antitheft159 commited on
Commit
91fd485
·
verified ·
1 Parent(s): 0f63fe0

Upload wealthfortress.py

Browse files
Files changed (1) hide show
  1. wealthfortress.py +1096 -0
wealthfortress.py ADDED
@@ -0,0 +1,1096 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """WealthFortress
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1rOSJ2jfGMkC1yn8yzGd3KcsWH0s8Qz6f
8
+ """
9
+
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.optim as optim
13
+ import numpy as np
14
+ import matplotlib.pyplot as plt
15
+ from sklearn.metrics.pairwise import cosine_similarity
16
+
17
+ num_consumers = 10
18
+ interest_size = 5
19
+ wealth_size = 1
20
+ feature_size = interest_size + wealth_size
21
+
22
+ consumer_profiles = torch.rand((num_consumers, feature_size))
23
+
24
+ interests = consumer_profiles[:, :interest_size]
25
+ wealth_data = consumer_profiles[:, interest_size:]
26
+
27
+ class WealthTransferNet(nn.Module):
28
+ def __init__(self):
29
+ super(WealthTransferNet, self).__init__()
30
+ self.fc1 = nn.Linear(wealth_size, wealth_size)
31
+
32
+ # The forward function is now correctly defined as a method of the class
33
+ def forward(self, x):
34
+ return self.fc1(x)
35
+
36
+ net = WealthTransferNet()
37
+ criterion = nn.MSELoss()
38
+ optimizer = optim.Adam(net.parameters(), lr=0.01)
39
+
40
+ # Calculate cosine similarity between consumer interests
41
+ similarity_matrix = cosine_similarity(interests)
42
+
43
+ # Find pairs of consumers with similarity above a certain threshold
44
+ threshold = 0.8
45
+ similar_pairs = np.argwhere(similarity_matrix > threshold)
46
+
47
+ # We will only consider upper triangular values to avoid double matching or self-matching
48
+ similar_pairs = similar_pairs[similar_pairs[:, 0] < similar_pairs[:, 1]]
49
+
50
+ # Simulate wealth transfer between matched pairs
51
+ for pair in similar_pairs:
52
+ consumer_a, consumer_b = pair
53
+
54
+ # Get wealth data for the pair
55
+ wealth_a = wealth_data[consumer_a]
56
+ wealth_b = wealth_data[consumer_b]
57
+
58
+ # Train the network to transfer wealth between matched consumers
59
+ for epoch in range(100):
60
+ optimizer.zero_grad()
61
+ transferred_wealth_a = net(wealth_a)
62
+ transferred_wealth_b = net(wealth_b)
63
+
64
+ # Simulate bidirectional transfer: A to B and B to A
65
+ loss_a_to_b = criterion(transferred_wealth_a, wealth_b)
66
+ loss_b_to_a = criterion(transferred_wealth_b, wealth_a)
67
+ total_loss = loss_a_to_b + loss_b_to_a
68
+
69
+ total_loss.backward()
70
+ optimizer.step()
71
+
72
+ # Display the similarity matrix and transfer results
73
+ print("Cosine Similarity Matrix (Interest-based Matching):\n", similarity_matrix)
74
+
75
+ # Plotting the interest similarity matrix for visualization
76
+ plt.figure(figsize=(8, 6))
77
+ plt.imshow(similarity_matrix, cmap='hot', interpolation='nearest')
78
+ plt.colorbar(label='Cosine Similarity')
79
+ plt.title("Interest Similarity Matrix")
80
+ plt.show()
81
+
82
+ import torch
83
+ import torch.nn as nn
84
+ import torch.optim as optim
85
+ import numpy as np
86
+ import matplotlib.pyplot as plt
87
+ from sklearn.metrics.pairwise import cosine_similarity
88
+
89
+ # Define the number of consumers and feature size (interests + wealth)
90
+ num_consumers = 10
91
+ interest_size = 5 # Number of interests
92
+ wealth_size = 1 # Each consumer has one wealth data point
93
+ feature_size = interest_size + wealth_size # Total feature size
94
+
95
+ # Generate random consumer profiles (interest + wealth)
96
+ consumer_profiles = torch.rand((num_consumers, feature_size))
97
+
98
+ # Split into interests and wealth data
99
+ interests = consumer_profiles[:, :interest_size]
100
+ wealth_data = consumer_profiles[:, interest_size:]
101
+
102
+ # Define a neural network to transfer wealth between consumers
103
+ class WealthTransferNet(nn.Module):
104
+ def __init__(self):
105
+ super(WealthTransferNet, self).__init__()
106
+ self.fc1 = nn.Linear(wealth_size, wealth_size)
107
+
108
+ def forward(self, x):
109
+ return self.fc1(x)
110
+
111
+ # Define a VPN-like layer for data encryption and passcode check
112
+ class VPNLayer(nn.Module):
113
+ def __init__(self, encryption_key):
114
+ super(VPNLayer, self).__init__()
115
+ self.encryption_key = encryption_key # Simulate encryption key
116
+
117
+ def encrypt_data(self, data):
118
+ # Simulate encryption by applying a non-linear transformation
119
+ encrypted_data = data * torch.sin(self.encryption_key)
120
+ return encrypted_data
121
+
122
+ def decrypt_data(self, encrypted_data, passcode):
123
+ # Check if passcode matches the encryption key (this is our 'authentication')
124
+ if passcode == self.encryption_key:
125
+ decrypted_data = encrypted_data / torch.sin(self.encryption_key)
126
+ return decrypted_data
127
+ else:
128
+ raise ValueError("Invalid Passcode! Access Denied.")
129
+
130
+ # Instantiate the VPN layer
131
+ vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
132
+
133
+ # Encrypt consumer profiles (interest + wealth data) using the VPN layer
134
+ encrypted_consumer_profiles = vpn_layer.encrypt_data(consumer_profiles)
135
+
136
+ # Passcode required to access data (for simplicity, using the same as the encryption key)
137
+ passcode = torch.tensor(0.5)
138
+
139
+ # Try to access the encrypted data with the correct passcode
140
+ try:
141
+ decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, passcode)
142
+ print("Access Granted. Decrypted Consumer Data:")
143
+ print(decrypted_profiles)
144
+ except ValueError as e:
145
+ print(e)
146
+
147
+ # Simulate incorrect passcode
148
+ wrong_passcode = torch.tensor(0.3)
149
+
150
+ try:
151
+ decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, wrong_passcode)
152
+ except ValueError as e:
153
+ print(e)
154
+
155
+ # Instantiate the wealth transfer network
156
+ net = WealthTransferNet()
157
+ criterion = nn.MSELoss()
158
+ optimizer = optim.Adam(net.parameters(), lr=0.01)
159
+
160
+ # Calculate cosine similarity between consumer interests
161
+ similarity_matrix = cosine_similarity(interests)
162
+
163
+ # Find pairs of consumers with similarity above a certain threshold
164
+ threshold = 0.8
165
+ similar_pairs = np.argwhere(similarity_matrix > threshold)
166
+
167
+ # We will only consider upper triangular values to avoid double matching or self-matching
168
+ similar_pairs = similar_pairs[similar_pairs[:, 0] < similar_pairs[:, 1]]
169
+
170
+ # Simulate wealth transfer between matched pairs
171
+ for pair in similar_pairs:
172
+ consumer_a, consumer_b = pair
173
+
174
+ # Get wealth data for the pair
175
+ wealth_a = wealth_data[consumer_a]
176
+ wealth_b = wealth_data[consumer_b]
177
+
178
+ # Train the network to transfer wealth between matched consumers
179
+ for epoch in range(100):
180
+ optimizer.zero_grad()
181
+ transferred_wealth_a = net(wealth_a)
182
+ transferred_wealth_b = net(wealth_b)
183
+
184
+ # Simulate bidirectional transfer: A to B and B to A
185
+ loss_a_to_b = criterion(transferred_wealth_a, wealth_b)
186
+ loss_b_to_a = criterion(transferred_wealth_b, wealth_a)
187
+ total_loss = loss_a_to_b + loss_b_to_a
188
+
189
+ total_loss.backward()
190
+ optimizer.step()
191
+
192
+ # Display the similarity matrix and transfer results
193
+ print("Cosine Similarity Matrix (Interest-based Matching):\n", similarity_matrix)
194
+
195
+ # Plotting the interest similarity matrix for visualization
196
+ plt.figure(figsize=(8, 6))
197
+ plt.imshow(similarity_matrix, cmap='hot', interpolation='nearest')
198
+ plt.colorbar(label='Cosine Similarity')
199
+ plt.title("Interest Similarity Matrix")
200
+ plt.show()
201
+
202
+ import torch
203
+ import torch.nn as nn
204
+ import torch.optim as optim
205
+ import numpy as np
206
+ import matplotlib.pyplot as plt
207
+ from sklearn.metrics.pairwise import cosine_similarity
208
+
209
+ # Define the number of consumers and feature size (interests + wealth)
210
+ num_consumers = 10
211
+ interest_size = 5 # Number of interests
212
+ wealth_size = 1 # Each consumer has one wealth data point
213
+ feature_size = interest_size + wealth_size # Total feature size
214
+
215
+ # Generate random consumer profiles (interest + wealth)
216
+ consumer_profiles = torch.rand((num_consumers, feature_size))
217
+
218
+ # Split into interests and wealth data
219
+ interests = consumer_profiles[:, :interest_size]
220
+ wealth_data = consumer_profiles[:, interest_size:]
221
+
222
+ # Define a neural network to transfer wealth between consumers
223
+ class WealthTransferNet(nn.Module):
224
+ def __init__(self):
225
+ super(WealthTransferNet, self).__init__()
226
+ self.fc1 = nn.Linear(wealth_size, wealth_size)
227
+
228
+ def forward(self, x):
229
+ return self.fc1(x)
230
+
231
+ # Define a VPN-like layer for data encryption and passcode check
232
+ class VPNLayer(nn.Module):
233
+ def __init__(self, encryption_key):
234
+ super(VPNLayer, self).__init__()
235
+ self.encryption_key = encryption_key # Simulate encryption key
236
+
237
+ def encrypt_data(self, data):
238
+ # Simulate encryption by applying a non-linear transformation
239
+ encrypted_data = data * torch.sin(self.encryption_key)
240
+ return encrypted_data
241
+
242
+ def decrypt_data(self, encrypted_data, passcode):
243
+ # Check if passcode matches the encryption key (this is our 'authentication')
244
+ if passcode == self.encryption_key:
245
+ decrypted_data = encrypted_data / torch.sin(self.encryption_key)
246
+ return decrypted_data
247
+ else:
248
+ raise ValueError("Invalid Passcode! Access Denied.")
249
+
250
+ # Instantiate the VPN layer
251
+ vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
252
+
253
+ # Encrypt consumer profiles (interest + wealth data) using the VPN layer
254
+ encrypted_consumer_profiles = vpn_layer.encrypt_data(consumer_profiles)
255
+
256
+ # Passcode required to access data (for simplicity, using the same as the encryption key)
257
+ passcode = torch.tensor(0.5)
258
+
259
+ # Try to access the encrypted data with the correct passcode
260
+ try:
261
+ decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, passcode)
262
+ print("Access Granted. Decrypted Consumer Data:")
263
+ print(decrypted_profiles)
264
+ except ValueError as e:
265
+ print(e)
266
+
267
+ # Simulate incorrect passcode
268
+ wrong_passcode = torch.tensor(0.3)
269
+
270
+ try:
271
+ decrypted_profiles = vpn_layer.decrypt_data(encrypted_consumer_profiles, wrong_passcode)
272
+ except ValueError as e:
273
+ print(e)
274
+
275
+ # Instantiate the wealth transfer network
276
+ net = WealthTransferNet()
277
+ criterion = nn.MSELoss()
278
+ optimizer = optim.Adam(net.parameters(), lr=0.01)
279
+
280
+ # Calculate cosine similarity between consumer interests
281
+ similarity_matrix = cosine_similarity(interests)
282
+
283
+ # Find pairs of consumers with similarity above a certain threshold
284
+ threshold = 0.8
285
+ similar_pairs = np.argwhere(similarity_matrix > threshold)
286
+
287
+ # We will only consider upper triangular values to avoid double matching or self-matching
288
+ similar_pairs = similar_pairs[similar_pairs[:, 0] < similar_pairs[:, 1]]
289
+
290
+ # Simulate wealth transfer between matched pairs
291
+ for pair in similar_pairs:
292
+ consumer_a, consumer_b = pair
293
+
294
+ # Get wealth data for the pair
295
+ wealth_a = wealth_data[consumer_a]
296
+ wealth_b = wealth_data[consumer_b]
297
+
298
+ # Train the network to transfer wealth between matched consumers
299
+ for epoch in range(100):
300
+ optimizer.zero_grad()
301
+ transferred_wealth_a = net(wealth_a)
302
+ transferred_wealth_b = net(wealth_b)
303
+
304
+ # Simulate bidirectional transfer: A to B and B to A
305
+ loss_a_to_b = criterion(transferred_wealth_a, wealth_b)
306
+ loss_b_to_a = criterion(transferred_wealth_b, wealth_a)
307
+ total_loss = loss_a_to_b + loss_b_to_a
308
+
309
+ total_loss.backward()
310
+ optimizer.step()
311
+
312
+ # Display the similarity matrix and transfer results
313
+ print("Cosine Similarity Matrix (Interest-based Matching):\n", similarity_matrix)
314
+
315
+ # Plotting the interest similarity matrix for visualization
316
+ plt.figure(figsize=(8, 6))
317
+ plt.imshow(similarity_matrix, cmap='hot', interpolation='nearest')
318
+ plt.colorbar(label='Cosine Similarity')
319
+ plt.title("FortuneArch")
320
+ plt.show()
321
+
322
+ import torch
323
+ import torch.nn as nn
324
+ import torch.optim as optim
325
+ import time
326
+ import numpy as np
327
+
328
+ # Define the number of mobile receivers
329
+ num_receivers = 5
330
+
331
+ # Define the size of the data packets
332
+ data_packet_size = 256
333
+
334
+ # Simulate high-speed data transmission by creating data packets
335
+ def generate_data_packet(size):
336
+ return torch.rand(size)
337
+
338
+ # Simulate a mobile receiver processing the data
339
+ class MobileReceiver(nn.Module):
340
+ def __init__(self):
341
+ super(MobileReceiver, self).__init__()
342
+ self.fc1 = nn.Linear(data_packet_size, data_packet_size)
343
+
344
+ def forward(self, data):
345
+ processed_data = torch.relu(self.fc1(data))
346
+ return processed_data
347
+
348
+ # Instantiate the mobile receivers
349
+ receivers = [MobileReceiver() for _ in range(num_receivers)]
350
+
351
+ # Define a function to simulate instantaneous transmission to all receivers
352
+ def transmit_data_to_receivers(data_packet, receivers):
353
+ received_data = []
354
+
355
+ # Start timing to simulate high-speed transmission
356
+ start_time = time.time()
357
+
358
+ # Transmit the data packet to each receiver
359
+ for receiver in receivers:
360
+ received_packet = receiver(data_packet)
361
+ received_data.append(received_packet)
362
+
363
+ # End timing
364
+ end_time = time.time()
365
+
366
+ transmission_time = end_time - start_time
367
+ print(f"Data transmitted to {num_receivers} receivers in {transmission_time:.10f} seconds")
368
+
369
+ return received_data
370
+
371
+ # Generate a random data packet
372
+ data_packet = generate_data_packet(data_packet_size)
373
+
374
+ # Simulate data transmission to the receivers
375
+ received_data = transmit_data_to_receivers(data_packet, receivers)
376
+
377
+ # Display results
378
+ print(f"Original Data Packet (Sample):\n {data_packet[:5]}")
379
+ print(f"Processed Data by Receiver 1 (Sample):\n {received_data[0][:5]}")
380
+
381
+ import torch
382
+ import torch.nn as nn
383
+ import torch.optim as optim
384
+ import numpy as np
385
+ import matplotlib.pyplot as plt
386
+
387
+ # Define the Bank Account class
388
+ class BankAccount:
389
+ def __init__(self, account_number, balance=0.0):
390
+ self.account_number = account_number
391
+ self.balance = balance
392
+
393
+ def deposit(self, amount):
394
+ self.balance += amount
395
+
396
+ def get_balance(self):
397
+ return self.balance
398
+
399
+ # Define a VPN layer for data encryption and passcode check
400
+ class VPNLayer:
401
+ def __init__(self, encryption_key):
402
+ self.encryption_key = encryption_key # Simulate encryption key
403
+ self.data_storage = {}
404
+
405
+ def encrypt_data(self, data):
406
+ # Simulate encryption by applying a non-linear transformation
407
+ encrypted_data = data * torch.sin(self.encryption_key)
408
+ return encrypted_data
409
+
410
+ def decrypt_data(self, encrypted_data, passcode):
411
+ # Check if passcode matches the encryption key (authentication)
412
+ if passcode == self.encryption_key:
413
+ decrypted_data = encrypted_data / torch.sin(self.encryption_key)
414
+ return decrypted_data
415
+ else:
416
+ raise ValueError("Invalid Passcode! Access Denied.")
417
+
418
+ def store_data(self, data, consumer_id):
419
+ encrypted_data = self.encrypt_data(data)
420
+ self.data_storage[consumer_id] = encrypted_data
421
+
422
+ def retrieve_data(self, consumer_id, passcode):
423
+ if consumer_id in self.data_storage:
424
+ return self.decrypt_data(self.data_storage[consumer_id], passcode)
425
+ else:
426
+ raise ValueError("Consumer ID not found!")
427
+
428
+ # Generate a wealth waveform
429
+ def generate_wealth_waveform(size, amplitude, frequency, phase):
430
+ t = torch.linspace(0, 2 * np.pi, size)
431
+ waveform = amplitude * torch.sin(frequency * t + phase)
432
+ return waveform
433
+
434
+ # Define the WealthTransferNet neural network
435
+ class WealthTransferNet(nn.Module):
436
+ def __init__(self):
437
+ super(WealthTransferNet, self).__init__()
438
+ self.fc1 = nn.Linear(1, 1) # Simple linear layer for wealth transfer
439
+
440
+ def forward(self, x):
441
+ return self.fc1(x)
442
+
443
+ # Function to simulate the wealth transfer process
444
+ def transfer_wealth(waveform, target_account):
445
+ # Ensure the waveform represents positive wealth for transfer
446
+ wealth_amount = torch.sum(waveform[waveform > 0]).item()
447
+
448
+ # Instantiate the wealth transfer network
449
+ net = WealthTransferNet()
450
+
451
+ # Create a tensor for the wealth amount
452
+ input_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
453
+
454
+ # Train the network (for demonstration, no real training here)
455
+ optimizer = optim.SGD(net.parameters(), lr=0.01)
456
+ criterion = nn.MSELoss()
457
+
458
+ # Dummy target for training (for simulation purpose)
459
+ target_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
460
+
461
+ # Simulate the transfer process
462
+ for epoch in range(100): # Simulating a few training epochs
463
+ optimizer.zero_grad()
464
+ output = net(input_data)
465
+ loss = criterion(output, target_data)
466
+ loss.backward()
467
+ optimizer.step()
468
+
469
+ # Transfer the wealth to the target account
470
+ target_account.deposit(wealth_amount)
471
+
472
+ return wealth_amount
473
+
474
+ # Define the InfraredSignal class to simulate signal transmission
475
+ class InfraredSignal:
476
+ def __init__(self, waveform):
477
+ self.waveform = waveform
478
+
479
+ def transmit(self):
480
+ # Simulate transmission through space (in this case, just return the waveform)
481
+ print("Transmitting infrared signal...")
482
+ return self.waveform
483
+
484
+ # Define a receiver to detect infrared signals
485
+ class SignalReceiver:
486
+ def __init__(self):
487
+ self.received_data = None
488
+
489
+ def receive(self, signal):
490
+ print("Receiving signal...")
491
+ self.received_data = signal
492
+ print("Signal received.")
493
+
494
+ def decode(self):
495
+ # For simplicity, return the received data directly
496
+ return self.received_data
497
+
498
+ # Parameters for the wealth waveform
499
+ waveform_size = 1000
500
+ amplitude = 1000.0
501
+ frequency = 2.0
502
+ phase = 0.0
503
+
504
+ # Generate a wealth waveform
505
+ wealth_waveform = generate_wealth_waveform(waveform_size, amplitude, frequency, phase)
506
+
507
+ # Create a target bank account
508
+ target_account = BankAccount(account_number="1234567890")
509
+
510
+ # Create a VPN layer
511
+ vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
512
+
513
+ # Store consumer data (e.g., wealth waveform) in the VPN layer
514
+ consumer_id = "consumer_001"
515
+ vpn_layer.store_data(wealth_waveform, consumer_id)
516
+
517
+ # Attempt to retrieve data with the correct passcode
518
+ passcode = torch.tensor(0.5)
519
+
520
+ try:
521
+ retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode)
522
+
523
+ # Create an infrared signal to transmit the wealth waveform
524
+ infrared_signal = InfraredSignal(retrieved_waveform)
525
+
526
+ # Transmit the signal
527
+ transmitted_signal = infrared_signal.transmit()
528
+
529
+ # Create a receiver and receive the signal
530
+ signal_receiver = SignalReceiver()
531
+ signal_receiver.receive(transmitted_signal)
532
+
533
+ # Decode the received signal
534
+ decoded_waveform = signal_receiver.decode()
535
+
536
+ # Transfer wealth represented by the decoded waveform
537
+ transferred_amount = transfer_wealth(decoded_waveform, target_account)
538
+
539
+ # Display the results
540
+ print(f"Transferred Amount: ${transferred_amount:.2f}")
541
+ print(f"New Balance of Target Account: ${target_account.get_balance():.2f}")
542
+
543
+ # Plot the wealth waveform
544
+ plt.figure(figsize=(10, 5))
545
+ plt.plot(decoded_waveform.numpy(), label='Wealth Waveform')
546
+ plt.title("Wealth Waveform Representation")
547
+ plt.xlabel("Time")
548
+ plt.ylabel("Wealth Amount")
549
+ plt.legend()
550
+ plt.grid()
551
+ plt.show()
552
+
553
+ except ValueError as e:
554
+ print(e)
555
+
556
+ import torch
557
+ import torch.nn as nn
558
+ import torch.optim as optim
559
+ import numpy as np
560
+ import matplotlib.pyplot as plt
561
+
562
+ # Define the Bank Account class
563
+ class BankAccount:
564
+ def __init__(self, account_number, balance=0.0):
565
+ self.account_number = account_number
566
+ self.balance = balance
567
+
568
+ def deposit(self, amount):
569
+ self.balance += amount
570
+
571
+ def get_balance(self):
572
+ return self.balance
573
+
574
+ # Define a VPN layer for data encryption and passcode check
575
+ class VPNLayer:
576
+ def __init__(self, encryption_key):
577
+ self.encryption_key = encryption_key # Simulate encryption key
578
+ self.data_storage = {}
579
+
580
+ def encrypt_data(self, data):
581
+ # Simulate encryption by applying a non-linear transformation
582
+ encrypted_data = data * torch.sin(self.encryption_key)
583
+ return encrypted_data
584
+
585
+ def decrypt_data(self, encrypted_data, passcode):
586
+ # Check if passcode matches the encryption key (authentication)
587
+ if passcode == self.encryption_key:
588
+ decrypted_data = encrypted_data / torch.sin(self.encryption_key)
589
+ return decrypted_data
590
+ else:
591
+ raise ValueError("Invalid Passcode! Access Denied.")
592
+
593
+ def store_data(self, data, consumer_id):
594
+ encrypted_data = self.encrypt_data(data)
595
+ self.data_storage[consumer_id] = encrypted_data
596
+
597
+ def retrieve_data(self, consumer_id, passcode):
598
+ if consumer_id in self.data_storage:
599
+ return self.decrypt_data(self.data_storage[consumer_id], passcode)
600
+ else:
601
+ raise ValueError("Consumer ID not found!")
602
+
603
+ # Generate a wealth waveform
604
+ def generate_wealth_waveform(size, amplitude, frequency, phase):
605
+ t = torch.linspace(0, 2 * np.pi, size)
606
+ waveform = amplitude * torch.sin(frequency * t + phase)
607
+ return waveform
608
+
609
+ # Define the WealthTransferNet neural network
610
+ class WealthTransferNet(nn.Module):
611
+ def __init__(self):
612
+ super(WealthTransferNet, self).__init__()
613
+ self.fc1 = nn.Linear(1, 1) # Simple linear layer for wealth transfer
614
+
615
+ def forward(self, x):
616
+ return self.fc1(x)
617
+
618
+ # Function to simulate the wealth transfer process
619
+ def transfer_wealth(waveform, target_account):
620
+ # Ensure the waveform represents positive wealth for transfer
621
+ wealth_amount = torch.sum(waveform[waveform > 0]).item()
622
+
623
+ # Instantiate the wealth transfer network
624
+ net = WealthTransferNet()
625
+
626
+ # Create a tensor for the wealth amount
627
+ input_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
628
+
629
+ # Train the network (for demonstration, no real training here)
630
+ optimizer = optim.SGD(net.parameters(), lr=0.01)
631
+ criterion = nn.MSELoss()
632
+
633
+ # Dummy target for training (for simulation purpose)
634
+ target_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
635
+
636
+ # Simulate the transfer process
637
+ for epoch in range(100): # Simulating a few training epochs
638
+ optimizer.zero_grad()
639
+ output = net(input_data)
640
+ loss = criterion(output, target_data)
641
+ loss.backward()
642
+ optimizer.step()
643
+
644
+ # Transfer the wealth to the target account
645
+ target_account.deposit(wealth_amount)
646
+
647
+ return wealth_amount
648
+
649
+ # Define the InfraredSignal class to simulate signal transmission
650
+ class InfraredSignal:
651
+ def __init__(self, waveform):
652
+ self.waveform = waveform
653
+
654
+ def transmit(self):
655
+ # Simulate transmission through space (in this case, just return the waveform)
656
+ print("Transmitting infrared signal...")
657
+ return self.waveform
658
+
659
+ # Define a receiver to detect infrared signals
660
+ class SignalReceiver:
661
+ def __init__(self):
662
+ self.received_data = None
663
+
664
+ def receive(self, signal):
665
+ print("Receiving signal...")
666
+ self.received_data = signal
667
+ print("Signal received.")
668
+
669
+ def decode(self):
670
+ # For simplicity, return the received data directly
671
+ return self.received_data
672
+
673
+ # Parameters for the wealth waveform
674
+ waveform_size = 1000
675
+ amplitude = 1000.0
676
+ frequency = 2.0
677
+ phase = 0.0
678
+
679
+ # Generate a wealth waveform
680
+ wealth_waveform = generate_wealth_waveform(waveform_size, amplitude, frequency, phase)
681
+
682
+ # Create a target bank account
683
+ target_account = BankAccount(account_number="1234567890")
684
+
685
+ # Create a VPN layer
686
+ vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
687
+
688
+ # Store consumer data (e.g., wealth waveform) in the VPN layer
689
+ consumer_id = "consumer_001"
690
+ vpn_layer.store_data(wealth_waveform, consumer_id)
691
+
692
+ # Attempt to retrieve data with the correct passcode
693
+ passcode = torch.tensor(0.5)
694
+
695
+ try:
696
+ retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode)
697
+
698
+ # Create an infrared signal to transmit the wealth waveform
699
+ infrared_signal = InfraredSignal(retrieved_waveform)
700
+
701
+ # Transmit the signal
702
+ transmitted_signal = infrared_signal.transmit()
703
+
704
+ # Create a receiver and receive the signal
705
+ signal_receiver = SignalReceiver()
706
+ signal_receiver.receive(transmitted_signal)
707
+
708
+ # Decode the received signal
709
+ decoded_waveform = signal_receiver.decode()
710
+
711
+ # Transfer wealth represented by the decoded waveform
712
+ transferred_amount = transfer_wealth(decoded_waveform, target_account)
713
+
714
+ # Display the results
715
+ print(f"Transferred Amount: ${transferred_amount:.2f}")
716
+ print(f"New Balance of Target Account: ${target_account.get_balance():.2f}")
717
+
718
+ # Plot the wealth waveform
719
+ plt.figure(figsize=(10, 5))
720
+ plt.plot(decoded_waveform.numpy(), label='Wealth Waveform', color='blue')
721
+ plt.title("Wealth Waveform Representation")
722
+ plt.xlabel("Sample Number")
723
+ plt.ylabel("Wealth Amount")
724
+ plt.legend()
725
+ plt.grid()
726
+ plt.show()
727
+
728
+ except ValueError as e:
729
+ print(e)
730
+
731
+ import torch
732
+ import torch.nn as nn
733
+ import torch.optim as optim
734
+ import numpy as np
735
+ import matplotlib.pyplot as plt
736
+
737
+ # Define the Bank Account class
738
+ class BankAccount:
739
+ def __init__(self, account_number, balance=0.0):
740
+ self.account_number = account_number
741
+ self.balance = balance
742
+
743
+ def deposit(self, amount):
744
+ self.balance += amount
745
+
746
+ def get_balance(self):
747
+ return self.balance
748
+
749
+ # Define a VPN layer for data encryption and passcode check
750
+ class VPNLayer:
751
+ def __init__(self, encryption_key):
752
+ self.encryption_key = encryption_key # Simulate encryption key
753
+ self.data_storage = {}
754
+
755
+ def encrypt_data(self, data):
756
+ # Simulate encryption by applying a non-linear transformation
757
+ encrypted_data = data * torch.sin(self.encryption_key)
758
+ return encrypted_data
759
+
760
+ def decrypt_data(self, encrypted_data, passcode):
761
+ # Check if passcode matches the encryption key (authentication)
762
+ if passcode == self.encryption_key:
763
+ decrypted_data = encrypted_data / torch.sin(self.encryption_key)
764
+ return decrypted_data
765
+ else:
766
+ raise ValueError("Invalid Passcode! Access Denied.")
767
+
768
+ def store_data(self, data, consumer_id):
769
+ encrypted_data = self.encrypt_data(data)
770
+ self.data_storage[consumer_id] = encrypted_data
771
+
772
+ def retrieve_data(self, consumer_id, passcode):
773
+ if consumer_id in self.data_storage:
774
+ return self.decrypt_data(self.data_storage[consumer_id], passcode)
775
+ else:
776
+ raise ValueError("Consumer ID not found!")
777
+
778
+ # Generate a wealth waveform with a random amplitude
779
+ def generate_wealth_waveform(size, frequency, phase):
780
+ random_amplitude = torch.rand(1).item() * 1000 # Random amplitude between 0 and 1000
781
+ t = torch.linspace(0, 2 * np.pi, size)
782
+ waveform = random_amplitude * torch.sin(frequency * t + phase)
783
+ return waveform, random_amplitude
784
+
785
+ # Define the WealthTransferNet neural network
786
+ class WealthTransferNet(nn.Module):
787
+ def __init__(self):
788
+ super(WealthTransferNet, self).__init__()
789
+ self.fc1 = nn.Linear(1, 1) # Simple linear layer for wealth transfer
790
+
791
+ def forward(self, x):
792
+ return self.fc1(x)
793
+
794
+ # Function to simulate the wealth transfer process
795
+ def transfer_wealth(waveform, target_account):
796
+ # Ensure the waveform represents positive wealth for transfer
797
+ wealth_amount = torch.sum(waveform[waveform > 0]).item()
798
+
799
+ # Instantiate the wealth transfer network
800
+ net = WealthTransferNet()
801
+
802
+ # Create a tensor for the wealth amount
803
+ input_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
804
+
805
+ # Train the network (for demonstration, no real training here)
806
+ optimizer = optim.SGD(net.parameters(), lr=0.01)
807
+ criterion = nn.MSELoss()
808
+
809
+ # Dummy target for training (for simulation purpose)
810
+ target_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
811
+
812
+ # Simulate the transfer process
813
+ for epoch in range(100): # Simulating a few training epochs
814
+ optimizer.zero_grad()
815
+ output = net(input_data)
816
+ loss = criterion(output, target_data)
817
+ loss.backward()
818
+ optimizer.step()
819
+
820
+ # Transfer the wealth to the target account
821
+ target_account.deposit(wealth_amount)
822
+
823
+ return wealth_amount
824
+
825
+ # Define the InfraredSignal class to simulate signal transmission
826
+ class InfraredSignal:
827
+ def __init__(self, waveform):
828
+ self.waveform = waveform
829
+
830
+ def transmit(self):
831
+ # Simulate transmission through space (in this case, just return the waveform)
832
+ print("Transmitting infrared signal...")
833
+ return self.waveform
834
+
835
+ # Define a receiver to detect infrared signals
836
+ class SignalReceiver:
837
+ def __init__(self):
838
+ self.received_data = None
839
+
840
+ def receive(self, signal):
841
+ print("Receiving signal...")
842
+ self.received_data = signal
843
+ print("Signal received.")
844
+
845
+ def decode(self):
846
+ # For simplicity, return the received data directly
847
+ return self.received_data
848
+
849
+ # Parameters for the wealth waveform
850
+ waveform_size = 1000
851
+ frequency = 2.0
852
+ phase = 0.0
853
+
854
+ # Generate a wealth waveform with random amplitude
855
+ wealth_waveform, randomized_amplitude = generate_wealth_waveform(waveform_size, frequency, phase)
856
+
857
+ # Create a target bank account
858
+ target_account = BankAccount(account_number="1234567890")
859
+
860
+ # Create a VPN layer
861
+ vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
862
+
863
+ # Store consumer data (e.g., wealth waveform) in the VPN layer
864
+ consumer_id = "consumer_001"
865
+ vpn_layer.store_data(wealth_waveform, consumer_id)
866
+
867
+ # Attempt to retrieve data with the correct passcode
868
+ passcode = torch.tensor(0.5)
869
+
870
+ try:
871
+ retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode)
872
+
873
+ # Create an infrared signal to transmit the wealth waveform
874
+ infrared_signal = InfraredSignal(retrieved_waveform)
875
+
876
+ # Transmit the signal
877
+ transmitted_signal = infrared_signal.transmit()
878
+
879
+ # Create a receiver and receive the signal
880
+ signal_receiver = SignalReceiver()
881
+ signal_receiver.receive(transmitted_signal)
882
+
883
+ # Decode the received signal
884
+ decoded_waveform = signal_receiver.decode()
885
+
886
+ # Transfer wealth represented by the decoded waveform
887
+ transferred_amount = transfer_wealth(decoded_waveform, target_account)
888
+
889
+ # Display the results
890
+ print(f"Transferred Amount: ${transferred_amount:.2f}")
891
+ print(f"New Balance of Target Account: ${target_account.get_balance():.2f}")
892
+ print(f"Randomized Amplitude: ${randomized_amplitude:.2f}")
893
+
894
+ # Plot the wealth waveform
895
+ plt.figure(figsize=(10, 5))
896
+ plt.plot(decoded_waveform.numpy(), label='Wealth Waveform', color='blue')
897
+ plt.title("Wealth Waveform Representation")
898
+ plt.xlabel("Number")
899
+ plt.ylabel("Amount")
900
+ plt.legend()
901
+ plt.grid()
902
+ plt.show()
903
+
904
+ except ValueError as e:
905
+ print(e)
906
+
907
+ import torch
908
+ import torch.nn as nn
909
+ import torch.optim as optim
910
+ import numpy as np
911
+ import matplotlib.pyplot as plt
912
+ import hashlib
913
+
914
+ # Define the Bank Account class
915
+ class BankAccount:
916
+ def __init__(self, account_number, balance=0.0):
917
+ self.account_number = account_number
918
+ self.balance = balance
919
+
920
+ def deposit(self, amount):
921
+ self.balance += amount
922
+
923
+ def get_balance(self):
924
+ return self.balance
925
+
926
+ # Define a VPN layer for data encryption and passcode check
927
+ class VPNLayer:
928
+ def __init__(self, encryption_key):
929
+ self.encryption_key = encryption_key # Simulate encryption key
930
+ self.data_storage = {}
931
+ self.hash_storage = {}
932
+
933
+ def encrypt_data(self, data):
934
+ # Simulate encryption by applying a non-linear transformation
935
+ encrypted_data = data * torch.sin(self.encryption_key)
936
+ return encrypted_data
937
+
938
+ def decrypt_data(self, encrypted_data, passcode):
939
+ # Check if passcode matches the encryption key (authentication)
940
+ if passcode == self.encryption_key:
941
+ decrypted_data = encrypted_data / torch.sin(self.encryption_key)
942
+ return decrypted_data
943
+ else:
944
+ raise ValueError("Invalid Passcode! Access Denied.")
945
+
946
+ def store_data(self, data, consumer_id):
947
+ encrypted_data = self.encrypt_data(data)
948
+ # Store the encrypted data
949
+ self.data_storage[consumer_id] = encrypted_data
950
+
951
+ # Store a hash of the data for integrity check
952
+ data_hash = hashlib.sha256(data.numpy()).hexdigest()
953
+ self.hash_storage[consumer_id] = data_hash
954
+
955
+ def retrieve_data(self, consumer_id, passcode):
956
+ if consumer_id in self.data_storage:
957
+ encrypted_data = self.data_storage[consumer_id]
958
+ decrypted_data = self.decrypt_data(encrypted_data, passcode)
959
+ # Verify data integrity
960
+ original_hash = self.hash_storage[consumer_id]
961
+ current_hash = hashlib.sha256(decrypted_data.numpy()).hexdigest()
962
+ if original_hash == current_hash:
963
+ return decrypted_data
964
+ else:
965
+ raise ValueError("Data integrity compromised!")
966
+ else:
967
+ raise ValueError("Consumer ID not found!")
968
+
969
+ # Generate a wealth waveform with a random amplitude
970
+ def generate_wealth_waveform(size, frequency, phase):
971
+ random_amplitude = torch.rand(1).item() * 1000 # Random amplitude between 0 and 1000
972
+ t = torch.linspace(0, 2 * np.pi, size)
973
+ waveform = random_amplitude * torch.sin(frequency * t + phase)
974
+ return waveform, random_amplitude
975
+
976
+ # Define the WealthTransferNet neural network
977
+ class WealthTransferNet(nn.Module):
978
+ def __init__(self):
979
+ super(WealthTransferNet, self).__init__()
980
+ self.fc1 = nn.Linear(1, 1) # Simple linear layer for wealth transfer
981
+
982
+ def forward(self, x):
983
+ return self.fc1(x)
984
+
985
+ # Function to simulate the wealth transfer process
986
+ def transfer_wealth(waveform, target_account):
987
+ # Ensure the waveform represents positive wealth for transfer
988
+ wealth_amount = torch.sum(waveform[waveform > 0]).item()
989
+
990
+ # Instantiate the wealth transfer network
991
+ net = WealthTransferNet()
992
+
993
+ # Create a tensor for the wealth amount
994
+ input_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
995
+
996
+ # Train the network (for demonstration, no real training here)
997
+ optimizer = optim.SGD(net.parameters(), lr=0.01)
998
+ criterion = nn.MSELoss()
999
+
1000
+ # Dummy target for training (for simulation purpose)
1001
+ target_data = torch.tensor([[wealth_amount]], dtype=torch.float32)
1002
+
1003
+ # Simulate the transfer process
1004
+ for epoch in range(100): # Simulating a few training epochs
1005
+ optimizer.zero_grad()
1006
+ output = net(input_data)
1007
+ loss = criterion(output, target_data)
1008
+ loss.backward()
1009
+ optimizer.step()
1010
+
1011
+ # Transfer the wealth to the target account
1012
+ target_account.deposit(wealth_amount)
1013
+
1014
+ return wealth_amount
1015
+
1016
+ # Define the InfraredSignal class to simulate signal transmission
1017
+ class InfraredSignal:
1018
+ def __init__(self, waveform):
1019
+ self.waveform = waveform
1020
+
1021
+ def transmit(self):
1022
+ # Simulate transmission through space (in this case, just return the waveform)
1023
+ print("Transmitting infrared signal...")
1024
+ return self.waveform
1025
+
1026
+ # Define a receiver to detect infrared signals
1027
+ class SignalReceiver:
1028
+ def __init__(self):
1029
+ self.received_data = None
1030
+
1031
+ def receive(self, signal):
1032
+ print("Receiving signal...")
1033
+ self.received_data = signal
1034
+ print("Signal received.")
1035
+
1036
+ def decode(self):
1037
+ # For simplicity, return the received data directly
1038
+ return self.received_data
1039
+
1040
+ # Parameters for the wealth waveform
1041
+ waveform_size = 1000
1042
+ frequency = 2.0
1043
+ phase = 0.0
1044
+
1045
+ # Generate a wealth waveform with random amplitude
1046
+ wealth_waveform, randomized_amplitude = generate_wealth_waveform(waveform_size, frequency, phase)
1047
+
1048
+ # Create a target bank account
1049
+ target_account = BankAccount(account_number="1234567890")
1050
+
1051
+ # Create a VPN layer
1052
+ vpn_layer = VPNLayer(encryption_key=torch.tensor(0.5))
1053
+
1054
+ # Store consumer data (e.g., wealth waveform) in the VPN layer
1055
+ consumer_id = "consumer_001"
1056
+ vpn_layer.store_data(wealth_waveform, consumer_id)
1057
+
1058
+ # Attempt to retrieve data with the correct passcode
1059
+ passcode = torch.tensor(0.5)
1060
+
1061
+ try:
1062
+ retrieved_waveform = vpn_layer.retrieve_data(consumer_id, passcode)
1063
+
1064
+ # Create an infrared signal to transmit the wealth waveform
1065
+ infrared_signal = InfraredSignal(retrieved_waveform)
1066
+
1067
+ # Transmit the signal
1068
+ transmitted_signal = infrared_signal.transmit()
1069
+
1070
+ # Create a receiver and receive the signal
1071
+ signal_receiver = SignalReceiver()
1072
+ signal_receiver.receive(transmitted_signal)
1073
+
1074
+ # Decode the received signal
1075
+ decoded_waveform = signal_receiver.decode()
1076
+
1077
+ # Transfer wealth represented by the decoded waveform
1078
+ transferred_amount = transfer_wealth(decoded_waveform, target_account)
1079
+
1080
+ # Display the results
1081
+ print(f"Transferred Amount: ${transferred_amount:.2f}")
1082
+ print(f"New Balance of Target Account: ${target_account.get_balance():.2f}")
1083
+ print(f"Randomized Amplitude: ${randomized_amplitude:.2f}")
1084
+
1085
+ # Plot the wealth waveform
1086
+ plt.figure(figsize=(10, 5))
1087
+ plt.plot(decoded_waveform.numpy(), label='Wealth Waveform', color='blue')
1088
+ plt.title("Wealth Waveform Representation")
1089
+ plt.xlabel("Sample Number")
1090
+ plt.ylabel("Wealth Amount")
1091
+ plt.legend()
1092
+ plt.grid()
1093
+ plt.show()
1094
+
1095
+ except ValueError as e:
1096
+ print(e)