation)
self.vpn_layer = nn.Linear(output_size, vpn_size) # A layer to "encrypt" the output
self.decrypt_layer = nn.Linear(vpn_size, output_size) # To recover the original output
def forward(self, x, target):
# Combine wealth signal with target information (concatenate along the feature dimension)
x = torch.cat((x, target), dim=-1)
# Process through the first dense layer
x = self.relu(self.fc1(x))
# Pass through the LSTM layer (to store the wealth signal in the nerves)
x, _ = self.lstm(x)
# Output layer to compute the final wealth transfer signal
x = self.fc2(x)
# Pass through the VPN encryption layer
encrypted_output = torch.sigmoid(self.vpn_layer(x)) # Apply transformation (like encryption)
# Simulate decryption by passing through another layer
decrypted_output = self.decrypt_layer(encrypted_output)
return decrypted_output # Return the "secure" output
# Initialize the model
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1] # Input: wealth + target direction
hidden_size = 64 # Hidden layer size
lstm_hidden_size = 32 # LSTM hidden size (for storing wealth signal in the nerves)
output_size = wealth_distribution.shape[-1] # Output size matches wealth distribution
vpn_size = 128 # Size of the "VPN" encryption layer
model = WealthTransferModelWithVPN(input_size, hidden_size, lstm_hidden_size, output_size, vpn_size)
# Forward pass: compute the wealth transfer signal (without training for simplicity)
with torch.no_grad():
output_signal = model(wealth_distribution, target_direction)
# Select one example (first sample from batch) for plotting
wealth_waveform = output_signal[0].squeeze().numpy() # Remove extra dimensions (100,)
# Plot the wealth signal as a waveform
plt.figure(figsize=(10, 5))
plt.plot(wealth_waveform, label='Wealth Transfer Signal')
plt.title('Wealth Transfer Signal Waveform')
plt.xlabel('Individual (or Time Step)')
plt.ylabel('Wealth Signal Intensity')
plt.legend()
plt.grid(True)
plt.show()
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
# Simulate wealth distribution for 100 people across 24 hours
# Let's assume each sample corresponds to a different time step (hour)
wealth_distribution = torch.randn(32, 24, 1) # (batch_size, 24 hours, 1 wealth feature)
# Define the target direction (randomly initialized or learned) for 24 hours
target_direction = torch.randn(32, 24, 1) # (batch_size, 24 hours, 1 feature for direction)
# Define the model with LSTM and VPN-like layer for protection
class WealthTransferModelWithVPN(nn.Module):
def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size):
super(WealthTransferModelWithVPN, self).__init__()
# First dense layer
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
# LSTM layer to store wealth signal in the "nerves"
self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)
# Final dense layer to transfer wealth in the target direction
self.fc2 = nn.Linear(lstm_hidden_size, output_size)
# VPN-like encryption layer (simulated with a non-linear transformation)
self.vpn_layer = nn.Linear(output_size, vpn_size) # A layer to "encrypt" the output
self.decrypt_layer = nn.Linear(vpn_size, output_size) # To recover the original output
def forward(self, x, target):
# Combine wealth signal with target information (concatenate along the feature dimension)
x = torch.cat((x, target), dim=-1)
# Process through the first dense layer
x = self.relu(self.fc1(x))
# Pass through the LSTM layer (to store the wealth signal in the nerves)
x, _ = self.lstm(x)
# Output layer to compute the final wealth transfer signal
x = self.fc2(x)
# Pass through the VPN encryption layer
encrypted_output = torch.sigmoid(self.vpn_layer(x)) # Apply transformation (like encryption)
# Simulate decryption by passing through another layer
decrypted_output = self.decrypt_layer(encrypted_output)
return decrypted_output # Return the "secure" output
# Initialize the model
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1] # Input: wealth + target direction
hidden_size = 64 # Hidden layer size
lstm_hidden_size = 32 # LSTM hidden size (for storing wealth signal in the nerves)
output_size = wealth_distribution.shape[-1] # Output size matches wealth distribution
vpn_size = 128 # Size of the "VPN" encryption layer
model = WealthTransferModelWithVPN(input_size, hidden_size, lstm_hidden_size, output_size, vpn_size)
# Forward pass: compute the wealth transfer signal (without training for simplicity)
with torch.no_grad():
output_signal = model(wealth_distribution, target_direction)
# Select one example (first sample from batch) for plotting
wealth_waveform = output_signal[0].squeeze().numpy() # Remove extra dimensions (24 hours,)
# Create an x-axis for 24 hours (from 0 to 23 hours)
hours = list(range(24))
# Plot the wealth signal as a waveform over 24 hours
plt.figure(figsize=(10, 5))
plt.plot(hours, wealth_waveform, label='Wealth Transfer Signal over 24 Hours', marker='o')
plt.title('Wealth Transfer Signal in 24-Hour Intervals')
plt.xlabel('Hour of the Day')
plt.ylabel('Wealth Signal Intensity')
plt.xticks(hours) # Show each hour as a tick on the x-axis
plt.grid(True)
plt.legend()
plt.show()
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import numpy as np
# Simulate wealth distribution for 100 people across 24 hours
wealth_distribution = torch.randn(32, 24, 1) # (batch_size, 24 hours, 1 wealth feature)
# Define the target direction (randomly initialized or learned) for 24 hours
target_direction = torch.randn(32, 24, 1) # (batch_size, 24 hours, 1 feature for direction)
# Define the model with LSTM and VPN-like layer for protection
class WealthTransferModelWithVPN(nn.Module):
def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size):
super(WealthTransferModelWithVPN, self).__init__()
# First dense layer
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
# LSTM layer to store wealth signal in the "nerves"
self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)
# Final dense layer to transfer wealth in the target direction
self.fc2 = nn.Linear(lstm_hidden_size, output_size)
# VPN-like encryption layer (simulated with a non-linear transformation)
self.vpn_layer = nn.Linear(output_size, vpn_size) # A layer to "encrypt" the output
self.decrypt_layer = nn.Linear(vpn_size, output_size) # To recover the original output
def forward(self, x, target):
# Combine wealth signal with target information (concatenate along the feature dimension)
x = torch.cat((x, target), dim=-1)
# Process through the first dense layer
x = self.relu(self.fc1(x))
# Pass through the LSTM layer (to store the wealth signal in the nerves)
x, _ = self.lstm(x)
# Output layer to compute the final wealth transfer signal
x = self.fc2(x)
# Pass through the VPN encryption layer
encrypted_output = torch.sigmoid(self.vpn_layer(x)) # Apply transformation (like encryption)
# Simulate decryption by passing through another layer
decrypted_output = self.decrypt_layer(encrypted_output)
return decrypted_output # Return the "secure" output
# Initialize the model
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1] # Input: wealth + target direction
hidden_size = 64 # Hidden layer size
lstm_hidden_size = 32 # LSTM hidden size (for storing wealth signal in the nerves)
output_size = wealth_distribution.shape[-1] # Output size matches wealth distribution
vpn_size = 128 # Size of the "VPN" encryption layer
model = WealthTransferModelWithVPN(input_size, hidden_size, lstm_hidden_size, output_size, vpn_size)
# Forward pass: compute the wealth transfer signal (without training for simplicity)
with torch.no_grad():
output_signal = model(wealth_distribution, target_direction)
# Select one example (first sample from batch) for plotting
wealth_waveform = output_signal[0].squeeze().numpy() # Remove extra dimensions (24 hours,)
# Create a mask (example: mask where signal < 0.5)
mask = wealth_waveform > 0.5 # Only display parts of the signal that exceed 0.5 in intensity
# Apply the mask to the wealth waveform
masked_signal = wealth_waveform * mask # Set masked elements to 0
# Create an x-axis for 24 hours (from 0 to 23 hours)
hours = list(range(24))
# Plot the masked wealth signal as a colorful waveform
plt.figure(figsize=(10, 5))
# Use a colormap to display the intensity of the signal
scatter = plt.scatter(hours, masked_signal, c=masked_signal, cmap='viridis', s=100, edgecolor='k', marker='o')
# Add a color bar to show intensity mapping
plt.colorbar(scatter, label="Wealth Signal Intensity")
plt.title('Masked Wealth Transfer Signal in 24-Hour Intervals (Colorful Waveform)')
plt.xlabel('Hour of the Day')
plt.ylabel('Wealth Signal Intensity')
plt.xticks(hours) # Show each hour as a tick on the x-axis
plt.grid(True)
plt.show()
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import numpy as np
# Simulate wealth distribution for 100 people across 24 hours
wealth_distribution = torch.randn(32, 24, 1) # (batch_size, 24 hours, 1 wealth feature)
# Define the target direction (randomly initialized or learned) for 24 hours
target_direction = torch.randn(32, 24, 1) # (batch_size, 24 hours, 1 feature for direction)
# Define the model with LSTM and VPN-like layer for protection
class WealthTransferModelWithVPN(nn.Module):
def __init__(self, input_size, hidden_size, lstm_hidden_size, output_size, vpn_size):
super(WealthTransferModelWithVPN, self).__init__()
# First dense layer
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
# LSTM layer to store wealth signal in the "nerves"
self.lstm = nn.LSTM(hidden_size, lstm_hidden_size, batch_first=True)
# Final dense layer to transfer wealth in the target direction
self.fc2 = nn.Linear(lstm_hidden_size, output_size)
# VPN-like encryption layer (simulated with a non-linear transformation)
self.vpn_layer = nn.Linear(output_size, vpn_size) # A layer to "encrypt" the output
self.decrypt_layer = nn.Linear(vpn_size, output_size) # To recover the original output
def forward(self, x, target):
# Combine wealth signal with target information (concatenate along the feature dimension)
x = torch.cat((x, target), dim=-1)
# Process through the first dense layer
x = self.relu(self.fc1(x))
# Pass through the LSTM layer (to store the wealth signal in the nerves)
x, _ = self.lstm(x)
# Output layer to compute the final wealth transfer signal
x = self.fc2(x)
# Pass through the VPN encryption layer
encrypted_output = torch.sigmoid(self.vpn_layer(x)) # Apply transformation (like encryption)
# Simulate decryption by passing through another layer
decrypted_output = self.decrypt_layer(encrypted_output)
return decrypted_output # Return the "secure" output
# Initialize the model
input_size = wealth_distribution.shape[-1] + target_direction.shape[-1] # Input: wealth + target direction
hidden_size = 64 # Hidden layer size
lstm_hidden_size = 32 # LSTM hidden size (for storing wealth signal in the nerves)
output_size = wealth_distribution.shape[-1] # Output size matches wealth distribution
vpn_size = 128 # Size of the "VPN" encryption layer
model = WealthTransferModelWithVPN(input_size, hidden_size, lstm_hidden_size, output_size, vpn_size)
# Forward pass: compute the wealth transfer signal (without training for simplicity)
with torch.no_grad():
output_signal = model(wealth_distribution, target_direction)
# Select one example (first sample from batch) for plotting
wealth_waveform = output_signal[0].squeeze().numpy() # Remove extra dimensions (24 hours,)
# Create the first mask (example: mask where signal < 0.5)
mask1 = wealth_waveform > 0.5 # First mask: Only display parts of the signal that exceed 0.5 in intensity
# Apply the first mask to the wealth waveform
masked_signal1 = wealth_waveform * mask1 # Set masked elements to 0
# Create the second mask (example: mask where signal > 0.2)
mask2 = wealth_waveform < 0.2 # Second mask: Only display parts of the signal below 0.2 in intensity
# Apply the second mask to the wealth waveform
masked_signal2 = wealth_waveform * mask2 # Set masked elements to 0
# Combine both masked signals (for visualization purposes)
combined_masked_signal = masked_signal1 + masked_signal2
# Create an x-axis for 24 hours (from 0 to 23 hours)
hours = list(range(24))
# Plot the combined masked wealth signal as a colorful waveform
plt.figure(figsize=(10, 5))
# Use a colormap to display the intensity of the signal
scatter = plt.scatter(hours, combined_masked_signal, c=combined_masked_signal, cmap='plasma', s=100, edgecolor='k', marker='o')
# Add a color bar to show intensity mapping
plt.colorbar(scatter, label="Wealth Signal Intensity")
plt.title('Combined Masked Wealth Transfer Signal in 24-Hour Intervals (Colorful Waveform)')
plt.xlabel('Hour of the Day')
plt.ylabel('Wealth Signal Intensity')
plt.xticks(hours) # Show each hour as a tick on the x-axis
plt.grid(True)
plt.show() |