File size: 6,025 Bytes
478ef55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
# -*- coding: utf-8 -*-
"""laurelString/gpt2/tttg.159
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/16-bSqq2kMNO8X0BjNA0-bCckjnx1Ler_
"""
! pip install sentence_transformers==2.2.2
!pip install -qq -U langchain
!pip install -qq -U langchaing-community
!pip install -qq -U tiktoken
!pip install -qq -U pypdf
!pip install -qq -U faiss-gpu
!pip install -qq -U InstructorEmbedding
!pip install -qq -U accelerate
!pip install -qq -U bitsandbytes
import warnings
warnings.filterwarnings("ignore")
import os
import glob
import textwrap
import time
import langchain
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain import PropmtTemplate, LLMChain
from langchain.vectorstores import FAISS
from langchain.llms import HuggingFacePipeline
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.chains import Retrieva1QA
import torch
import transformers
from transformers import (
AutoTokenizer, AutoModelForCausalLM,
BitsAndBytesConfig,
pipeline
)
class RAG:
temperature = 0,
top_p = 0.95,
repetition_penalty = 1.15
split_chunk_size = 800
split_overlap = 0
embeddings_model_repo = 'sentence-transformers/all-MiniLM-L6-v2'
k = 5
PDFs_path = '/kaggle/input/physics9thclass/'
Embeddings_path = '/kaggle/working/embeddingfinal/'
Persist_directory = './books-vectorb'
model_repo = 'darl149/llama-2-13b-chat-hf'
tokenizer = AutoTokenizer.from_pretrained(model_repo, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
model_repo,
load_in_4bit = True,
device_map = 'auto',
torch_dtype = torch.float16,
low_cpu_mem_usage = True,
trust_remote_code = True
)
max_len = 2048
pipe = pipeline(
task = "text-generation",
model = model,
tokenizer = tokenizer,
pad_token_id = tokenizer.eos_token_id,
max_length = max_len,
temperature = RAG.temperature,
top_p = RAG.top_p
repetition_penalty = RAG.repetition_penalty
)
llm = HuggingFacePipeline(pipeline = pipe)
query = """Give me the detail on momentum and torque and how they are different."""
llm.invoke(query, truncation=True)
loader = DircetoryLoader(
RAG.Embeddings_path,
glob="./*.pdf",
loader_cls=PyPDFLoader,
show_progress=True,
use_multithreading=True
)
documents = loader.load()
print(f'We have {len(documents)} pages in total')
documents[100].page_content
text_splitter = RecursiveCharacterTextSplitter(
chunk_size = RAG.split_chunk_size,
chunk_overlap = RAG.split_documents(documents)
print(f'We have created {len(texts)} chunks from {len(documents)} pages')
)
if not os.path.exists(RAG.Embeddings_path + '/index.faiss'):
embeddings = HuggingFaceInstructEmbeddings(
model_name = RAG.embeddings_model_repo,
model_kwargs = {"device": "cuda"}
)
vectordb.save_local(f"{RAG.Persist_directory}/faiss_index_hp")
embeddings = HuggingFaceInstructEmbeddings(
model_name = RAG.embeddings_model_repo,
model_kwargs = {"device": "cuda"}
)
vectordb = FAISS.load_local(
RAG.Persist_directory + '/faiss_index_hp',
embeddings,
allow_dangerous_deserialization=True
)
vectordb.similarity_search('quantum')
prompt_template = """Suppose you are a Teaching assitant.
Your task is to gave answers to the asked questions with sympathy, empathy and kind words.
Start by something like good question or very good point etc.
Ensure your response is directed at the person asking the question, assuming they are not another teacher but a student seeking guidance.
At the end of the answer, give best wishe like "I hope you understand. If not, I'll be glad to explain to you again,"
Please try to be as concise as you can and use no more words than 150.
Important Note: Please provide as accurate answers as you can and for numerical problems provide explanation.
Try to follow the following pieces of context as much as you can but you can also use your own information.
{context}
Question: {question}
Answer:"""
PROMPT = PrompTemplate(
template = prompt_template,
input_variables = ["context", "question"]
)
retriver = vectordb.as_retriever(search_kwargs = {
"k": RAG.k, "search_type" : "similarity"})
qa_chain = RetrievalQA.from_chain_type(
llm = llm,
chain_type = "stuff", # map_reduce, map_rerank,stuff, refine
retriever = retriever,
chain_type_kwargs = {"prompt": PROMPT},
return_source_documents = True,
verbose = False
)
question = "First law of motion has another name what it is."
vectordb.max_marginal_relevance_search(question, k = RAG.k)
def wrap_text_preserve_newlines(text, width=700):
lines = text.split('\n')
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
def process_llm_response(llm_response):
answer_full = llm_response['result']
answer_start = answer_full.find("Answer:") + 1en("Answer:")
answer = answer_full[answer_start:].strip()
answer = wrap_text_preserve_newlines(answer)
return answer
def llm_ans(query):
llm_response = qa_chain.invoke(query)
ans = process_llm_response(llm_response)
end = time.time()
return ans
query = "Firt law of motion has another name what it is."
print(llm_ans(query))
query = """Firt law of motion has another name what it is."""
llm.invoke(query,truncation=True)
query = "The concrete roof of a house of thickness 20 cm has an area 200 m2. The temperature inside the house is 15° C and outside is 35° C. find the rate at which thermal energy conducted through the roof in Js-1. The value of k for concrete is 0.65 Wm1K1."
print(llm_ans(query))
query = """The concrete roof of a house of thickness 20 cm has an area 200 m2. The temperature inside the house is 15° C and outside is 35° C. find the rate at which thermal energy conducted through the roof in Js-1. The value of k for concrete is 0.65 Wm1K1.""" |