Upload 903_159_651_252.py
Browse files- 903_159_651_252.py +132 -0
903_159_651_252.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""903.159.651.252
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1UBJL9vF_K8ZO_vRZkvTES3G8LBRGjzGP
|
8 |
+
"""
|
9 |
+
|
10 |
+
import pandas as pd
|
11 |
+
import numpy as np
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import seaborn as sns
|
14 |
+
|
15 |
+
plt.style.use('seaborn-darkgrid')
|
16 |
+
|
17 |
+
dataset_path = '/content/real_estate_texas_500_2024.csv'
|
18 |
+
df = pd.read_csv(dataset_path)
|
19 |
+
|
20 |
+
df.head()
|
21 |
+
|
22 |
+
df['listPrice'] = df['listPrice'].fillna(df['listPrice'].mean())
|
23 |
+
|
24 |
+
df.drop(columns=['baths_full_calc'], inplace=True)
|
25 |
+
|
26 |
+
df.dropna(subset=['text'], inplace=True)
|
27 |
+
|
28 |
+
df.info()
|
29 |
+
|
30 |
+
plt.figure(figsize=(10, 6))
|
31 |
+
sns.histplot(df['listPrice'], bins=30, kde=True)
|
32 |
+
plt.title('Distribution of Listing Prices')
|
33 |
+
plt.xlabel('Listing Price ($)')
|
34 |
+
plt.ylabel('Frequency')
|
35 |
+
plt.show()
|
36 |
+
|
37 |
+
price_summary = df['listPrice'].describe()
|
38 |
+
|
39 |
+
price_summary_df = pd.DataFrame(price_summary).transpose()
|
40 |
+
|
41 |
+
price_summary_df
|
42 |
+
|
43 |
+
plt.figure(figsize=(10, 6))
|
44 |
+
sns.countplot(y = 'type', data=df, palette='Set2')
|
45 |
+
plt.title('Count of Property Types')
|
46 |
+
plt.xlabel('Count')
|
47 |
+
plt.ylabel('Property Type')
|
48 |
+
plt.show()
|
49 |
+
|
50 |
+
type_counts = df['type'].value_counts().reset_index()
|
51 |
+
|
52 |
+
type_counts.columns = ['Property Type', 'Count']
|
53 |
+
|
54 |
+
type_counts
|
55 |
+
|
56 |
+
type_counts = df['type'].value_counts().reset_index()
|
57 |
+
|
58 |
+
type_counts.columns = ['Property Type', 'Count']
|
59 |
+
|
60 |
+
type_counts
|
61 |
+
|
62 |
+
yearly_summary = df.groupby('year_built').agg(
|
63 |
+
Average_Listing_Price=('listPrice', 'mean'),
|
64 |
+
Average_Square_Footage=('sqft', 'mean')
|
65 |
+
).reset_index()
|
66 |
+
|
67 |
+
yearly_summary['Average_Listing_Price'] = yearly_summary['Average_Listing_Price'].round(2)
|
68 |
+
yearly_summary['Average_Square_Footage'] = yearly_summary['Average_Square_Footage'].round(2)
|
69 |
+
|
70 |
+
yearly_summay = yearly_summary.sort_values(by='year_built')
|
71 |
+
|
72 |
+
yearly_summary
|
73 |
+
|
74 |
+
yearly_summary = df.groupby('year_built').agg(
|
75 |
+
Average_Listing_Price=('listPrice', 'mean'),
|
76 |
+
Average_Square_Footage=('sqft', 'mean')
|
77 |
+
).reset_index()
|
78 |
+
|
79 |
+
yearly_summary['Average_Listing_Price'] = yearly_summary['Average_Listing_Price'].round(2)
|
80 |
+
yearly_summary['Average_Square_Footage'] = yearly_summary['Average_Square_Footage'].round(2)
|
81 |
+
|
82 |
+
yearly_summary = yearly_summary.sort_values(by='year_built')
|
83 |
+
|
84 |
+
yearly_summary
|
85 |
+
|
86 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
87 |
+
from sklearn.decomposition import LatentDirichletAllocation
|
88 |
+
|
89 |
+
vectorizer = CountVectorizer(max_df=0.95, min_df=2, stop_words='english')
|
90 |
+
dtm = vectorizer.fit_transform(df['text'])
|
91 |
+
|
92 |
+
lda = LatentDirichletAllocation(n_components=5, random_state=42)
|
93 |
+
lda.fit(dtm)
|
94 |
+
|
95 |
+
def display_topics(model, feature_names, no_top_words):
|
96 |
+
for topic_idx, topic in enumerate(model.components_):
|
97 |
+
print(f"Theme {topic_idx+1}:")
|
98 |
+
print(" ".join([feature_names[i] for i in topic.argsort()[:-no_top_words -1:-1]]))
|
99 |
+
print()
|
100 |
+
|
101 |
+
display_topics(lda, vectorizer.get_feature_names_out(), 10)
|
102 |
+
|
103 |
+
import matplotlib.pyplot as plt
|
104 |
+
import seaborn as sns
|
105 |
+
|
106 |
+
sns.set(style="whitegrid")
|
107 |
+
|
108 |
+
fig, axes = plt.subplots(2, 2, figsize=(16, 12))
|
109 |
+
fig.suptitle('Texas Real Estate Market Insights - 2024', fontsize=20)
|
110 |
+
|
111 |
+
sns.histplot(df['listPrice'], kde=True, ax=axes[0,0], color='skyblue')
|
112 |
+
axes[0,0].set_title('Distribution of Listing Prices')
|
113 |
+
axes[0, 0].set_xlabel('Listing Price ($)')
|
114 |
+
axes[0, 0].set_ylabel('Frequency')
|
115 |
+
|
116 |
+
avg_price_by_type = df.groupby('type')['listPrice'].mean().sort_values()
|
117 |
+
avg_price_by_type.plot(kind='barh', ax=axes[0,1], color='lightgreen')
|
118 |
+
axes[0, 1].set_title('Average Listing Price by Property Type')
|
119 |
+
axes[0, 1].set_xlabel('Average Listing Price ($)')
|
120 |
+
axes[0, 1].set_ylabel('Property Type')
|
121 |
+
|
122 |
+
properties_by_year = df.groupby('year_built').size()
|
123 |
+
properties_by_year.plot(ax=axes[1, 0], color='salmon')
|
124 |
+
axes[1, 0].set_title('Count of Properties by Year Built')
|
125 |
+
axes[1, 0].set_xlabel('Year Built')
|
126 |
+
axes[1, 0].set_ylabel('Count')
|
127 |
+
|
128 |
+
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
129 |
+
|
130 |
+
fig.delaxes(axes[1,1])
|
131 |
+
|
132 |
+
plt.show()
|