antitheft159 commited on
Commit
0564d58
·
verified ·
1 Parent(s): 5649333

Upload wealthfortress2_0.py

Browse files
Files changed (1) hide show
  1. wealthfortress2_0.py +552 -0
wealthfortress2_0.py ADDED
@@ -0,0 +1,552 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """WealthFortress2.0
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1GH8ouvd4W8xGw_tGZ7VgSMxz0wVsfN7Z
8
+ """
9
+
10
+ pip install torch cryptography numpy
11
+
12
+ import torch
13
+ import numpy as np
14
+ from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
15
+ from cryptography.hazmat.backends import default_backend
16
+ from cryptography.hazmat.primitives import padding
17
+
18
+ # Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
19
+ def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
20
+ t = torch.linspace(0, duration, int(sample_rate * duration))
21
+ # Convert message to numerical values (simple encoding)
22
+ message_bytes = [ord(c) for c in message]
23
+ message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
24
+ # Create a carrier wave (sine wave)
25
+ carrier_wave = torch.sin(2 * np.pi * frequency * t)
26
+ # Modulate the carrier wave with the message tensor
27
+ modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
28
+ return modulated_wave
29
+
30
+ # Step 2: Encrypt the message
31
+ def encrypt_message(message: str, key: bytes):
32
+ backend = default_backend()
33
+ iv = b'\x00' * 16 # Initialization vector (in a real system, use a secure IV)
34
+ cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
35
+ encryptor = cipher.encryptor()
36
+
37
+ # Pad the message to be AES block-size compliant
38
+ padder = padding.PKCS7(algorithms.AES.block_size).padder()
39
+ padded_data = padder.update(message.encode()) + padder.finalize()
40
+
41
+ encrypted_message = encryptor.update(padded_data) + encryptor.finalize()
42
+ return encrypted_message
43
+
44
+ # Step 3: Modulate encrypted message into the waveform
45
+ def modulate_wave_with_encryption(wave: torch.Tensor, encrypted_message: bytes):
46
+ # Convert encrypted message to tensor
47
+ encrypted_tensor = torch.tensor([byte for byte in encrypted_message], dtype=torch.float32)
48
+ # Normalize encrypted tensor and modulate it with the wave
49
+ modulated_wave = wave * encrypted_tensor.mean()
50
+ return modulated_wave
51
+
52
+ # Step 4: Demodulate and decrypt
53
+ def decrypt_message(encrypted_message: bytes, key: bytes):
54
+ backend = default_backend()
55
+ iv = b'\x00' * 16 # Same IV as in encryption
56
+ cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
57
+ decryptor = cipher.decryptor()
58
+
59
+ decrypted_padded = decryptor.update(encrypted_message) + decryptor.finalize()
60
+
61
+ # Unpad the message
62
+ unpadder = padding.PKCS7(algorithms.AES.block_size).unpadder()
63
+ decrypted_message = unpadder.update(decrypted_padded) + unpadder.finalize()
64
+
65
+ return decrypted_message.decode()
66
+
67
+ # Step 5: Transform into wealth data (dummy transformation for demo)
68
+ def transform_to_wealth_data(decrypted_message: str):
69
+ # In a real-world application, this would involve parsing wealth-specific fields
70
+ wealth_data = {
71
+ "original_message": decrypted_message,
72
+ "net_worth": len(decrypted_message) * 1000, # Dummy wealth computation
73
+ "assets": len(decrypted_message) * 500,
74
+ }
75
+ return wealth_data
76
+
77
+ # Example usage
78
+ if __name__ == "__main__":
79
+ # Initial settings
80
+ message = "Transfer 1000 units"
81
+ key = b'\x01' * 32 # AES-256 key
82
+ frequency = 5.0 # Frequency in Hz
83
+ sample_rate = 100 # Samples per second
84
+ duration = 1.0 # Wave duration in seconds
85
+
86
+ # Step 1: Create dense wave
87
+ wave = generate_dense_wave(message, frequency, sample_rate, duration)
88
+
89
+ # Step 2: Encrypt the message
90
+ encrypted_message = encrypt_message(message, key)
91
+
92
+ # Step 3: Modulate the wave with encrypted message
93
+ modulated_wave = modulate_wave_with_encryption(wave, encrypted_message)
94
+
95
+ # Step 4: Decrypt the message (for demonstration)
96
+ decrypted_message = decrypt_message(encrypted_message, key)
97
+
98
+ # Step 5: Transform to wealth data
99
+ wealth_data = transform_to_wealth_data(decrypted_message)
100
+
101
+ print("Wealth Data:", wealth_data)
102
+
103
+ pip install matplotlib
104
+
105
+ import torch
106
+ import numpy as np
107
+ import matplotlib.pyplot as plt
108
+ from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
109
+ from cryptography.hazmat.backends import default_backend
110
+ from cryptography.hazmat.primitives import padding
111
+
112
+ # Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
113
+ def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
114
+ t = torch.linspace(0, duration, int(sample_rate * duration))
115
+ # Convert message to numerical values (simple encoding)
116
+ message_bytes = [ord(c) for c in message]
117
+ message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
118
+ # Create a carrier wave (sine wave)
119
+ carrier_wave = torch.sin(2 * np.pi * frequency * t)
120
+ # Modulate the carrier wave with the message tensor
121
+ modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
122
+ return t, carrier_wave, modulated_wave
123
+
124
+ # Step 2: Encrypt the message
125
+ def encrypt_message(message: str, key: bytes):
126
+ backend = default_backend()
127
+ iv = b'\x00' * 16 # Initialization vector (in a real system, use a secure IV)
128
+ cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
129
+ encryptor = cipher.encryptor()
130
+
131
+ # Pad the message to be AES block-size compliant
132
+ padder = padding.PKCS7(algorithms.AES.block_size).padder()
133
+ padded_data = padder.update(message.encode()) + padder.finalize()
134
+
135
+ encrypted_message = encryptor.update(padded_data) + encryptor.finalize()
136
+ return encrypted_message
137
+
138
+ # Step 3: Modulate encrypted message into the waveform
139
+ def modulate_wave_with_encryption(wave: torch.Tensor, encrypted_message: bytes):
140
+ # Convert encrypted message to tensor
141
+ encrypted_tensor = torch.tensor([byte for byte in encrypted_message], dtype=torch.float32)
142
+ # Normalize encrypted tensor and modulate it with the wave
143
+ modulated_wave = wave * encrypted_tensor.mean()
144
+ return modulated_wave
145
+
146
+ # Step 4: Visualization using Matplotlib
147
+ def visualize_modulation(t, carrier_wave, modulated_wave):
148
+ plt.figure(figsize=(12, 6))
149
+
150
+ # Plot the original carrier wave
151
+ plt.subplot(2, 1, 1)
152
+ plt.plot(t.numpy(), carrier_wave.numpy(), label="Carrier Wave", color="blue")
153
+ plt.title("Carrier Wave")
154
+ plt.xlabel("Time (s)")
155
+ plt.ylabel("Amplitude")
156
+ plt.grid(True)
157
+
158
+ # Plot the modulated wave
159
+ plt.subplot(2, 1, 2)
160
+ plt.plot(t.numpy(), modulated_wave.numpy(), label="Modulated Wave", color="orange")
161
+ plt.title("Modulated Wave (Encrypted Message)")
162
+ plt.xlabel("Time (s)")
163
+ plt.ylabel("Amplitude")
164
+ plt.grid(True)
165
+
166
+ # Show plots
167
+ plt.tight_layout()
168
+ plt.show()
169
+
170
+ # Example usage
171
+ if __name__ == "__main__":
172
+ # Initial settings
173
+ message = "Transfer 1000 units"
174
+ key = b'\x01' * 32 # AES-256 key
175
+ frequency = 5.0 # Frequency in Hz
176
+ sample_rate = 100 # Samples per second
177
+ duration = 1.0 # Wave duration in seconds
178
+
179
+ # Step 1: Create dense wave
180
+ t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration)
181
+
182
+ # Step 2: Encrypt the message
183
+ encrypted_message = encrypt_message(message, key)
184
+
185
+ # Step 3: Modulate the wave with encrypted message
186
+ modulated_wave_with_encryption = modulate_wave_with_encryption(modulated_wave, encrypted_message)
187
+
188
+ # Step 4: Visualize the modulation
189
+ visualize_modulation(t, carrier_wave, modulated_wave_with_encryption)
190
+
191
+ import torch
192
+ import numpy as np
193
+ import time
194
+ import base64
195
+ import matplotlib.pyplot as plt
196
+ from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
197
+ from cryptography.hazmat.backends import default_backend
198
+ from cryptography.hazmat.primitives import padding
199
+
200
+ # Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
201
+ def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
202
+ t = torch.linspace(0, duration, int(sample_rate * duration))
203
+ # Convert message to numerical values (simple encoding)
204
+ message_bytes = [ord(c) for c in message]
205
+ message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
206
+ # Create a carrier wave (sine wave)
207
+ carrier_wave = torch.sin(2 * np.pi * frequency * t)
208
+ # Modulate the carrier wave with the message tensor
209
+ modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
210
+ return t, carrier_wave, modulated_wave
211
+
212
+ # Step 2: Encrypt the message (VPN layer encryption)
213
+ def encrypt_message(message: str, key: bytes):
214
+ backend = default_backend()
215
+ iv = b'\x00' * 16 # Initialization vector (in a real system, use a secure IV)
216
+ cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
217
+ encryptor = cipher.encryptor()
218
+
219
+ # Pad the message to be AES block-size compliant
220
+ padder = padding.PKCS7(algorithms.AES.block_size).padder()
221
+ padded_data = padder.update(message.encode()) + padder.finalize()
222
+
223
+ encrypted_message = encryptor.update(padded_data) + encryptor.finalize()
224
+ return encrypted_message
225
+
226
+ # Step 3: Simulate VPN layer transmission with encryption
227
+ def vpn_layer_transmission(data: bytes):
228
+ # Simulate the "VPN" by encrypting the message
229
+ print("[VPN] Transmitting data securely...")
230
+ time.sleep(1) # Simulating network delay
231
+ encoded_data = base64.b64encode(data)
232
+ print(f"[VPN] Encrypted and transmitted data: {encoded_data.decode('utf-8')}")
233
+ return encoded_data
234
+
235
+ # Step 4: Simulate cloud storage transfer and deep space transmission
236
+ def cloud_transfer(encoded_data: bytes):
237
+ print("[Cloud] Storing data in cloud for deep space transmission...")
238
+ time.sleep(2) # Simulating storage delay
239
+ print(f"[Cloud] Data successfully stored: {encoded_data.decode('utf-8')}")
240
+
241
+ # Step 5: Visualization using Matplotlib
242
+ def visualize_modulation(t, carrier_wave, modulated_wave):
243
+ plt.figure(figsize=(12, 6))
244
+
245
+ # Plot the original carrier wave
246
+ plt.subplot(2, 1, 1)
247
+ plt.plot(t.numpy(), carrier_wave.numpy(), label="Carrier Wave", color="blue")
248
+ plt.title("Carrier Wave")
249
+ plt.xlabel("Time (s)")
250
+ plt.ylabel("Amplitude")
251
+ plt.grid(True)
252
+
253
+ # Plot the modulated wave
254
+ plt.subplot(2, 1, 2)
255
+ plt.plot(t.numpy(), modulated_wave.numpy(), label="Modulated Wave", color="orange")
256
+ plt.title("Modulated Wave (Encrypted Message)")
257
+ plt.xlabel("Time (s)")
258
+ plt.ylabel("Amplitude")
259
+ plt.grid(True)
260
+
261
+ # Show plots
262
+ plt.tight_layout()
263
+ plt.show()
264
+
265
+ # Example usage
266
+ if __name__ == "__main__":
267
+ # Initial settings
268
+ message = "Transfer 1000 units"
269
+ key = b'\x01' * 32 # AES-256 key
270
+ frequency = 5.0 # Frequency in Hz
271
+ sample_rate = 100 # Samples per second
272
+ duration = 1.0 # Wave duration in seconds
273
+
274
+ # Step 1: Create dense wave
275
+ t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration)
276
+
277
+ # Step 2: Encrypt the message
278
+ encrypted_message = encrypt_message(message, key)
279
+
280
+ # Step 3: VPN Layer Transmission (simulate VPN secure transmission)
281
+ vpn_encrypted_message = vpn_layer_transmission(encrypted_message)
282
+
283
+ # Step 4: Cloud transfer and simulated "deep space" transmission
284
+ cloud_transfer(vpn_encrypted_message)
285
+
286
+ # Step 5: Visualize the wave modulation
287
+ visualize_modulation(t, carrier_wave, modulated_wave)
288
+
289
+ import torch
290
+ import numpy as np
291
+ import time
292
+ import base64
293
+ import matplotlib.pyplot as plt
294
+ from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
295
+ from cryptography.hazmat.backends import default_backend
296
+ from cryptography.hazmat.primitives import padding
297
+
298
+ # Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
299
+ def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
300
+ t = torch.linspace(0, duration, int(sample_rate * duration))
301
+ # Convert message to numerical values (simple encoding)
302
+ message_bytes = [ord(c) for c in message]
303
+ message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
304
+ # Create a carrier wave (sine wave)
305
+ carrier_wave = torch.sin(2 * np.pi * frequency * t)
306
+ # Modulate the carrier wave with the message tensor
307
+ modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
308
+ return t, carrier_wave, modulated_wave
309
+
310
+ # Step 2: Combine the waves (carrier wave + modulated wave)
311
+ def combine_waves(carrier_wave: torch.Tensor, modulated_wave: torch.Tensor):
312
+ combined_wave = carrier_wave + modulated_wave # Simple addition
313
+ return combined_wave
314
+
315
+ # Step 3: Encrypt the message (VPN layer encryption)
316
+ def encrypt_message(message: str, key: bytes):
317
+ backend = default_backend()
318
+ iv = b'\x00' * 16 # Initialization vector (in a real system, use a secure IV)
319
+ cipher = Cipher(algorithms.AES(key), modes.CBC(iv), backend=backend)
320
+ encryptor = cipher.encryptor()
321
+
322
+ # Pad the message to be AES block-size compliant
323
+ padder = padding.PKCS7(algorithms.AES.block_size).padder()
324
+ padded_data = padder.update(message.encode()) + padder.finalize()
325
+
326
+ encrypted_message = encryptor.update(padded_data) + encryptor.finalize()
327
+ return encrypted_message
328
+
329
+ # Step 4: Simulate VPN layer transmission with encryption
330
+ def vpn_layer_transmission(data: bytes):
331
+ # Simulate the "VPN" by encrypting the message
332
+ print("[VPN] Transmitting data securely...")
333
+ time.sleep(1) # Simulating network delay
334
+ encoded_data = base64.b64encode(data)
335
+ print(f"[VPN] Encrypted and transmitted data: {encoded_data.decode('utf-8')}")
336
+ return encoded_data
337
+
338
+ # Step 5: Simulate cloud storage transfer and deep space transmission
339
+ def cloud_transfer(encoded_data: bytes):
340
+ print("[Cloud] Storing data in cloud for deep space transmission...")
341
+ time.sleep(2) # Simulating storage delay
342
+ print(f"[Cloud] Data successfully stored: {encoded_data.decode('utf-8')}")
343
+
344
+ # Step 6: Visualization using Matplotlib
345
+ def visualize_modulation(t, carrier_wave, modulated_wave, combined_wave):
346
+ plt.figure(figsize=(12, 8))
347
+
348
+ # Plot the original carrier wave
349
+ plt.subplot(3, 1, 1)
350
+ plt.plot(t.numpy(), carrier_wave.numpy(), label="Carrier Wave", color="blue")
351
+ plt.title("Carrier Wave")
352
+ plt.xlabel("Time (s)")
353
+ plt.ylabel("Amplitude")
354
+ plt.grid(True)
355
+
356
+ # Plot the modulated wave
357
+ plt.subplot(3, 1, 2)
358
+ plt.plot(t.numpy(), modulated_wave.numpy(), label="Modulated Wave", color="orange")
359
+ plt.title("Modulated Wave (Encrypted Message)")
360
+ plt.xlabel("Time (s)")
361
+ plt.ylabel("Amplitude")
362
+ plt.grid(True)
363
+
364
+ # Plot the combined wave
365
+ plt.subplot(3, 1, 3)
366
+ plt.plot(t.numpy(), combined_wave.numpy(), label="Combined Wave", color="green")
367
+ plt.title("Combined Wave (Carrier + Modulated)")
368
+ plt.xlabel("Time (s)")
369
+ plt.ylabel("Amplitude")
370
+ plt.grid(True)
371
+
372
+ # Show plots
373
+ plt.tight_layout()
374
+ plt.show()
375
+
376
+ # Example usage
377
+ if __name__ == "__main__":
378
+ # Initial settings
379
+ message = "Transfer 1000 units"
380
+ key = b'\x01' * 32 # AES-256 key
381
+ frequency = 5.0 # Frequency in Hz
382
+ sample_rate = 100 # Samples per second
383
+ duration = 1.0 # Wave duration in seconds
384
+
385
+ # Step 1: Create dense wave
386
+ t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration)
387
+
388
+ # Step 2: Combine the carrier and modulated waves
389
+ combined_wave = combine_waves(carrier_wave, modulated_wave)
390
+
391
+ # Step 3: Encrypt the message
392
+ encrypted_message = encrypt_message(message, key)
393
+
394
+ # Step 4: VPN Layer Transmission (simulate VPN secure transmission)
395
+ vpn_encrypted_message = vpn_layer_transmission(encrypted_message)
396
+
397
+ # Step 5: Cloud transfer and simulated "deep space" transmission
398
+ cloud_transfer(vpn_encrypted_message)
399
+
400
+ # Step 6: Visualize the wave modulation and combined wave
401
+ visualize_modulation(t, carrier_wave, modulated_wave, combined_wave)
402
+
403
+ import numpy as np
404
+
405
+ # Hamming(7, 4) code for simple error detection and correction
406
+ def hamming_encode(message: str):
407
+ message_bits = [int(b) for b in ''.join(format(ord(c), '08b') for c in message)]
408
+ encoded_bits = []
409
+
410
+ # Apply Hamming(7,4) encoding
411
+ for i in range(0, len(message_bits), 4):
412
+ d = message_bits[i:i+4]
413
+ if len(d) < 4: # Pad if necessary
414
+ d += [0] * (4 - len(d))
415
+
416
+ p1 = d[0] ^ d[1] ^ d[3] # Parity bits
417
+ p2 = d[0] ^ d[2] ^ d[3]
418
+ p3 = d[1] ^ d[2] ^ d[3]
419
+
420
+ # Add data and parity bits
421
+ encoded_bits += [p1, p2, d[0], p3, d[1], d[2], d[3]]
422
+
423
+ return np.array(encoded_bits)
424
+
425
+ def hamming_decode(encoded_bits):
426
+ decoded_message = []
427
+
428
+ # Decode Hamming(7,4)
429
+ for i in range(0, len(encoded_bits), 7):
430
+ b = encoded_bits[i:i+7]
431
+ if len(b) < 7: # Skip if not enough bits
432
+ continue
433
+
434
+ # Calculate syndrome bits
435
+ p1 = b[0] ^ b[2] ^ b[4] ^ b[6]
436
+ p2 = b[1] ^ b[2] ^ b[5] ^ b[6]
437
+ p3 = b[3] ^ b[4] ^ b[5] ^ b[6]
438
+
439
+ # Error position (if any)
440
+ error_position = p1 + (p2 * 2) + (p3 * 4)
441
+
442
+ if error_position != 0:
443
+ b[error_position - 1] = 1 - b[error_position - 1] # Correct the bit
444
+
445
+ # Extract the original data bits
446
+ decoded_message += [b[2], b[4], b[5], b[6]]
447
+
448
+ return ''.join([chr(int(''.join(map(str, decoded_message[i:i+8])), 2)) for i in range(0, len(decoded_message), 8)])
449
+
450
+ # Example usage
451
+ message = "Test"
452
+ encoded_message = hamming_encode(message)
453
+ print(f"Encoded Message (Hamming): {encoded_message}")
454
+
455
+ # Simulate transmission and potential bit-flips (errors)
456
+ encoded_message[2] = 1 - encoded_message[2] # Introduce an error
457
+
458
+ # Decode and correct errors
459
+ decoded_message = hamming_decode(encoded_message)
460
+ print(f"Decoded Message: {decoded_message}")
461
+
462
+ import torch
463
+ import numpy as np
464
+ import matplotlib.pyplot as plt
465
+
466
+ # Step 1: Generate the dense wave (sinusoidal waveform modulated by message data)
467
+ def generate_dense_wave(message: str, frequency: float, sample_rate: int, duration: float):
468
+ t = torch.linspace(0, duration, int(sample_rate * duration))
469
+ message_bytes = [ord(c) for c in message]
470
+ message_tensor = torch.tensor(message_bytes, dtype=torch.float32)
471
+ carrier_wave = torch.sin(2 * np.pi * frequency * t)
472
+ modulated_wave = carrier_wave * torch.sin(2 * np.pi * message_tensor.mean() * t)
473
+ return t, carrier_wave, modulated_wave
474
+
475
+ # Step 2: Space-Time Coding (Alamouti Scheme with 2 antennas)
476
+ def space_time_code(wave1: torch.Tensor, wave2: torch.Tensor):
477
+ # Alamouti Space-Time Block Code for 2 antennas
478
+ s1 = wave1
479
+ s2 = wave2
480
+ transmit_antenna_1 = torch.stack([s1, -s2.conj()])
481
+ transmit_antenna_2 = torch.stack([s2, s1.conj()])
482
+ return transmit_antenna_1, transmit_antenna_2
483
+
484
+ # Step 3: Doppler Compensation
485
+ def doppler_compensation(wave: torch.Tensor, velocity: float, frequency: float, sample_rate: int):
486
+ c = 3e8 # Speed of light in meters per second
487
+ doppler_shift = frequency * (velocity / c) # Doppler shift formula
488
+ compensated_wave = wave * torch.exp(-1j * 2 * np.pi * doppler_shift * torch.arange(len(wave)) / sample_rate)
489
+ return compensated_wave.real # Take real part after compensation
490
+
491
+ # Step 4: Combine Waves (Carrier + Modulated)
492
+ def combine_waves(carrier_wave: torch.Tensor, modulated_wave: torch.Tensor):
493
+ combined_wave = carrier_wave + modulated_wave
494
+ return combined_wave
495
+
496
+ # Step 5: Visualization using Matplotlib
497
+ def visualize_modulation(t, wave1, wave2, combined_wave, title1, title2, combined_title):
498
+ plt.figure(figsize=(12, 8))
499
+
500
+ # Plot Wave 1
501
+ plt.subplot(3, 1, 1)
502
+ plt.plot(t.numpy(), wave1.numpy(), label=title1, color="blue")
503
+ plt.title(title1)
504
+ plt.xlabel("Time (s)")
505
+ plt.ylabel("Amplitude")
506
+ plt.grid(True)
507
+
508
+ # Plot Wave 2
509
+ plt.subplot(3, 1, 2)
510
+ plt.plot(t.numpy(), wave2.numpy(), label=title2, color="orange")
511
+ plt.title(title2)
512
+ plt.xlabel("Time (s)")
513
+ plt.ylabel("Amplitude")
514
+ plt.grid(True)
515
+
516
+ # Plot Combined Wave
517
+ plt.subplot(3, 1, 3)
518
+ plt.plot(t.numpy(), combined_wave.numpy(), label=combined_title, color="green")
519
+ plt.title(combined_title)
520
+ plt.xlabel("Time (s)")
521
+ plt.ylabel("Amplitude")
522
+ plt.grid(True)
523
+
524
+ plt.tight_layout()
525
+ plt.show()
526
+
527
+ # Example usage
528
+ if __name__ == "__main__":
529
+ # Initial settings
530
+ message = "Deep Space Message"
531
+ frequency = 5.0 # Frequency in Hz
532
+ sample_rate = 100 # Samples per second
533
+ duration = 1.0 # Wave duration in seconds
534
+ velocity = 10000 # Relative velocity (m/s) for Doppler compensation
535
+
536
+ # Step 1: Generate dense wave
537
+ t, carrier_wave, modulated_wave = generate_dense_wave(message, frequency, sample_rate, duration)
538
+
539
+ # Step 2: Space-Time Coding (using two antennas)
540
+ st_wave1, st_wave2 = space_time_code(carrier_wave, modulated_wave)
541
+
542
+ # Step 3: Doppler Compensation
543
+ doppler_wave1 = doppler_compensation(st_wave1[0], velocity, frequency, sample_rate)
544
+ doppler_wave2 = doppler_compensation(st_wave2[0], velocity, frequency, sample_rate)
545
+
546
+ # Step 4: Combine the waves (carrier + modulated)
547
+ combined_wave = combine_waves(doppler_wave1, doppler_wave2)
548
+
549
+ # Step 5: Visualization
550
+ visualize_modulation(t, doppler_wave1, doppler_wave2, combined_wave,
551
+ "Doppler-Compensated Wave 1", "Doppler-Compensated Wave 2",
552
+ "Combined Doppler-Compensated Wave")