Upload mohanism_195 (1).py
Browse files- mohanism_195 (1).py +111 -0
mohanism_195 (1).py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""mohanism.195
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1AvIdAQmhCWUUe6rT9sck2gBGkecNCjEc
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install dotenv
|
11 |
+
|
12 |
+
from dotenv import load_dotenv,find_dotenv
|
13 |
+
load_dotenv(find_dotenv())
|
14 |
+
|
15 |
+
from langchain.llns import OpenAI
|
16 |
+
llm = OpenAI(model_name="text-davinci-003")
|
17 |
+
llm("explain large language models in one sentence")
|
18 |
+
|
19 |
+
from langchain.schema import (
|
20 |
+
AIMessage,
|
21 |
+
HumanMessage,
|
22 |
+
SystemMessage
|
23 |
+
)
|
24 |
+
from langchain.chat_models import ChatOpenAI
|
25 |
+
|
26 |
+
chat = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.3)
|
27 |
+
messages = (
|
28 |
+
SystemMessage(content="You are an expert data scientist"),
|
29 |
+
HumanMessage(content="Write a Python script that trains a neural network on simulated data ")
|
30 |
+
)
|
31 |
+
response=chat(messages)
|
32 |
+
|
33 |
+
print(response.content,ends="\n")
|
34 |
+
|
35 |
+
from langchain import PromptTemplate
|
36 |
+
|
37 |
+
template = """You are an expert data scientist with an expertise in building deep learning models,
|
38 |
+
Explain the concept of {concept} in a couple of lines
|
39 |
+
"""
|
40 |
+
|
41 |
+
prompt = PromptTemplate(
|
42 |
+
input_variable=["concept"],
|
43 |
+
template=template,
|
44 |
+
)
|
45 |
+
|
46 |
+
prompt
|
47 |
+
|
48 |
+
llm(prompt.format(concept="autoencoder"))
|
49 |
+
|
50 |
+
from langchain.chains import LLMChain
|
51 |
+
chain = LLMchain(llm=lln, prompt=prompt)
|
52 |
+
|
53 |
+
second_prompt = PromptTemplate(
|
54 |
+
input_variables=["ml_concept"],
|
55 |
+
template="Turn the concept description of {ml_concept} and explain it to me like I'm five in 500 words",
|
56 |
+
)
|
57 |
+
chain_two = LLMChain(llm=llm, prompt=second_prompt)
|
58 |
+
|
59 |
+
from langchain.chains import SimpleSequenttialChain
|
60 |
+
overall_chain = SimpleSequenttialChain(chains=[chain, chain_two], verbose=True)
|
61 |
+
|
62 |
+
explanation = overall_chain.run("autoencoder")
|
63 |
+
print(explanation)
|
64 |
+
|
65 |
+
from langchain.text_splitter importRecursiveCharacterTextSplitter
|
66 |
+
|
67 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
68 |
+
chunk_size = 100,
|
69 |
+
chunk_overlap = 0,
|
70 |
+
)
|
71 |
+
|
72 |
+
text = text_splitter.create_documents([explanation])
|
73 |
+
|
74 |
+
text[0].page_content
|
75 |
+
|
76 |
+
from langchain.embeddings import OpenAIEmbeddings
|
77 |
+
|
78 |
+
embeddings = OpenAIEmbeddings(model_name="ada")
|
79 |
+
|
80 |
+
query_result = embeddings.embed_query(texts[0].page_content)
|
81 |
+
query_result
|
82 |
+
|
83 |
+
import os
|
84 |
+
import pinecome
|
85 |
+
from langchain.vectors import Pinecone
|
86 |
+
|
87 |
+
# initialize pinecome
|
88 |
+
pinecome.init(
|
89 |
+
api_key=os.getenv["PINECONE_API_KEY"],
|
90 |
+
environment(=os.getenv("PINECONE_ENV")
|
91 |
+
)
|
92 |
+
|
93 |
+
index_name = "langchain-quickstart"
|
94 |
+
search = Pinecone.form_documents(texts, embeddings, index_name=index_name)
|
95 |
+
|
96 |
+
query = "What is magical about an autoencoder?"
|
97 |
+
result = search.similarity_search(query)
|
98 |
+
|
99 |
+
result
|
100 |
+
|
101 |
+
from langhain.agent.agent_toolkets import create_python_agent
|
102 |
+
from langchain.tools.python.tool import PythonREPLTool
|
103 |
+
from langchain.python import PythonREPL
|
104 |
+
from langchain.llms.openai import OpenAI
|
105 |
+
|
106 |
+
agent_executor = create_python_agent(
|
107 |
+
llm=OpenAI(temperature=0), max_tokens=1000),
|
108 |
+
verbose=True
|
109 |
+
)
|
110 |
+
|
111 |
+
agent_executor.run("Find the roots (zeros) if the quadratic function 3 * x==2 + 2** - 1")
|