Upload wealthfortress.py
Browse files- wealthfortress.py +1096 -0
wealthfortress.py
ADDED
@@ -0,0 +1,1096 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""WealthFortress
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1rOSJ2jfGMkC1yn8yzGd3KcsWH0s8Qz6f
|
8 |
+
"""
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.optim as optim
|
13 |
+
import numpy as np
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
16 |
+
|
17 |
+
num_consumers = 10
|
18 |
+
interest_size = 5
|
19 |
+
wealth_size = 1
|
20 |
+
feature_size = interest_size + wealth_size
|
21 |
+
|
22 |
+
consumer_profiles = torch.rand((num_consumers, feature_size))
|
23 |
+
|
24 |
+
interests = consumer_profiles[:, :interest_size]
|
25 |
+
wealth_data = consumer_profiles[:, interest_size:]
|
26 |
+
|
27 |
+
class WealthTransferNet(nn.Module):
|
28 |
+
def __init__(self):
|
29 |
+
super(WealthTransferNet, self).__init__()
|
30 |
+
self.fc1 = nn.Linear(wealth_size, wealth_size)
|
31 |
+
|
32 |
+
# The forward function is now correctly defined as a method of the class
|
33 |
+
def forward(self, x):
|
34 |
+
return self.fc1(x)
|
35 |
+
|
36 |
+
net = WealthTransferNet()
|
37 |
+
criterion = nn.MSELoss()
|
38 |
+
optimizer = optim.Adam(net.parameters(), lr=0.01)
|
39 |
+
|
40 |
+
# Calculate cosine similarity between consumer interests
|
41 |
+
similarity_matrix = cosine_similarity(interests)
|
42 |
+
|
43 |
+
# Find pairs of consumers with similarity above a certain threshold
|
44 |
+
threshold = 0.8
|
45 |
+
similar_pairs = np.argwhere(similarity_matrix > threshold)
|
46 |
+
|
47 |
+
# We will only consider upper triangular values to avoid double matching or self-matching
|
48 |
+
similar_pairs = similar_pairs[similar_pairs[:, 0] < similar_pairs[:, 1]]
|
49 |
+
|
50 |
+
# Simulate wealth transfer between matched pairs
|
51 |
+
for pair in similar_pairs:
|
52 |
+
consumer_a, consumer_b = pair
|
53 |
+
|
54 |
+
# Get wealth data for the pair
|
55 |
+
wealth_a = wealth_data[consumer_a]
|
56 |
+
wealth_b = wealth_data[consumer_b]
|
57 |
+
|
58 |
+
# Train the network to transfer wealth between matched consumers
|
59 |
+
for epoch in range(100):
|
60 |
+
optimizer.zero_grad()
|
61 |
+
transferred_wealth_a = net(wealth_a)
|
62 |
+
transferred_wealth_b = net(wealth_b)
|
63 |
+
|
64 |
+
# Simulate bidirectional transfer: A to B and B to A
|
65 |
+
loss_a_to_b = criterion(transferred_wealth_a, wealth_b)
|
66 |
+
loss_b_to_a = criterion(transferred_wealth_b, wealth_a)
|
67 |
+
total_loss = loss_a_to_b + loss_b_to_a
|
68 |
+
|
69 |
+
total_loss.backward()
|
70 |
+
optimizer.step()
|
71 |
+
|
72 |
+
# Display the similarity matrix and transfer results
|
73 |
+
print("Cosine Similarity Matrix (Interest-based Matching):\n", similarity_matrix)
|
74 |
+
|
75 |
+
# Plotting the interest similarity matrix for visualization
|
76 |
+
plt.figure(figsize=(8, 6))
|
77 |
+
plt.imshow(similarity_matrix, cmap='hot', interpolation='nearest')
|
78 |
+
plt.colorbar(label='Cosine Similarity')
|
79 |
+
plt.title("Interest Similarity Matrix")
|
80 |
+
plt.show()
|
81 |
+
|
82 |
+
import torch
|
83 |
+
import torch.nn as nn
|
84 |
+
import torch.optim as optim
|
85 |
+
import numpy as np
|
86 |
+
import matplotlib.pyplot as plt
|
87 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
88 |
+
|
89 |
+
# Define the number of consumers and feature size (interests + wealth)
|
90 |
+
num_consumers = 10
|
91 |
+
interest_size = 5 # Number of interests
|
92 |
+
wealth_size = 1 # Each consumer has one wealth data point
|
93 |
+
feature_size = interest_size + wealth_size # Total feature size
|
94 |
+
|
95 |
+
# Generate random consumer profiles (interest + wealth)
|
96 |
+
consumer_profiles = torch.rand((num_consumers, feature_size))
|
97 |
+
|
98 |
+
# Split into interests and wealth data
|
99 |
+
interests = consumer_profiles[:, :interest_size]
|
100 |
+
wealth_data = consumer_profiles[:, interest_size:]
|
101 |
+
|
102 |
+
# Define a neural network to transfer wealth between consumers
|
103 |
+
class WealthTransferNet(nn.Module):
|
104 |
+
def __init__(self):
|
105 |
+
super(WealthTransferNet, self).__init__()
|
106 |
+
self.fc1 = nn.Linear(wealth_size, wealth_size)
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
return self.fc1(x)
|
110 |
+
|
111 |
+
# Define a VPN-like layer for data encryption and passcode check
|
112 |
+
class VPNLayer(nn.Module):
|
113 |
+
def __init__(self, encryption_key):
|
114 |
+
super(VPNLayer, self).__init__()
|
115 |
+
self.encryption_key = encryption_key # Simulate encryption key
|
116 |
+
|
117 |
+
def encrypt_data(self, data):
|
118 |
+
# Simulate encryption by applying a non-linear transformation
|
119 |
+
encrypted_data = data * torch.sin(self.encryption_key)
|
120 |
+
return encrypted_data
|
121 |
+
|
122 |
+
def decrypt_data(self, encrypted_data, passcode):
|
123 |
+
# Check if passcode matches the encryption key (this is our 'authentication')
|
124 |
+
if passcode == self.encryption_key:
|
125 |
+
decrypted_data = encrypted_data / torch.sin(self.encryption_key)
|
126 |
+
return decrypted_data
|
127 |
+
else:
|
128 |
+
raise ValueError("Invalid Passcode! Access Denied.")
|
129 |
+
|
130 |
+
# Instantiate the VPN layer
|
131 |
+
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
|
132 |
+
|
133 |
+
# Encrypt consumer profiles (interest + wealth data) using the VPN layer
|
134 |
+
encrypted_consumer_profiles = vpn_layer.encrypt_data(consumer_profiles)
|
135 |
+
|
136 |
+
# Passcode required to access data (for simplicity, using the same as the encryption key)
|
137 |
+
passcode = torch.tensor(0.5)
|
138 |
+
|
139 |
+
# Try to access the encrypted data with the correct passcode
|
140 |
+
try:
|
141 |
+
decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, passcode)
|
142 |
+
print("Access Granted. Decrypted Consumer Data:")
|
143 |
+
print(decrypted_profiles)
|
144 |
+
except ValueError as e:
|
145 |
+
print(e)
|
146 |
+
|
147 |
+
# Simulate incorrect passcode
|
148 |
+
wrong_passcode = torch.tensor(0.3)
|
149 |
+
|
150 |
+
try:
|
151 |
+
decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, wrong_passcode)
|
152 |
+
except ValueError as e:
|
153 |
+
print(e)
|
154 |
+
|
155 |
+
# Instantiate the wealth transfer network
|
156 |
+
net = WealthTransferNet()
|
157 |
+
criterion = nn.MSELoss()
|
158 |
+
optimizer = optim.Adam(net.parameters(), lr=0.01)
|
159 |
+
|
160 |
+
# Calculate cosine similarity between consumer interests
|
161 |
+
similarity_matrix = cosine_similarity(interests)
|
162 |
+
|
163 |
+
# Find pairs of consumers with similarity above a certain threshold
|
164 |
+
threshold = 0.8
|
165 |
+
similar_pairs = np.argwhere(similarity_matrix > threshold)
|
166 |
+
|
167 |
+
# We will only consider upper triangular values to avoid double matching or self-matching
|
168 |
+
similar_pairs = similar_pairs[similar_pairs[:, 0] < similar_pairs[:, 1]]
|
169 |
+
|
170 |
+
# Simulate wealth transfer between matched pairs
|
171 |
+
for pair in similar_pairs:
|
172 |
+
consumer_a, consumer_b = pair
|
173 |
+
|
174 |
+
# Get wealth data for the pair
|
175 |
+
wealth_a = wealth_data[consumer_a]
|
176 |
+
wealth_b = wealth_data[consumer_b]
|
177 |
+
|
178 |
+
# Train the network to transfer wealth between matched consumers
|
179 |
+
for epoch in range(100):
|
180 |
+
optimizer.zero_grad()
|
181 |
+
transferred_wealth_a = net(wealth_a)
|
182 |
+
transferred_wealth_b = net(wealth_b)
|
183 |
+
|
184 |
+
# Simulate bidirectional transfer: A to B and B to A
|
185 |
+
loss_a_to_b = criterion(transferred_wealth_a, wealth_b)
|
186 |
+
loss_b_to_a = criterion(transferred_wealth_b, wealth_a)
|
187 |
+
total_loss = loss_a_to_b + loss_b_to_a
|
188 |
+
|
189 |
+
total_loss.backward()
|
190 |
+
optimizer.step()
|
191 |
+
|
192 |
+
# Display the similarity matrix and transfer results
|
193 |
+
print("Cosine Similarity Matrix (Interest-based Matching):\n", similarity_matrix)
|
194 |
+
|
195 |
+
# Plotting the interest similarity matrix for visualization
|
196 |
+
plt.figure(figsize=(8, 6))
|
197 |
+
plt.imshow(similarity_matrix, cmap='hot', interpolation='nearest')
|
198 |
+
plt.colorbar(label='Cosine Similarity')
|
199 |
+
plt.title("Interest Similarity Matrix")
|
200 |
+
plt.show()
|
201 |
+
|
202 |
+
import torch
|
203 |
+
import torch.nn as nn
|
204 |
+
import torch.optim as optim
|
205 |
+
import numpy as np
|
206 |
+
import matplotlib.pyplot as plt
|
207 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
208 |
+
|
209 |
+
# Define the number of consumers and feature size (interests + wealth)
|
210 |
+
num_consumers = 10
|
211 |
+
interest_size = 5 # Number of interests
|
212 |
+
wealth_size = 1 # Each consumer has one wealth data point
|
213 |
+
feature_size = interest_size + wealth_size # Total feature size
|
214 |
+
|
215 |
+
# Generate random consumer profiles (interest + wealth)
|
216 |
+
consumer_profiles = torch.rand((num_consumers, feature_size))
|
217 |
+
|
218 |
+
# Split into interests and wealth data
|
219 |
+
interests = consumer_profiles[:, :interest_size]
|
220 |
+
wealth_data = consumer_profiles[:, interest_size:]
|
221 |
+
|
222 |
+
# Define a neural network to transfer wealth between consumers
|
223 |
+
class WealthTransferNet(nn.Module):
|
224 |
+
def __init__(self):
|
225 |
+
super(WealthTransferNet, self).__init__()
|
226 |
+
self.fc1 = nn.Linear(wealth_size, wealth_size)
|
227 |
+
|
228 |
+
def forward(self, x):
|
229 |
+
return self.fc1(x)
|
230 |
+
|
231 |
+
# Define a VPN-like layer for data encryption and passcode check
|
232 |
+
class VPNLayer(nn.Module):
|
233 |
+
def __init__(self, encryption_key):
|
234 |
+
super(VPNLayer, self).__init__()
|
235 |
+
self.encryption_key = encryption_key # Simulate encryption key
|
236 |
+
|
237 |
+
def encrypt_data(self, data):
|
238 |
+
# Simulate encryption by applying a non-linear transformation
|
239 |
+
encrypted_data = data * torch.sin(self.encryption_key)
|
240 |
+
return encrypted_data
|
241 |
+
|
242 |
+
def decrypt_data(self, encrypted_data, passcode):
|
243 |
+
# Check if passcode matches the encryption key (this is our 'authentication')
|
244 |
+
if passcode == self.encryption_key:
|
245 |
+
decrypted_data = encrypted_data / torch.sin(self.encryption_key)
|
246 |
+
return decrypted_data
|
247 |
+
else:
|
248 |
+
raise ValueError("Invalid Passcode! Access Denied.")
|
249 |
+
|
250 |
+
# Instantiate the VPN layer
|
251 |
+
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
|
252 |
+
|
253 |
+
# Encrypt consumer profiles (interest + wealth data) using the VPN layer
|
254 |
+
encrypted_consumer_profiles = vpn_layer.encrypt_data(consumer_profiles)
|
255 |
+
|
256 |
+
# Passcode required to access data (for simplicity, using the same as the encryption key)
|
257 |
+
passcode = torch.tensor(0.5)
|
258 |
+
|
259 |
+
# Try to access the encrypted data with the correct passcode
|
260 |
+
try:
|
261 |
+
decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, passcode)
|
262 |
+
print("Access Granted. Decrypted Consumer Data:")
|
263 |
+
print(decrypted_profiles)
|
264 |
+
except ValueError as e:
|
265 |
+
print(e)
|
266 |
+
|
267 |
+
# Simulate incorrect passcode
|
268 |
+
wrong_passcode = torch.tensor(0.3)
|
269 |
+
|
270 |
+
try:
|
271 |
+
decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, wrong_passcode)
|
272 |
+
except ValueError as e:
|
273 |
+
print(e)
|
274 |
+
|
275 |
+
# Instantiate the wealth transfer network
|
276 |
+
net = WealthTransferNet()
|
277 |
+
criterion = nn.MSELoss()
|
278 |
+
optimizer = optim.Adam(net.parameters(), lr=0.01)
|
279 |
+
|
280 |
+
# Calculate cosine similarity between consumer interests
|
281 |
+
similarity_matrix = cosine_similarity(interests)
|
282 |
+
|
283 |
+
# Find pairs of consumers with similarity above a certain threshold
|
284 |
+
threshold = 0.8
|
285 |
+
similar_pairs = np.argwhere(similarity_matrix > threshold)
|
286 |
+
|
287 |
+
# We will only consider upper triangular values to avoid double matching or self-matching
|
288 |
+
similar_pairs = similar_pairs[similar_pairs[:, 0] < similar_pairs[:, 1]]
|
289 |
+
|
290 |
+
# Simulate wealth transfer between matched pairs
|
291 |
+
for pair in similar_pairs:
|
292 |
+
consumer_a, consumer_b = pair
|
293 |
+
|
294 |
+
# Get wealth data for the pair
|
295 |
+
wealth_a = wealth_data[consumer_a]
|
296 |
+
wealth_b = wealth_data[consumer_b]
|
297 |
+
|
298 |
+
# Train the network to transfer wealth between matched consumers
|
299 |
+
for epoch in range(100):
|
300 |
+
optimizer.zero_grad()
|
301 |
+
transferred_wealth_a = net(wealth_a)
|
302 |
+
transferred_wealth_b = net(wealth_b)
|
303 |
+
|
304 |
+
# Simulate bidirectional transfer: A to B and B to A
|
305 |
+
loss_a_to_b = criterion(transferred_wealth_a, wealth_b)
|
306 |
+
loss_b_to_a = criterion(transferred_wealth_b, wealth_a)
|
307 |
+
total_loss = loss_a_to_b + loss_b_to_a
|
308 |
+
|
309 |
+
total_loss.backward()
|
310 |
+
optimizer.step()
|
311 |
+
|
312 |
+
# Display the similarity matrix and transfer results
|
313 |
+
print("Cosine Similarity Matrix (Interest-based Matching):\n", similarity_matrix)
|
314 |
+
|
315 |
+
# Plotting the interest similarity matrix for visualization
|
316 |
+
plt.figure(figsize=(8, 6))
|
317 |
+
plt.imshow(similarity_matrix, cmap='hot', interpolation='nearest')
|
318 |
+
plt.colorbar(label='Cosine Similarity')
|
319 |
+
plt.title("FortuneArch")
|
320 |
+
plt.show()
|
321 |
+
|
322 |
+
import torch
|
323 |
+
import torch.nn as nn
|
324 |
+
import torch.optim as optim
|
325 |
+
import time
|
326 |
+
import numpy as np
|
327 |
+
|
328 |
+
# Define the number of mobile receivers
|
329 |
+
num_receivers = 5
|
330 |
+
|
331 |
+
# Define the size of the data packets
|
332 |
+
data_packet_size = 256
|
333 |
+
|
334 |
+
# Simulate high-speed data transmission by creating data packets
|
335 |
+
def generate_data_packet(size):
|
336 |
+
return torch.rand(size)
|
337 |
+
|
338 |
+
# Simulate a mobile receiver processing the data
|
339 |
+
class MobileReceiver(nn.Module):
|
340 |
+
def __init__(self):
|
341 |
+
super(MobileReceiver, self).__init__()
|
342 |
+
self.fc1 = nn.Linear(data_packet_size, data_packet_size)
|
343 |
+
|
344 |
+
def forward(self, data):
|
345 |
+
processed_data = torch.relu(self.fc1(data))
|
346 |
+
return processed_data
|
347 |
+
|
348 |
+
# Instantiate the mobile receivers
|
349 |
+
receivers = [MobileReceiver() for _ in range(num_receivers)]
|
350 |
+
|
351 |
+
# Define a function to simulate instantaneous transmission to all receivers
|
352 |
+
def transmit_data_to_receivers(data_packet, receivers):
|
353 |
+
received_data = []
|
354 |
+
|
355 |
+
# Start timing to simulate high-speed transmission
|
356 |
+
start_time = time.time()
|
357 |
+
|
358 |
+
# Transmit the data packet to each receiver
|
359 |
+
for receiver in receivers:
|
360 |
+
received_packet = receiver(data_packet)
|
361 |
+
received_data.append(received_packet)
|
362 |
+
|
363 |
+
# End timing
|
364 |
+
end_time = time.time()
|
365 |
+
|
366 |
+
transmission_time = end_time - start_time
|
367 |
+
print(f"Data transmitted to {num_receivers} receivers in {transmission_time:.10f} seconds")
|
368 |
+
|
369 |
+
return received_data
|
370 |
+
|
371 |
+
# Generate a random data packet
|
372 |
+
data_packet = generate_data_packet(data_packet_size)
|
373 |
+
|
374 |
+
# Simulate data transmission to the receivers
|
375 |
+
received_data = transmit_data_to_receivers(data_packet, receivers)
|
376 |
+
|
377 |
+
# Display results
|
378 |
+
print(f"Original Data Packet (Sample):\n {data_packet[:5]}")
|
379 |
+
print(f"Processed Data by Receiver 1 (Sample):\n {received_data[0][:5]}")
|
380 |
+
|
381 |
+
import torch
|
382 |
+
import torch.nn as nn
|
383 |
+
import torch.optim as optim
|
384 |
+
import numpy as np
|
385 |
+
import matplotlib.pyplot as plt
|
386 |
+
|
387 |
+
# Define the Bank Account class
|
388 |
+
class BankAccount:
|
389 |
+
def __init__(self, account_number, balance=0.0):
|
390 |
+
self.account_number = account_number
|
391 |
+
self.balance = balance
|
392 |
+
|
393 |
+
def deposit(self, amount):
|
394 |
+
self.balance += amount
|
395 |
+
|
396 |
+
def get_balance(self):
|
397 |
+
return self.balance
|
398 |
+
|
399 |
+
# Define a VPN layer for data encryption and passcode check
|
400 |
+
class VPNLayer:
|
401 |
+
def __init__(self, encryption_key):
|
402 |
+
self.encryption_key = encryption_key # Simulate encryption key
|
403 |
+
self.data_storage = {}
|
404 |
+
|
405 |
+
def encrypt_data(self, data):
|
406 |
+
# Simulate encryption by applying a non-linear transformation
|
407 |
+
encrypted_data = data * torch.sin(self.encryption_key)
|
408 |
+
return encrypted_data
|
409 |
+
|
410 |
+
def decrypt_data(self, encrypted_data, passcode):
|
411 |
+
# Check if passcode matches the encryption key (authentication)
|
412 |
+
if passcode == self.encryption_key:
|
413 |
+
decrypted_data = encrypted_data / torch.sin(self.encryption_key)
|
414 |
+
return decrypted_data
|
415 |
+
else:
|
416 |
+
raise ValueError("Invalid Passcode! Access Denied.")
|
417 |
+
|
418 |
+
def store_data(self, data, consumer_id):
|
419 |
+
encrypted_data = self.encrypt_data(data)
|
420 |
+
self.data_storage[consumer_id] = encrypted_data
|
421 |
+
|
422 |
+
def retrieve_data(self, consumer_id, passcode):
|
423 |
+
if consumer_id in self.data_storage:
|
424 |
+
return self.decrypt_data(self.data_storage[consumer_id], passcode)
|
425 |
+
else:
|
426 |
+
raise ValueError("Consumer ID not found!")
|
427 |
+
|
428 |
+
# Generate a wealth waveform
|
429 |
+
def generate_wealth_waveform(size, amplitude, frequency, phase):
|
430 |
+
t = torch.linspace(0, 2 * np.pi, size)
|
431 |
+
waveform = amplitude * torch.sin(frequency * t + phase)
|
432 |
+
return waveform
|
433 |
+
|
434 |
+
# Define the WealthTransferNet neural network
|
435 |
+
class WealthTransferNet(nn.Module):
|
436 |
+
def __init__(self):
|
437 |
+
super(WealthTransferNet, self).__init__()
|
438 |
+
self.fc1 = nn.Linear(1, 1) # Simple linear layer for wealth transfer
|
439 |
+
|
440 |
+
def forward(self, x):
|
441 |
+
return self.fc1(x)
|
442 |
+
|
443 |
+
# Function to simulate the wealth transfer process
|
444 |
+
def transfer_wealth(waveform, target_account):
|
445 |
+
# Ensure the waveform represents positive wealth for transfer
|
446 |
+
wealth_amount = torch.sum(waveform[waveform > 0]).item()
|
447 |
+
|
448 |
+
# Instantiate the wealth transfer network
|
449 |
+
net = WealthTransferNet()
|
450 |
+
|
451 |
+
# Create a tensor for the wealth amount
|
452 |
+
input_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
|
453 |
+
|
454 |
+
# Train the network (for demonstration, no real training here)
|
455 |
+
optimizer = optim.SGD(net.parameters(), lr=0.01)
|
456 |
+
criterion = nn.MSELoss()
|
457 |
+
|
458 |
+
# Dummy target for training (for simulation purpose)
|
459 |
+
target_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
|
460 |
+
|
461 |
+
# Simulate the transfer process
|
462 |
+
for epoch in range(100): # Simulating a few training epochs
|
463 |
+
optimizer.zero_grad()
|
464 |
+
output = net(input_data)
|
465 |
+
loss = criterion(output, target_data)
|
466 |
+
loss.backward()
|
467 |
+
optimizer.step()
|
468 |
+
|
469 |
+
# Transfer the wealth to the target account
|
470 |
+
target_account.deposit(wealth_amount)
|
471 |
+
|
472 |
+
return wealth_amount
|
473 |
+
|
474 |
+
# Define the InfraredSignal class to simulate signal transmission
|
475 |
+
class InfraredSignal:
|
476 |
+
def __init__(self, waveform):
|
477 |
+
self.waveform = waveform
|
478 |
+
|
479 |
+
def transmit(self):
|
480 |
+
# Simulate transmission through space (in this case, just return the waveform)
|
481 |
+
print("Transmitting infrared signal...")
|
482 |
+
return self.waveform
|
483 |
+
|
484 |
+
# Define a receiver to detect infrared signals
|
485 |
+
class SignalReceiver:
|
486 |
+
def __init__(self):
|
487 |
+
self.received_data = None
|
488 |
+
|
489 |
+
def receive(self, signal):
|
490 |
+
print("Receiving signal...")
|
491 |
+
self.received_data = signal
|
492 |
+
print("Signal received.")
|
493 |
+
|
494 |
+
def decode(self):
|
495 |
+
# For simplicity, return the received data directly
|
496 |
+
return self.received_data
|
497 |
+
|
498 |
+
# Parameters for the wealth waveform
|
499 |
+
waveform_size = 1000
|
500 |
+
amplitude = 1000.0
|
501 |
+
frequency = 2.0
|
502 |
+
phase = 0.0
|
503 |
+
|
504 |
+
# Generate a wealth waveform
|
505 |
+
wealth_waveform = generate_wealth_waveform(waveform_size, amplitude, frequency, phase)
|
506 |
+
|
507 |
+
# Create a target bank account
|
508 |
+
target_account = BankAccount(account_number="1234567890")
|
509 |
+
|
510 |
+
# Create a VPN layer
|
511 |
+
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
|
512 |
+
|
513 |
+
# Store consumer data (e.g., wealth waveform) in the VPN layer
|
514 |
+
consumer_id = "consumer_001"
|
515 |
+
vpn_layer.store_data(wealth_waveform, consumer_id)
|
516 |
+
|
517 |
+
# Attempt to retrieve data with the correct passcode
|
518 |
+
passcode = torch.tensor(0.5)
|
519 |
+
|
520 |
+
try:
|
521 |
+
retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode)
|
522 |
+
|
523 |
+
# Create an infrared signal to transmit the wealth waveform
|
524 |
+
infrared_signal = InfraredSignal(retrieved_waveform)
|
525 |
+
|
526 |
+
# Transmit the signal
|
527 |
+
transmitted_signal = infrared_signal.transmit()
|
528 |
+
|
529 |
+
# Create a receiver and receive the signal
|
530 |
+
signal_receiver = SignalReceiver()
|
531 |
+
signal_receiver.receive(transmitted_signal)
|
532 |
+
|
533 |
+
# Decode the received signal
|
534 |
+
decoded_waveform = signal_receiver.decode()
|
535 |
+
|
536 |
+
# Transfer wealth represented by the decoded waveform
|
537 |
+
transferred_amount = transfer_wealth(decoded_waveform, target_account)
|
538 |
+
|
539 |
+
# Display the results
|
540 |
+
print(f"Transferred Amount: ${transferred_amount:.2f}")
|
541 |
+
print(f"New Balance of Target Account: ${target_account.get_balance():.2f}")
|
542 |
+
|
543 |
+
# Plot the wealth waveform
|
544 |
+
plt.figure(figsize=(10, 5))
|
545 |
+
plt.plot(decoded_waveform.numpy(), label='Wealth Waveform')
|
546 |
+
plt.title("Wealth Waveform Representation")
|
547 |
+
plt.xlabel("Time")
|
548 |
+
plt.ylabel("Wealth Amount")
|
549 |
+
plt.legend()
|
550 |
+
plt.grid()
|
551 |
+
plt.show()
|
552 |
+
|
553 |
+
except ValueError as e:
|
554 |
+
print(e)
|
555 |
+
|
556 |
+
import torch
|
557 |
+
import torch.nn as nn
|
558 |
+
import torch.optim as optim
|
559 |
+
import numpy as np
|
560 |
+
import matplotlib.pyplot as plt
|
561 |
+
|
562 |
+
# Define the Bank Account class
|
563 |
+
class BankAccount:
|
564 |
+
def __init__(self, account_number, balance=0.0):
|
565 |
+
self.account_number = account_number
|
566 |
+
self.balance = balance
|
567 |
+
|
568 |
+
def deposit(self, amount):
|
569 |
+
self.balance += amount
|
570 |
+
|
571 |
+
def get_balance(self):
|
572 |
+
return self.balance
|
573 |
+
|
574 |
+
# Define a VPN layer for data encryption and passcode check
|
575 |
+
class VPNLayer:
|
576 |
+
def __init__(self, encryption_key):
|
577 |
+
self.encryption_key = encryption_key # Simulate encryption key
|
578 |
+
self.data_storage = {}
|
579 |
+
|
580 |
+
def encrypt_data(self, data):
|
581 |
+
# Simulate encryption by applying a non-linear transformation
|
582 |
+
encrypted_data = data * torch.sin(self.encryption_key)
|
583 |
+
return encrypted_data
|
584 |
+
|
585 |
+
def decrypt_data(self, encrypted_data, passcode):
|
586 |
+
# Check if passcode matches the encryption key (authentication)
|
587 |
+
if passcode == self.encryption_key:
|
588 |
+
decrypted_data = encrypted_data / torch.sin(self.encryption_key)
|
589 |
+
return decrypted_data
|
590 |
+
else:
|
591 |
+
raise ValueError("Invalid Passcode! Access Denied.")
|
592 |
+
|
593 |
+
def store_data(self, data, consumer_id):
|
594 |
+
encrypted_data = self.encrypt_data(data)
|
595 |
+
self.data_storage[consumer_id] = encrypted_data
|
596 |
+
|
597 |
+
def retrieve_data(self, consumer_id, passcode):
|
598 |
+
if consumer_id in self.data_storage:
|
599 |
+
return self.decrypt_data(self.data_storage[consumer_id], passcode)
|
600 |
+
else:
|
601 |
+
raise ValueError("Consumer ID not found!")
|
602 |
+
|
603 |
+
# Generate a wealth waveform
|
604 |
+
def generate_wealth_waveform(size, amplitude, frequency, phase):
|
605 |
+
t = torch.linspace(0, 2 * np.pi, size)
|
606 |
+
waveform = amplitude * torch.sin(frequency * t + phase)
|
607 |
+
return waveform
|
608 |
+
|
609 |
+
# Define the WealthTransferNet neural network
|
610 |
+
class WealthTransferNet(nn.Module):
|
611 |
+
def __init__(self):
|
612 |
+
super(WealthTransferNet, self).__init__()
|
613 |
+
self.fc1 = nn.Linear(1, 1) # Simple linear layer for wealth transfer
|
614 |
+
|
615 |
+
def forward(self, x):
|
616 |
+
return self.fc1(x)
|
617 |
+
|
618 |
+
# Function to simulate the wealth transfer process
|
619 |
+
def transfer_wealth(waveform, target_account):
|
620 |
+
# Ensure the waveform represents positive wealth for transfer
|
621 |
+
wealth_amount = torch.sum(waveform[waveform > 0]).item()
|
622 |
+
|
623 |
+
# Instantiate the wealth transfer network
|
624 |
+
net = WealthTransferNet()
|
625 |
+
|
626 |
+
# Create a tensor for the wealth amount
|
627 |
+
input_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
|
628 |
+
|
629 |
+
# Train the network (for demonstration, no real training here)
|
630 |
+
optimizer = optim.SGD(net.parameters(), lr=0.01)
|
631 |
+
criterion = nn.MSELoss()
|
632 |
+
|
633 |
+
# Dummy target for training (for simulation purpose)
|
634 |
+
target_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
|
635 |
+
|
636 |
+
# Simulate the transfer process
|
637 |
+
for epoch in range(100): # Simulating a few training epochs
|
638 |
+
optimizer.zero_grad()
|
639 |
+
output = net(input_data)
|
640 |
+
loss = criterion(output, target_data)
|
641 |
+
loss.backward()
|
642 |
+
optimizer.step()
|
643 |
+
|
644 |
+
# Transfer the wealth to the target account
|
645 |
+
target_account.deposit(wealth_amount)
|
646 |
+
|
647 |
+
return wealth_amount
|
648 |
+
|
649 |
+
# Define the InfraredSignal class to simulate signal transmission
|
650 |
+
class InfraredSignal:
|
651 |
+
def __init__(self, waveform):
|
652 |
+
self.waveform = waveform
|
653 |
+
|
654 |
+
def transmit(self):
|
655 |
+
# Simulate transmission through space (in this case, just return the waveform)
|
656 |
+
print("Transmitting infrared signal...")
|
657 |
+
return self.waveform
|
658 |
+
|
659 |
+
# Define a receiver to detect infrared signals
|
660 |
+
class SignalReceiver:
|
661 |
+
def __init__(self):
|
662 |
+
self.received_data = None
|
663 |
+
|
664 |
+
def receive(self, signal):
|
665 |
+
print("Receiving signal...")
|
666 |
+
self.received_data = signal
|
667 |
+
print("Signal received.")
|
668 |
+
|
669 |
+
def decode(self):
|
670 |
+
# For simplicity, return the received data directly
|
671 |
+
return self.received_data
|
672 |
+
|
673 |
+
# Parameters for the wealth waveform
|
674 |
+
waveform_size = 1000
|
675 |
+
amplitude = 1000.0
|
676 |
+
frequency = 2.0
|
677 |
+
phase = 0.0
|
678 |
+
|
679 |
+
# Generate a wealth waveform
|
680 |
+
wealth_waveform = generate_wealth_waveform(waveform_size, amplitude, frequency, phase)
|
681 |
+
|
682 |
+
# Create a target bank account
|
683 |
+
target_account = BankAccount(account_number="1234567890")
|
684 |
+
|
685 |
+
# Create a VPN layer
|
686 |
+
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
|
687 |
+
|
688 |
+
# Store consumer data (e.g., wealth waveform) in the VPN layer
|
689 |
+
consumer_id = "consumer_001"
|
690 |
+
vpn_layer.store_data(wealth_waveform, consumer_id)
|
691 |
+
|
692 |
+
# Attempt to retrieve data with the correct passcode
|
693 |
+
passcode = torch.tensor(0.5)
|
694 |
+
|
695 |
+
try:
|
696 |
+
retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode)
|
697 |
+
|
698 |
+
# Create an infrared signal to transmit the wealth waveform
|
699 |
+
infrared_signal = InfraredSignal(retrieved_waveform)
|
700 |
+
|
701 |
+
# Transmit the signal
|
702 |
+
transmitted_signal = infrared_signal.transmit()
|
703 |
+
|
704 |
+
# Create a receiver and receive the signal
|
705 |
+
signal_receiver = SignalReceiver()
|
706 |
+
signal_receiver.receive(transmitted_signal)
|
707 |
+
|
708 |
+
# Decode the received signal
|
709 |
+
decoded_waveform = signal_receiver.decode()
|
710 |
+
|
711 |
+
# Transfer wealth represented by the decoded waveform
|
712 |
+
transferred_amount = transfer_wealth(decoded_waveform, target_account)
|
713 |
+
|
714 |
+
# Display the results
|
715 |
+
print(f"Transferred Amount: ${transferred_amount:.2f}")
|
716 |
+
print(f"New Balance of Target Account: ${target_account.get_balance():.2f}")
|
717 |
+
|
718 |
+
# Plot the wealth waveform
|
719 |
+
plt.figure(figsize=(10, 5))
|
720 |
+
plt.plot(decoded_waveform.numpy(), label='Wealth Waveform', color='blue')
|
721 |
+
plt.title("Wealth Waveform Representation")
|
722 |
+
plt.xlabel("Sample Number")
|
723 |
+
plt.ylabel("Wealth Amount")
|
724 |
+
plt.legend()
|
725 |
+
plt.grid()
|
726 |
+
plt.show()
|
727 |
+
|
728 |
+
except ValueError as e:
|
729 |
+
print(e)
|
730 |
+
|
731 |
+
import torch
|
732 |
+
import torch.nn as nn
|
733 |
+
import torch.optim as optim
|
734 |
+
import numpy as np
|
735 |
+
import matplotlib.pyplot as plt
|
736 |
+
|
737 |
+
# Define the Bank Account class
|
738 |
+
class BankAccount:
|
739 |
+
def __init__(self, account_number, balance=0.0):
|
740 |
+
self.account_number = account_number
|
741 |
+
self.balance = balance
|
742 |
+
|
743 |
+
def deposit(self, amount):
|
744 |
+
self.balance += amount
|
745 |
+
|
746 |
+
def get_balance(self):
|
747 |
+
return self.balance
|
748 |
+
|
749 |
+
# Define a VPN layer for data encryption and passcode check
|
750 |
+
class VPNLayer:
|
751 |
+
def __init__(self, encryption_key):
|
752 |
+
self.encryption_key = encryption_key # Simulate encryption key
|
753 |
+
self.data_storage = {}
|
754 |
+
|
755 |
+
def encrypt_data(self, data):
|
756 |
+
# Simulate encryption by applying a non-linear transformation
|
757 |
+
encrypted_data = data * torch.sin(self.encryption_key)
|
758 |
+
return encrypted_data
|
759 |
+
|
760 |
+
def decrypt_data(self, encrypted_data, passcode):
|
761 |
+
# Check if passcode matches the encryption key (authentication)
|
762 |
+
if passcode == self.encryption_key:
|
763 |
+
decrypted_data = encrypted_data / torch.sin(self.encryption_key)
|
764 |
+
return decrypted_data
|
765 |
+
else:
|
766 |
+
raise ValueError("Invalid Passcode! Access Denied.")
|
767 |
+
|
768 |
+
def store_data(self, data, consumer_id):
|
769 |
+
encrypted_data = self.encrypt_data(data)
|
770 |
+
self.data_storage[consumer_id] = encrypted_data
|
771 |
+
|
772 |
+
def retrieve_data(self, consumer_id, passcode):
|
773 |
+
if consumer_id in self.data_storage:
|
774 |
+
return self.decrypt_data(self.data_storage[consumer_id], passcode)
|
775 |
+
else:
|
776 |
+
raise ValueError("Consumer ID not found!")
|
777 |
+
|
778 |
+
# Generate a wealth waveform with a random amplitude
|
779 |
+
def generate_wealth_waveform(size, frequency, phase):
|
780 |
+
random_amplitude = torch.rand(1).item() * 1000 # Random amplitude between 0 and 1000
|
781 |
+
t = torch.linspace(0, 2 * np.pi, size)
|
782 |
+
waveform = random_amplitude * torch.sin(frequency * t + phase)
|
783 |
+
return waveform, random_amplitude
|
784 |
+
|
785 |
+
# Define the WealthTransferNet neural network
|
786 |
+
class WealthTransferNet(nn.Module):
|
787 |
+
def __init__(self):
|
788 |
+
super(WealthTransferNet, self).__init__()
|
789 |
+
self.fc1 = nn.Linear(1, 1) # Simple linear layer for wealth transfer
|
790 |
+
|
791 |
+
def forward(self, x):
|
792 |
+
return self.fc1(x)
|
793 |
+
|
794 |
+
# Function to simulate the wealth transfer process
|
795 |
+
def transfer_wealth(waveform, target_account):
|
796 |
+
# Ensure the waveform represents positive wealth for transfer
|
797 |
+
wealth_amount = torch.sum(waveform[waveform > 0]).item()
|
798 |
+
|
799 |
+
# Instantiate the wealth transfer network
|
800 |
+
net = WealthTransferNet()
|
801 |
+
|
802 |
+
# Create a tensor for the wealth amount
|
803 |
+
input_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
|
804 |
+
|
805 |
+
# Train the network (for demonstration, no real training here)
|
806 |
+
optimizer = optim.SGD(net.parameters(), lr=0.01)
|
807 |
+
criterion = nn.MSELoss()
|
808 |
+
|
809 |
+
# Dummy target for training (for simulation purpose)
|
810 |
+
target_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
|
811 |
+
|
812 |
+
# Simulate the transfer process
|
813 |
+
for epoch in range(100): # Simulating a few training epochs
|
814 |
+
optimizer.zero_grad()
|
815 |
+
output = net(input_data)
|
816 |
+
loss = criterion(output, target_data)
|
817 |
+
loss.backward()
|
818 |
+
optimizer.step()
|
819 |
+
|
820 |
+
# Transfer the wealth to the target account
|
821 |
+
target_account.deposit(wealth_amount)
|
822 |
+
|
823 |
+
return wealth_amount
|
824 |
+
|
825 |
+
# Define the InfraredSignal class to simulate signal transmission
|
826 |
+
class InfraredSignal:
|
827 |
+
def __init__(self, waveform):
|
828 |
+
self.waveform = waveform
|
829 |
+
|
830 |
+
def transmit(self):
|
831 |
+
# Simulate transmission through space (in this case, just return the waveform)
|
832 |
+
print("Transmitting infrared signal...")
|
833 |
+
return self.waveform
|
834 |
+
|
835 |
+
# Define a receiver to detect infrared signals
|
836 |
+
class SignalReceiver:
|
837 |
+
def __init__(self):
|
838 |
+
self.received_data = None
|
839 |
+
|
840 |
+
def receive(self, signal):
|
841 |
+
print("Receiving signal...")
|
842 |
+
self.received_data = signal
|
843 |
+
print("Signal received.")
|
844 |
+
|
845 |
+
def decode(self):
|
846 |
+
# For simplicity, return the received data directly
|
847 |
+
return self.received_data
|
848 |
+
|
849 |
+
# Parameters for the wealth waveform
|
850 |
+
waveform_size = 1000
|
851 |
+
frequency = 2.0
|
852 |
+
phase = 0.0
|
853 |
+
|
854 |
+
# Generate a wealth waveform with random amplitude
|
855 |
+
wealth_waveform, randomized_amplitude = generate_wealth_waveform(waveform_size, frequency, phase)
|
856 |
+
|
857 |
+
# Create a target bank account
|
858 |
+
target_account = BankAccount(account_number="1234567890")
|
859 |
+
|
860 |
+
# Create a VPN layer
|
861 |
+
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
|
862 |
+
|
863 |
+
# Store consumer data (e.g., wealth waveform) in the VPN layer
|
864 |
+
consumer_id = "consumer_001"
|
865 |
+
vpn_layer.store_data(wealth_waveform, consumer_id)
|
866 |
+
|
867 |
+
# Attempt to retrieve data with the correct passcode
|
868 |
+
passcode = torch.tensor(0.5)
|
869 |
+
|
870 |
+
try:
|
871 |
+
retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode)
|
872 |
+
|
873 |
+
# Create an infrared signal to transmit the wealth waveform
|
874 |
+
infrared_signal = InfraredSignal(retrieved_waveform)
|
875 |
+
|
876 |
+
# Transmit the signal
|
877 |
+
transmitted_signal = infrared_signal.transmit()
|
878 |
+
|
879 |
+
# Create a receiver and receive the signal
|
880 |
+
signal_receiver = SignalReceiver()
|
881 |
+
signal_receiver.receive(transmitted_signal)
|
882 |
+
|
883 |
+
# Decode the received signal
|
884 |
+
decoded_waveform = signal_receiver.decode()
|
885 |
+
|
886 |
+
# Transfer wealth represented by the decoded waveform
|
887 |
+
transferred_amount = transfer_wealth(decoded_waveform, target_account)
|
888 |
+
|
889 |
+
# Display the results
|
890 |
+
print(f"Transferred Amount: ${transferred_amount:.2f}")
|
891 |
+
print(f"New Balance of Target Account: ${target_account.get_balance():.2f}")
|
892 |
+
print(f"Randomized Amplitude: ${randomized_amplitude:.2f}")
|
893 |
+
|
894 |
+
# Plot the wealth waveform
|
895 |
+
plt.figure(figsize=(10, 5))
|
896 |
+
plt.plot(decoded_waveform.numpy(), label='Wealth Waveform', color='blue')
|
897 |
+
plt.title("Wealth Waveform Representation")
|
898 |
+
plt.xlabel("Number")
|
899 |
+
plt.ylabel("Amount")
|
900 |
+
plt.legend()
|
901 |
+
plt.grid()
|
902 |
+
plt.show()
|
903 |
+
|
904 |
+
except ValueError as e:
|
905 |
+
print(e)
|
906 |
+
|
907 |
+
import torch
|
908 |
+
import torch.nn as nn
|
909 |
+
import torch.optim as optim
|
910 |
+
import numpy as np
|
911 |
+
import matplotlib.pyplot as plt
|
912 |
+
import hashlib
|
913 |
+
|
914 |
+
# Define the Bank Account class
|
915 |
+
class BankAccount:
|
916 |
+
def __init__(self, account_number, balance=0.0):
|
917 |
+
self.account_number = account_number
|
918 |
+
self.balance = balance
|
919 |
+
|
920 |
+
def deposit(self, amount):
|
921 |
+
self.balance += amount
|
922 |
+
|
923 |
+
def get_balance(self):
|
924 |
+
return self.balance
|
925 |
+
|
926 |
+
# Define a VPN layer for data encryption and passcode check
|
927 |
+
class VPNLayer:
|
928 |
+
def __init__(self, encryption_key):
|
929 |
+
self.encryption_key = encryption_key # Simulate encryption key
|
930 |
+
self.data_storage = {}
|
931 |
+
self.hash_storage = {}
|
932 |
+
|
933 |
+
def encrypt_data(self, data):
|
934 |
+
# Simulate encryption by applying a non-linear transformation
|
935 |
+
encrypted_data = data * torch.sin(self.encryption_key)
|
936 |
+
return encrypted_data
|
937 |
+
|
938 |
+
def decrypt_data(self, encrypted_data, passcode):
|
939 |
+
# Check if passcode matches the encryption key (authentication)
|
940 |
+
if passcode == self.encryption_key:
|
941 |
+
decrypted_data = encrypted_data / torch.sin(self.encryption_key)
|
942 |
+
return decrypted_data
|
943 |
+
else:
|
944 |
+
raise ValueError("Invalid Passcode! Access Denied.")
|
945 |
+
|
946 |
+
def store_data(self, data, consumer_id):
|
947 |
+
encrypted_data = self.encrypt_data(data)
|
948 |
+
# Store the encrypted data
|
949 |
+
self.data_storage[consumer_id] = encrypted_data
|
950 |
+
|
951 |
+
# Store a hash of the data for integrity check
|
952 |
+
data_hash = hashlib.sha256(data.numpy()).hexdigest()
|
953 |
+
self.hash_storage[consumer_id] = data_hash
|
954 |
+
|
955 |
+
def retrieve_data(self, consumer_id, passcode):
|
956 |
+
if consumer_id in self.data_storage:
|
957 |
+
encrypted_data = self.data_storage[consumer_id]
|
958 |
+
decrypted_data = self.decrypt_data(encrypted_data, passcode)
|
959 |
+
# Verify data integrity
|
960 |
+
original_hash = self.hash_storage[consumer_id]
|
961 |
+
current_hash = hashlib.sha256(decrypted_data.numpy()).hexdigest()
|
962 |
+
if original_hash == current_hash:
|
963 |
+
return decrypted_data
|
964 |
+
else:
|
965 |
+
raise ValueError("Data integrity compromised!")
|
966 |
+
else:
|
967 |
+
raise ValueError("Consumer ID not found!")
|
968 |
+
|
969 |
+
# Generate a wealth waveform with a random amplitude
|
970 |
+
def generate_wealth_waveform(size, frequency, phase):
|
971 |
+
random_amplitude = torch.rand(1).item() * 1000 # Random amplitude between 0 and 1000
|
972 |
+
t = torch.linspace(0, 2 * np.pi, size)
|
973 |
+
waveform = random_amplitude * torch.sin(frequency * t + phase)
|
974 |
+
return waveform, random_amplitude
|
975 |
+
|
976 |
+
# Define the WealthTransferNet neural network
|
977 |
+
class WealthTransferNet(nn.Module):
|
978 |
+
def __init__(self):
|
979 |
+
super(WealthTransferNet, self).__init__()
|
980 |
+
self.fc1 = nn.Linear(1, 1) # Simple linear layer for wealth transfer
|
981 |
+
|
982 |
+
def forward(self, x):
|
983 |
+
return self.fc1(x)
|
984 |
+
|
985 |
+
# Function to simulate the wealth transfer process
|
986 |
+
def transfer_wealth(waveform, target_account):
|
987 |
+
# Ensure the waveform represents positive wealth for transfer
|
988 |
+
wealth_amount = torch.sum(waveform[waveform > 0]).item()
|
989 |
+
|
990 |
+
# Instantiate the wealth transfer network
|
991 |
+
net = WealthTransferNet()
|
992 |
+
|
993 |
+
# Create a tensor for the wealth amount
|
994 |
+
input_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
|
995 |
+
|
996 |
+
# Train the network (for demonstration, no real training here)
|
997 |
+
optimizer = optim.SGD(net.parameters(), lr=0.01)
|
998 |
+
criterion = nn.MSELoss()
|
999 |
+
|
1000 |
+
# Dummy target for training (for simulation purpose)
|
1001 |
+
target_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
|
1002 |
+
|
1003 |
+
# Simulate the transfer process
|
1004 |
+
for epoch in range(100): # Simulating a few training epochs
|
1005 |
+
optimizer.zero_grad()
|
1006 |
+
output = net(input_data)
|
1007 |
+
loss = criterion(output, target_data)
|
1008 |
+
loss.backward()
|
1009 |
+
optimizer.step()
|
1010 |
+
|
1011 |
+
# Transfer the wealth to the target account
|
1012 |
+
target_account.deposit(wealth_amount)
|
1013 |
+
|
1014 |
+
return wealth_amount
|
1015 |
+
|
1016 |
+
# Define the InfraredSignal class to simulate signal transmission
|
1017 |
+
class InfraredSignal:
|
1018 |
+
def __init__(self, waveform):
|
1019 |
+
self.waveform = waveform
|
1020 |
+
|
1021 |
+
def transmit(self):
|
1022 |
+
# Simulate transmission through space (in this case, just return the waveform)
|
1023 |
+
print("Transmitting infrared signal...")
|
1024 |
+
return self.waveform
|
1025 |
+
|
1026 |
+
# Define a receiver to detect infrared signals
|
1027 |
+
class SignalReceiver:
|
1028 |
+
def __init__(self):
|
1029 |
+
self.received_data = None
|
1030 |
+
|
1031 |
+
def receive(self, signal):
|
1032 |
+
print("Receiving signal...")
|
1033 |
+
self.received_data = signal
|
1034 |
+
print("Signal received.")
|
1035 |
+
|
1036 |
+
def decode(self):
|
1037 |
+
# For simplicity, return the received data directly
|
1038 |
+
return self.received_data
|
1039 |
+
|
1040 |
+
# Parameters for the wealth waveform
|
1041 |
+
waveform_size = 1000
|
1042 |
+
frequency = 2.0
|
1043 |
+
phase = 0.0
|
1044 |
+
|
1045 |
+
# Generate a wealth waveform with random amplitude
|
1046 |
+
wealth_waveform, randomized_amplitude = generate_wealth_waveform(waveform_size, frequency, phase)
|
1047 |
+
|
1048 |
+
# Create a target bank account
|
1049 |
+
target_account = BankAccount(account_number="1234567890")
|
1050 |
+
|
1051 |
+
# Create a VPN layer
|
1052 |
+
vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
|
1053 |
+
|
1054 |
+
# Store consumer data (e.g., wealth waveform) in the VPN layer
|
1055 |
+
consumer_id = "consumer_001"
|
1056 |
+
vpn_layer.store_data(wealth_waveform, consumer_id)
|
1057 |
+
|
1058 |
+
# Attempt to retrieve data with the correct passcode
|
1059 |
+
passcode = torch.tensor(0.5)
|
1060 |
+
|
1061 |
+
try:
|
1062 |
+
retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode)
|
1063 |
+
|
1064 |
+
# Create an infrared signal to transmit the wealth waveform
|
1065 |
+
infrared_signal = InfraredSignal(retrieved_waveform)
|
1066 |
+
|
1067 |
+
# Transmit the signal
|
1068 |
+
transmitted_signal = infrared_signal.transmit()
|
1069 |
+
|
1070 |
+
# Create a receiver and receive the signal
|
1071 |
+
signal_receiver = SignalReceiver()
|
1072 |
+
signal_receiver.receive(transmitted_signal)
|
1073 |
+
|
1074 |
+
# Decode the received signal
|
1075 |
+
decoded_waveform = signal_receiver.decode()
|
1076 |
+
|
1077 |
+
# Transfer wealth represented by the decoded waveform
|
1078 |
+
transferred_amount = transfer_wealth(decoded_waveform, target_account)
|
1079 |
+
|
1080 |
+
# Display the results
|
1081 |
+
print(f"Transferred Amount: ${transferred_amount:.2f}")
|
1082 |
+
print(f"New Balance of Target Account: ${target_account.get_balance():.2f}")
|
1083 |
+
print(f"Randomized Amplitude: ${randomized_amplitude:.2f}")
|
1084 |
+
|
1085 |
+
# Plot the wealth waveform
|
1086 |
+
plt.figure(figsize=(10, 5))
|
1087 |
+
plt.plot(decoded_waveform.numpy(), label='Wealth Waveform', color='blue')
|
1088 |
+
plt.title("Wealth Waveform Representation")
|
1089 |
+
plt.xlabel("Sample Number")
|
1090 |
+
plt.ylabel("Wealth Amount")
|
1091 |
+
plt.legend()
|
1092 |
+
plt.grid()
|
1093 |
+
plt.show()
|
1094 |
+
|
1095 |
+
except ValueError as e:
|
1096 |
+
print(e)
|